<
From version < 35.11 >
edited by Xiaoling
on 2022/06/14 14:06
To version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1077 +12,805 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
62 62  
63 63  
64 64  
65 -== 1.3 Specification ==
66 66  
67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 +== 1.3  Specification ==
68 68  
69 -[[image:image-20220606162220-5.png]]
70 70  
67 +(% style="color:#037691" %)**Common DC Characteristics:**
71 71  
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -== ​1.4 Applications ==
74 74  
75 -* Smart Agriculture
76 76  
77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 -​
74 +(% style="color:#037691" %)**NB-IoT Spec:**
79 79  
80 -== 1.5 Firmware Change log ==
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
84 84  
85 +Probe(% style="color:#037691" %)** Specification:**
85 85  
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +[[image:image-20220708101224-1.png]]
88 88  
89 -== 2.1 How it works ==
90 90  
91 -(((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 -)))
94 94  
95 -(((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
97 -)))
93 +== ​1.4  Applications ==
98 98  
95 +* Smart Agriculture
99 99  
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
100 100  
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 +== 1. Pin Definitions ==
102 102  
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 104  
103 +[[image:1657246476176-652.png]]
105 105  
106 -[[image:1654503992078-669.png]]
107 107  
108 108  
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 += 2.  Use NSE01 to communicate with IoT Server =
110 110  
109 +== 2.1  How it works ==
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
113 113  
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
115 115  
116 -[[image:image-20220606163732-6.jpeg]]
117 117  
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
119 119  
120 -**Add APP EUI in the application**
121 +[[image:image-20220708101605-2.png]]
121 121  
123 +(((
124 +
125 +)))
122 122  
123 -[[image:1654504596150-405.png]]
124 124  
125 125  
129 +== 2.2 ​ Configure the NSE01 ==
126 126  
127 -**Add APP KEY and DEV EUI**
128 128  
129 -[[image:1654504683289-357.png]]
132 +=== 2.2.1 Test Requirement ===
130 130  
131 131  
135 +To use NSE01 in your city, make sure meet below requirements:
132 132  
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 134  
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
146 +[[image:1657249419225-449.png]]
166 166  
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 170  
171 -(Optional)
172 -)))
173 173  
150 +=== 2.2.2 Insert SIM card ===
174 174  
152 +Insert the NB-IoT Card get from your provider.
175 175  
154 +User need to take out the NB-IoT module and insert the SIM card like below:
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
157 +[[image:1657249468462-536.png]]
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
185 185  
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
190 190  
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
196 -)))
197 -
198 -
199 -
200 -
201 -
202 -=== 2.3.3 Battery Info ===
203 -
204 204  (((
205 -Check the battery voltage for LSE01.
206 -)))
207 -
208 208  (((
209 -Ex1: 0x0B45 = 2885mV
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
210 210  )))
211 -
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 214  )))
215 215  
216 216  
170 +**Connection:**
217 217  
218 -=== 2.3.4 Soil Moisture ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
219 219  
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
223 223  
224 -(((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
227 227  
228 -(((
229 -
230 -)))
231 231  
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 -)))
179 +In the PC, use below serial tool settings:
235 235  
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
236 236  
237 -
238 -=== 2.3.5 Soil Temperature ===
239 -
240 240  (((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
242 242  )))
243 243  
244 -(((
245 -**Example**:
246 -)))
191 +[[image:image-20220708110657-3.png]]
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
255 255  
256 256  
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
257 257  
258 -=== 2.3.6 Soil Conductivity (EC) ===
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
259 259  
260 -(((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 -)))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
202 +**Use below commands:**
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
271 271  
272 -(((
273 -
274 -)))
208 +For parameter description, please refer to AT command set
275 275  
276 -(((
277 -
278 -)))
210 +[[image:1657249793983-486.png]]
279 279  
280 -=== 2.3.7 MOD ===
281 281  
282 -Firmware version at least v2.1 supports changing mode.
