Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 19 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,65 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 16 + 17 + 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 24 25 -((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 49 == 1.2 Features == 50 50 51 - * LoRaWAN 1.0.3 Class A52 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 62 62 62 +== 1.3 Specification == 63 63 64 64 65 - ==1.3Specification ==65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 67 67 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 70 70 71 71 72 72 73 -== 1.4 Applications == 87 +== 1.4 Applications == 74 74 75 75 * Smart Agriculture 76 76 ... ... @@ -77,731 +77,547 @@ 77 77 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 78 79 79 80 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 81 81 82 82 83 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 84 84 85 85 86 86 87 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 88 88 89 -== 2.1 How it works == 103 +== 2.1 How it works == 90 90 105 + 91 91 ((( 92 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 93 93 ))) 94 94 110 + 95 95 ((( 96 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 97 97 ))) 98 98 115 +[[image:image-20220708101605-2.png]] 99 99 117 +((( 118 + 119 +))) 100 100 101 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 123 +== 2.2 Configure the NSE01 == 105 105 106 -[[image:1654503992078-669.png]] 107 107 126 +=== 2.2.1 Test Requirement === 108 108 109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 110 129 +To use NSE01 in your city, make sure meet below requirements: 111 111 112 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 113 113 114 -Each LSE01 is shipped with a sticker with the default device EUI as below: 115 - 116 -[[image:image-20220606163732-6.jpeg]] 117 - 118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 - 120 -**Add APP EUI in the application** 121 - 122 - 123 -[[image:1654504596150-405.png]] 124 - 125 - 126 - 127 -**Add APP KEY and DEV EUI** 128 - 129 -[[image:1654504683289-357.png]] 130 - 131 - 132 - 133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 - 135 - 136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 - 138 -[[image:image-20220606163915-7.png]] 139 - 140 - 141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 - 143 -[[image:1654504778294-788.png]] 144 - 145 - 146 - 147 -== 2.3 Uplink Payload == 148 - 149 - 150 -=== 2.3.1 MOD~=0(Default Mode) === 151 - 152 -LSE01 will uplink payload via LoRaWAN with below payload format: 153 - 154 154 ((( 155 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 156 156 ))) 157 157 158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 -|((( 160 -**Size** 161 161 162 -**(bytes)** 163 -)))|**2**|**2**|**2**|**2**|**2**|**1** 164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 -Temperature 140 +[[image:1657249419225-449.png]] 166 166 167 -(Reserve, Ignore now) 168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 -MOD & Digital Interrupt 170 170 171 -(Optional) 172 -))) 173 173 144 +=== 2.2.2 Insert SIM card === 174 174 146 +Insert the NB-IoT Card get from your provider. 175 175 148 +User need to take out the NB-IoT module and insert the SIM card like below: 176 176 177 177 178 - ===2.3.2 MOD~=1(Original value) ===151 +[[image:1657249468462-536.png]] 179 179 180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 181 181 182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 -|((( 184 -**Size** 185 185 186 -**(bytes)** 187 -)))|**2**|**2**|**2**|**2**|**2**|**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 -Temperature 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 190 190 191 -(Reserve, Ignore now) 192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 -MOD & Digital Interrupt 194 - 195 -(Optional) 196 -))) 197 - 198 - 199 - 200 - 201 - 202 -=== 2.3.3 Battery Info === 203 - 204 204 ((( 205 -Check the battery voltage for LSE01. 206 -))) 207 - 208 208 ((( 209 -E x1: 0x0B45=2885mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 210 210 ))) 211 - 212 -((( 213 -Ex2: 0x0B49 = 2889mV 214 214 ))) 215 215 216 216 164 +**Connection:** 217 217 218 - ===2.3.4Soil Moisture===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 219 219 220 -((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 223 223 224 -((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 227 227 228 -((( 229 - 230 -))) 231 231 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 -))) 173 +In the PC, use below serial tool settings: 235 235 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 236 236 237 - 238 -=== 2.3.5 Soil Temperature === 239 - 240 240 ((( 241 - Getthe temperatureinthe soil. Thevaluerangeoftheregisteris-4000 - +800(Decimal),dividethis valueby100 toget thetemperatureinthesoil.Forexample,ifthedatayougetfromtheregisteris 0x09 0xEC,the temperaturecontentinthesoilis182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 242 242 ))) 243 243 244 -((( 245 -**Example**: 246 -))) 185 +[[image:image-20220708110657-3.png]] 247 247 248 -((( 249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 251 251 252 -((( 253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 -))) 255 255 256 256 191 +=== 2.2.4 Use CoAP protocol to uplink data === 257 257 258 -= ==2.3.6SoilConductivity (EC) ===193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 259 259 260 -((( 261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 -))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 196 +**Use below commands:** 267 267 268 -(( (269 - Generally, the ECvalueofirrigationwateris lessthan800uS / cm.270 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 271 271 272 -((( 273 - 274 -))) 202 +For parameter description, please refer to AT command set 275 275 276 -((( 277 - 278 -))) 204 +[[image:1657249793983-486.png]] 279 279 280 -=== 2.3.7 MOD === 281 281 282 - Firmware versionatleast v2.1 supportschangingmode.