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
283 283  
284 -For example, bytes[10]=90
215 +[[image:1657249831934-534.png]]
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
287 287  
288 288  
289 -**Downlink Command:**
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
290 290  
291 -If payload = 0x0A00, workmode=0
221 +This feature is supported since firmware version v1.0.1
292 292  
293 -If** **payload =** **0x0A01, workmode=1
294 294  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
295 295  
228 +[[image:1657249864775-321.png]]
296 296  
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 298  
299 -While using TTN network, you can add the payload format to decode the payload.
231 +[[image:1657249930215-289.png]]
300 300  
301 301  
302 -[[image:1654505570700-128.png]]
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 -)))
237 +This feature is supported since firmware version v110
311 311  
312 312  
313 -== 2.4 Uplink Interval ==
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 +[[image:1657249978444-674.png]]
316 316  
317 317  
251 +[[image:1657249990869-686.png]]
318 318  
319 -== 2.5 Downlink Payload ==
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
322 -
323 -[[image:image-20220606165544-8.png]]
324 -
325 -
326 326  (((
327 -**Examples:**
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
328 328  )))
329 329  
330 -(((
331 -
332 -)))
333 333  
334 -* (((
335 -**Set TDC**
336 -)))
337 337  
338 -(((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
341 341  
342 -(((
343 -Payload:    01 00 00 1E    TDC=30S
344 -)))
262 +This feature is supported since firmware version v110
345 345  
346 -(((
347 -Payload:    01 00 00 3C    TDC=60S
348 -)))
349 349  
350 -(((
351 -
352 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
353 353  
354 -* (((
355 -**Reset**
356 -)))
268 +[[image:1657250217799-140.png]]
357 357  
358 -(((
359 -If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
271 +[[image:1657250255956-604.png]]
362 362  
363 -* **CFM**
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
366 366  
275 +=== 2.2.8 Change Update Interval ===
367 367  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
368 368  
369 -== 2.6 ​Show Data in DataCake IoT Server ==
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
370 370  
371 371  (((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 +(% style="color:red" %)**NOTE:**
373 373  )))
374 374  
375 375  (((
376 -
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
377 377  )))
378 378  
379 -(((
380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
381 -)))
382 382  
383 -(((
384 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
386 386  
291 +== 2.3  Uplink Payload ==
387 387  
388 -[[image:1654505857935-743.png]]
293 +In this mode, uplink payload includes in total 18 bytes
389 389  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
390 390  
391 -[[image:1654505874829-548.png]]
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
392 392  
393 -Step 3: Create an account or log in Datacake.
394 394  
395 -Step 4: Search the LSE01 and add DevEUI.
304 +[[image:image-20220708111918-4.png]]
396 396  
397 397  
398 -[[image:1654505905236-553.png]]
307 +The payload is ASCII string, representative same HEX:
399 399  
309 +0x72403155615900640c7817075e0a8c02f900 where:
400 400  
401 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
402 402  
403 -[[image:1654505925508-181.png]]
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
404 404  
405 405  
406 406  
407 -== 2.7 Frequency Plans ==
408 408  
409 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
324 +== 2.4  Payload Explanation and Sensor Interface ==
410 410  
411 411  
412 -=== 2.7.1 EU863-870 (EU868) ===
327 +=== 2.4.1  Device ID ===
413 413  
414 -(% style="color:#037691" %)** Uplink:**
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
415 415  
416 -868.1 - SF7BW125 to SF12BW125
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
417 417  
418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
333 +**Example:**
419 419  
420 -868.5 - SF7BW125 to SF12BW125
335 +AT+DEUI=A84041F15612
421 421  
422 -867.1 - SF7BW125 to SF12BW125
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
423 423  
424 -867.3 - SF7BW125 to SF12BW125
425 425  
426 -867.5 - SF7BW125 to SF12BW125
427 427  
428 -867.7 - SF7BW125 to SF12BW125
341 +=== 2.4.2  Version Info ===
429 429  
430 -867.9 - SF7BW125 to SF12BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
431 431  
432 -868.8 - FSK
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
433 433  
434 434  
435 -(% style="color:#037691" %)** Downlink:**
436 436  
437 -Uplink channels 1-9 (RX1)
349 +=== 2.4.3  Battery Info ===
438 438  
439 -869.525 - SF9BW125 (RX2 downlink only)
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
440 440  
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
441 441  
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
442 442  
443 -=== 2.7.2 US902-928(US915) ===
444 444  
445 -Used in USA, Canada and South America. Default use CHE=2
446 446  
447 -(% style="color:#037691" %)**Uplink:**
365 +=== 2.4.4  Signal Strength ===
448 448  
449 -903.9 - SF7BW125 to SF10BW125
367 +NB-IoT Network signal Strength.