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 283 283 284 - For example, bytes[10]=90209 +[[image:1657249831934-534.png]] 285 285 286 -mod=(bytes[10]>>7)&0x01=1. 287 287 288 288 289 - **DownlinkCommand:**213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 290 290 291 - If payload=0x0A00, workmode=0215 +This feature is supported since firmware version v1.0.1 292 292 293 -If** **payload =** **0x0A01, workmode=1 294 294 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 295 295 222 +[[image:1657249864775-321.png]] 296 296 297 -=== 2.3.8 Decode payload in The Things Network === 298 298 299 - While using TTN network, you can add the payload format to decode the payload.225 +[[image:1657249930215-289.png]] 300 300 301 301 302 -[[image:1654505570700-128.png]] 303 303 304 -((( 305 -The payload decoder function for TTN is here: 306 -))) 229 +=== 2.2.6 Use MQTT protocol to uplink data === 307 307 308 -((( 309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 310 -))) 231 +This feature is supported since firmware version v110 311 311 312 312 313 -== 2.4 Uplink Interval == 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 314 314 315 - The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]242 +[[image:1657249978444-674.png]] 316 316 317 317 245 +[[image:1657249990869-686.png]] 318 318 319 -== 2.5 Downlink Payload == 320 320 321 -By default, LSE50 prints the downlink payload to console port. 322 - 323 -[[image:image-20220606165544-8.png]] 324 - 325 - 326 326 ((( 327 - **Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 328 328 ))) 329 329 330 -((( 331 - 332 -))) 333 333 334 -* ((( 335 -**Set TDC** 336 -))) 337 337 338 -((( 339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 341 341 342 -((( 343 -Payload: 01 00 00 1E TDC=30S 344 -))) 256 +This feature is supported since firmware version v110 345 345 346 -((( 347 -Payload: 01 00 00 3C TDC=60S 348 -))) 349 349 350 -((( 351 - 352 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 353 353 354 -* ((( 355 -**Reset** 356 -))) 262 +[[image:1657250217799-140.png]] 357 357 358 -((( 359 -If payload = 0x04FF, it will reset the LSE01 360 -))) 361 361 265 +[[image:1657250255956-604.png]] 362 362 363 -* **CFM** 364 364 365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 366 366 269 +=== 2.2.8 Change Update Interval === 367 367 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 368 368 369 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 370 370 371 371 ((( 372 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 373 373 ))) 374 374 375 375 ((( 376 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 377 377 ))) 378 378 379 -((( 380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 381 -))) 382 382 383 -((( 384 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 385 -))) 386 386 285 +== 2.3 Uplink Payload == 387 387 388 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 389 389 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 390 390 391 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 392 392 393 -Step 3: Create an account or log in Datacake. 394 394 395 - Step 4:Search theLSE01and add DevEUI.298 +[[image:image-20220708111918-4.png]] 396 396 397 397 398 - [[image:1654505905236-553.png]]301 +The payload is ASCII string, representative same HEX: 399 399 303 +0x72403155615900640c7817075e0a8c02f900 where: 400 400 401 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 402 402 403 -[[image:1654505925508-181.png]] 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 404 404 315 +== 2.4 Payload Explanation and Sensor Interface == 405 405 406 406 407 -== 2. 7 FrequencyPlans==318 +=== 2.4.1 Device ID === 408 408 409 - TheLSE01 uses OTAA modendbelowfrequency plans by default.Ifuser wanttouse itwithdifferentfrequency plan, pleaserefertheAT commandsets.320 +By default, the Device ID equal to the last 6 bytes of IMEI. 410 410 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 411 411 412 - === 2.7.1EU863-870 (EU868) ===324 +**Example:** 413 413 414 - (% style="color:#037691" %)** Uplink:**326 +AT+DEUI=A84041F15612 415 415 416 - 868.1-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 417 417 418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 419 419 420 -868.5 - SF7BW125 to SF12BW125 421 421 422 - 867.1- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 423 423 424 - 867.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 425 425 426 - 867.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 427 427 428 -867.7 - SF7BW125 to SF12BW125 429 429 430 -867.9 - SF7BW125 to SF12BW125 431 431 432 - 868.8-FSK340 +=== 2.4.3 Battery Info === 433 433 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 434 434 435 -(% style="color:#037691" %)** Downlink:** 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 436 436 437 -Uplink channels 1-9 (RX1) 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 438 438 439 -869.525 - SF9BW125 (RX2 downlink only) 440 440 441 441 356 +=== 2.4.4 Signal Strength === 442 442 443 - ===2.7.2US902-928(US915)===358 +NB-IoT Network signal Strength. 444 444 445 - Usedin USA, Canadaand South America. Default use CHE=2360 +**Ex1: 0x1d = 29** 446 446 447 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 448 448 449 - 903.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 450 450 451 - 904.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 452 452 453 - 904.