450 450  
451 -904.1 - SF7BW125 to SF10BW125
369 +**Ex1: 0x1d = 29**
452 452  
453 -904.3 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
454 454  
455 -904.5 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**1**(%%)  -111dBm
456 456  
457 -904.7 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
458 458  
459 -904.9 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
460 460  
461 -905.1 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
462 462  
463 -905.3 - SF7BW125 to SF10BW125
464 464  
465 465  
466 -(% style="color:#037691" %)**Downlink:**
383 +=== 2.4.5  Soil Moisture ===
467 467  
468 -923.3 - SF7BW500 to SF12BW500
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
469 469  
470 -923.9 - SF7BW500 to SF12BW500
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
471 471  
472 -924.5 - SF7BW500 to SF12BW500
393 +(((
394 +
395 +)))
473 473  
474 -925.1 - SF7BW500 to SF12BW500
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
475 475  
476 -925.7 - SF7BW500 to SF12BW500
477 477  
478 -926.3 - SF7BW500 to SF12BW500
479 479  
480 -926.9 - SF7BW500 to SF12BW500
403 +=== 2.4.6  Soil Temperature ===
481 481  
482 -927.5 - SF7BW500 to SF12BW500
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
483 483  
484 -923.3 - SF12BW500(RX2 downlink only)
409 +(((
410 +**Example**:
411 +)))
485 485  
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
486 486  
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
487 487  
488 -=== 2.7.3 CN470-510 (CN470) ===
489 489  
490 -Used in China, Default use CHE=1
491 491  
492 -(% style="color:#037691" %)**Uplink:**
423 +=== 2.4.7  Soil Conductivity (EC) ===
493 493  
494 -486.3 - SF7BW125 to SF12BW125
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
495 495  
496 -486.5 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
497 497  
498 -486.7 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
499 499  
500 -486.9 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
501 501  
502 -487.1 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
503 503  
504 -487.3 - SF7BW125 to SF12BW125
445 +=== 2.4. Digital Interrupt ===
505 505  
506 -487.5 - SF7BW125 to SF12BW125
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
507 507  
508 -487.7 - SF7BW125 to SF12BW125
449 +The command is:
509 509  
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
510 510  
511 -(% style="color:#037691" %)**Downlink:**
512 512  
513 -506.7 - SF7BW125 to SF12BW125
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
514 514  
515 -506.9 - SF7BW125 to SF12BW125
516 516  
517 -507.1 - SF7BW125 to SF12BW125
457 +Example:
518 518  
519 -507.3 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
520 520  
521 -507.5 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
522 522  
523 -507.7 - SF7BW125 to SF12BW125
524 524  
525 -507.9 - SF7BW125 to SF12BW125
526 526  
527 -508.1 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
528 528  
529 -505.3 - SF12BW125 (RX2 downlink only)
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
530 530  
531 531  
470 +The 5V output time can be controlled by AT Command.
532 532  
533 -=== 2.7.4 AU915-928(AU915) ===
472 +(% style="color:blue" %)**AT+5VT=1000**
534 534  
535 -Default use CHE=2
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
536 536  
537 -(% style="color:#037691" %)**Uplink:**
538 538  
539 -916.8 - SF7BW125 to SF12BW125
540 540  
541 -917.0 - SF7BW125 to SF12BW125
478 +== 2.5  Downlink Payload ==
542 542  
543 -917.2 - SF7BW125 to SF12BW125
480 +By default, NSE01 prints the downlink payload to console port.
544 544  
545 -917.4 - SF7BW125 to SF12BW125
482 +[[image:image-20220708133731-5.png]]
546 546  
547 -917.6 - SF7BW125 to SF12BW125
548 548  
549 -917.8 - SF7BW125 to SF12BW125
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
550 550  
551 -918.0 - SF7BW125 to SF12BW125
489 +(((
490 +
491 +)))
552 552  
553 -918.2 - SF7BW125 to SF12BW125
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
554 554  
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
555 555  
556 -(% style="color:#037691" %)**Downlink:**
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
557 557  
558 -923.3 - SF7BW500 to SF12BW500
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
559 559  
560 -923.9 - SF7BW500 to SF12BW500
509 +(((
510 +
511 +)))
561 561  
562 -924.5 - SF7BW500 to SF12BW500
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
563 563  
564 -925.1 - SF7BW500 to SF12BW500
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
565 565  
566 -925.7 - SF7BW500 to SF12BW500
567 567  
568 -926.3 - SF7BW500 to SF12BW500
522 +* (% style="color:blue" %)**INTMOD**
569 569  
570 -926.9 - SF7BW500 to SF12BW500
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
571 571  
572 -927.5 - SF7BW500 to SF12BW500
573 573  
574 -923.3 - SF12BW500(RX2 downlink only)
575 575  
528 +== 2.6  ​LED Indicator ==
576 576  
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
577 577  
578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
579 579  
580 -(% style="color:#037691" %)**Default Uplink channel:**
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
581 581  
582 -923.2 - SF7BW125 to SF10BW125
583 583  
584 -923.4 - SF7BW125 to SF10BW125
585 585  
586 586  
587 -(% style="color:#037691" %)**Additional Uplink Channel**:
543 +== 2.7  Installation in Soil ==
588 588  
589 -(OTAA mode, channel added by JoinAccept message)
545 +__**Measurement the soil surface**__
590 590  
591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
592 592  
593 -922.2 - SF7BW125 to SF10BW125
549 +[[image:1657259653666-883.png]] ​
594 594  
595 -922.4 - SF7BW125 to SF10BW125
596 596  
597 -922.6 - SF7BW125 to SF10BW125
552 +(((
553 +
598 598  
599 -922.8 - SF7BW125 to SF10BW125
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
600 600  
601 -923.0 - SF7BW125 to SF10BW125
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
602 602  
603 -922.0 - SF7BW125 to SF10BW125
564 +[[image:1654506665940-119.png]]
604 604  
566 +(((
567 +
568 +)))
605 605  
606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
607 607  
608 -923.6 - SF7BW125 to SF10BW125
571 +== 2. Firmware Change Log ==
609 609  
610 -923.8 - SF7BW125 to SF10BW125
611 611  
612 -924.0 - SF7BW125 to SF10BW125
574 +Download URL & Firmware Change log
613 613  
614 -924.2 - SF7BW125 to SF10BW125
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
615 615  
616 -924.4 - SF7BW125 to SF10BW125
617 617  
618 -924.6 - SF7BW125 to SF10BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
619 619  
620 620  
621 -(% style="color:#037691" %)** Downlink:**
622 622  
623 -Uplink channels 1-8 (RX1)
583 +== 2.9  ​Battery Analysis ==
624 624  
625 -923.2 - SF10BW125 (RX2)
585 +=== 2.9.1  ​Battery Type ===
626 626  
627 627  
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
628 628  
629 -=== 2.7.6 KR920-923 (KR920) ===
630 630  
631 -Default channel:
591 +The battery is designed to last for several years depends on the actually use environment and update interval
632 632  
633 -922.1 - SF7BW125 to SF12BW125
634 634  
635 -922.3 - SF7BW125 to SF12BW125
594 +The battery related documents as below:
636 636  
637 -922.5 - SF7BW125 to SF12BW125
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 638  
639 -
640 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
641 -
642 -922.1 - SF7BW125 to SF12BW125
643 -
644 -922.3 - SF7BW125 to SF12BW125
645 -
646 -922.5 - SF7BW125 to SF12BW125
647 -
648 -922.7 - SF7BW125 to SF12BW125
649 -
650 -922.9 - SF7BW125 to SF12BW125
651 -
652 -923.1 - SF7BW125 to SF12BW125
653 -
654 -923.3 - SF7BW125 to SF12BW125
655 -
656 -
657 -(% style="color:#037691" %)**Downlink:**
658 -
659 -Uplink channels 1-7(RX1)
660 -
661 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
662 -
663 -
664 -
665 -=== 2.7.7 IN865-867 (IN865) ===
666 -
667 -(% style="color:#037691" %)** Uplink:**
668 -
669 -865.0625 - SF7BW125 to SF12BW125
670 -
671 -865.4025 - SF7BW125 to SF12BW125
672 -
673 -865.9850 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %) **Downlink:**
677 -
678 -Uplink channels 1-3 (RX1)
679 -
680 -866.550 - SF10BW125 (RX2)
681 -
682 -
683 -
684 -
685 -== 2.8 LED Indicator ==
686 -
687 -The LSE01 has an internal LED which is to show the status of different state.
688 -
689 -* Blink once when device power on.
690 -* Solid ON for 5 seconds once device successful Join the network.
691 -* Blink once when device transmit a packet.
692 -
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
703 703  )))
704 -)))
705 705  
706 706  
707 -[[image:1654506665940-119.png]]
708 708  
709 -(((
710 -Dig a hole with diameter > 20CM.
711 -)))
606 +=== 2.9.2  Power consumption Analyze ===
712 712  
713 713  (((
714 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
715 715  )))
716 716  
717 717  
718 -== 2.10 ​Firmware Change Log ==
719 -
720 720  (((
721 -**Firmware download link:**
614 +Instruction to use as below:
722 722  )))
723 723  
724 724  (((
725 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
726 726  )))
727 727  
728 -(((
729 -
730 -)))
731 731  
732 732  (((
733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
734 734  )))
735 735  
736 -(((
737 -
626 +* (((
627 +Product Model
738 738  )))
739 -
740 -(((
741 -**V1.0.**
629 +* (((
630 +Uplink Interval
742 742  )))
632 +* (((
633 +Working Mode
634 +)))
743 743  
744 744  (((
745 -Release
637 +And the Life expectation in difference case will be shown on the right.
746 746  )))
747 747  
640 +[[image:image-20220708141352-7.jpeg]]
748 748  
749 -== 2.11 ​Battery Analysis ==
750 750  
751 -=== 2.11.1 ​Battery Type ===
752 752  
753 -(((
754 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
755 -)))
644 +=== 2.9.3  ​Battery Note ===
756 756  
757 757  (((
758 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
759 759  )))
760 760  
761 -(((
762 -(((
763 -The battery-related documents are as below:
764 -)))
765 -)))
766 766  
767 -* (((
768 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
769 -)))
770 -* (((
771 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
772 -)))
773 -* (((
774 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
775 -)))
776 776  
777 - [[image:image-20220610172436-1.png]]
652 +=== 2.9.4  Replace the battery ===
778 778  
779 -
780 -
781 -=== 2.11.2 ​Battery Note ===
782 -
783 783  (((
784 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
785 785  )))
786 786  
787 787  
788 788  
789 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
790 790  
791 791  (((
792 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
793 793  )))
794 794  
795 795  (((
796 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
797 797  )))
798 798  
799 -(((
800 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
801 -)))
670 +[[image:1657261278785-153.png]]
802 802  
803 803  
804 804  
805 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
806 806  
807 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
808 808  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
809 809  
810 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
811 811  
812 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
813 813  
683 +AT+<CMD>         : Run <CMD>
814 814  
815 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
816 816  
687 +AT+<CMD>=?  : Get the value
817 817  
818 -[[image:1654502005655-729.png||height="503" width="801"]]
819 819  
820 -
821 -
822 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 -
824 -
825 - [[image:1654502050864-459.png||height="564" width="806"]]
826 -
827 -
828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
829 -
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
838 -
839 -
840 840  (% style="color:#037691" %)**General Commands**(%%)      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
845 845  
846 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
849 849  
700 +AT+CFG  : Print all configurations
850 850  
851 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
884 884  
733 +AT+CLIENT               : Get or Set MQTT client
885 885  
886 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
917 -
918 -
919 -(% style="color:#037691" %)**Information** 
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
932 -
933 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
934 -
935 -
936 -= ​4. FAQ =
937 -
938 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 -
940 940  (((
941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
942 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
943 943  )))
944 944  
945 945  (((
946 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 947  )))
948 948  
949 949  (((
950 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 951  )))
952 952  
953 -(((
954 -
955 -)))
956 956  
957 -(((
958 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 -)))
960 960  
961 -(((
962 -
963 -)))
771 += 6.  Trouble Shooting =
964 964  
965 -(((
966 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
967 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
968 968  
969 -[[image:image-20220606154726-3.png]]
970 970  
971 -
972 -When you use the TTN network, the US915 frequency bands use are:
973 -
974 -* 903.9 - SF7BW125 to SF10BW125
975 -* 904.1 - SF7BW125 to SF10BW125
976 -* 904.3 - SF7BW125 to SF10BW125
977 -* 904.5 - SF7BW125 to SF10BW125
978 -* 904.7 - SF7BW125 to SF10BW125
979 -* 904.9 - SF7BW125 to SF10BW125
980 -* 905.1 - SF7BW125 to SF10BW125
981 -* 905.3 - SF7BW125 to SF10BW125
982 -* 904.6 - SF8BW500
983 -
776 +(% class="wikigeneratedid" %)
984 984  (((
985 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
986 986  )))
987 987  
988 -(% class="box infomessage" %)
989 -(((
990 -**AT+CHE=2**
991 -)))
992 992  
993 -(% class="box infomessage" %)
994 -(((
995 -**ATZ**
996 -)))
997 997  
998 -(((
999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
783 +== 6.2  AT Command input doesn't work ==
1001 1001  
1002 1002  (((
1003 -
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1004 1004  )))
1005 1005  
1006 -(((
1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 -)))
1009 1009  
1010 -[[image:image-20220606154825-4.png]]
1011 1011  
791 += 7. ​ Order Info =
1012 1012  
1013 1013  
1014 -= 5. Trouble Shooting =
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1015 1015  
1016 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1017 1017  
1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1019 -
1020 -
1021 -== 5.2 AT Command input doesn’t work ==
1022 -
1023 -(((
1024 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 -)))
1026 -
1027 -
1028 -== 5.3 Device rejoin in at the second uplink packet ==
1029 -
1030 -(% style="color:#4f81bd" %)**Issue describe as below:**
1031 -
1032 -[[image:1654500909990-784.png]]
1033 -
1034 -
1035 -(% style="color:#4f81bd" %)**Cause for this issue:**
1036 -
1037 -(((
1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1039 -)))
1040 -
1041 -
1042 -(% style="color:#4f81bd" %)**Solution: **
1043 -
1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 -
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
1047 -
1048 -
1049 -= 6. ​Order Info =
1050 -
1051 -
1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 -
1054 -
1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 -
1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 -
1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 -
1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 -
1071 1071  (% class="wikigeneratedid" %)
1072 1072  (((
1073 1073  
1074 1074  )))
1075 1075  
1076 -= 7. Packing Info =
802 += 8.  Packing Info =
1077 1077  
1078 1078  (((
1079 1079  
1080 1080  
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 -)))
1083 1083  
1084 -* (((
1085 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1086 1086  )))
1087 1087  
1088 1088  (((
... ... @@ -1089,24 +1089,20 @@
1089 1089  
1090 1090  
1091 1091  (% style="color:#037691" %)**Dimension and weight**:
1092 -)))
1093 1093  
1094 -* (((
1095 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1096 1096  )))
1097 -* (((
1098 -Device Weight: g
1099 -)))
1100 -* (((
1101 -Package Size / pcs : cm
1102 -)))
1103 -* (((
1104 -Weight / pcs : g
1105 1105  
824 +(((
1106 1106  
826 +
827 +
828 +
1107 1107  )))
1108 1108  
1109 -= 8. Support =
831 += 9.  Support =
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0