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 454 454 455 -9 04.5-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 456 456 457 -904.7 - SF7BW125 to SF10BW125 458 458 459 -904.9 - SF7BW125 to SF10BW125 460 460 461 - 905.1- SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 462 462 463 -905.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 464 464 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 465 465 466 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 467 467 468 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 469 469 470 -923.9 - SF7BW500 to SF12BW500 471 471 472 -924.5 - SF7BW500 to SF12BW500 473 473 474 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 475 475 476 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 477 477 478 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 479 479 480 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 481 481 482 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 483 483 484 -923.3 - SF12BW500(RX2 downlink only) 485 485 486 486 414 +=== 2.4.7 Soil Conductivity (EC) === 487 487 488 -=== 2.7.3 CN470-510 (CN470) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 489 489 490 -Used in China, Default use CHE=1 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 491 491 492 -(% style="color:#037691" %)**Uplink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 493 493 494 -486.3 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 495 495 496 -486.5 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 497 497 498 -4 86.7-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 499 499 500 - 486.9-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 501 502 - 487.1- SF7BW125 toSF12BW125440 +The command is: 503 503 504 - 487.3-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 505 506 -487.5 - SF7BW125 to SF12BW125 507 507 508 - 487.7-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 509 509 510 510 511 - (% style="color:#037691" %)**Downlink:**448 +Example: 512 512 513 - 506.7-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 514 514 515 - 506.9 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 516 516 517 -507.1 - SF7BW125 to SF12BW125 518 518 519 -507.3 - SF7BW125 to SF12BW125 520 520 521 - 507.5- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 522 522 523 - 507.7-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 524 525 -507.9 - SF7BW125 to SF12BW125 526 526 527 -5 08.1-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 528 528 529 - 505.3 - SF12BW125(RX2downlinkonly)463 +(% style="color:blue" %)**AT+5VT=1000** 530 530 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 531 531 532 532 533 -=== 2.7.4 AU915-928(AU915) === 534 534 535 -D efaultuse CHE=2469 +== 2.5 Downlink Payload == 536 536 537 - (% style="color:#037691"%)**Uplink:**471 +By default, NSE01 prints the downlink payload to console port. 538 538 539 - 916.8-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 540 540 541 -917.0 - SF7BW125 to SF12BW125 542 542 543 -917.2 - SF7BW125 to SF12BW125 544 544 545 -917.4 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 546 546 547 -917.6 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 548 548 549 -917.8 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 550 550 551 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 552 552 553 -918.2 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 554 554 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 555 555 556 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 + 503 +))) 557 557 558 -923.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 559 559 560 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 561 561 562 -924.5 - SF7BW500 to SF12BW500 563 563 564 - 925.1-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 565 565 566 - 925.7-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 567 567 568 -926.3 - SF7BW500 to SF12BW500 569 569 570 -926.9 - SF7BW500 to SF12BW500 571 571 572 - 927.5-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 573 573 574 -923.3 - SF12BW500(RX2 downlink only) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 575 575 576 576 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 577 577 578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 579 579 580 -(% style="color:#037691" %)**Default Uplink channel:** 581 581 582 -923.2 - SF7BW125 to SF10BW125 583 583 584 - 923.4 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 585 585 537 +__**Measurement the soil surface**__ 586 586 587 - (%style="color:#037691"%)**AdditionalUplinkChannel**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 588 588 589 - (OTAA mode, channel added by JoinAcceptmessage)541 +[[image:1657259653666-883.png]] 590 590 591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 592 592 593 -922.2 - SF7BW125 to SF10BW125 544 +((( 545 + 594 594 595 -922.4 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 596 596 597 -922.6 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 598 598 599 - 922.8 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 600 600 601 -923.0 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 602 602 603 -922.0 - SF7BW125 to SF10BW125 604 604 563 +== 2.8 Firmware Change Log == 605 605 606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 607 607 608 - 923.6-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 609 609 610 - 923.8-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 611 611 612 -924.0 - SF7BW125 to SF10BW125 613 613 614 - 924.2- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 615 615 616 -924.4 - SF7BW125 to SF10BW125 617 617 618 -924.6 - SF7BW125 to SF10BW125 619 619 575 +== 2.9 Battery Analysis == 620 620 621 - (%style="color:#037691"%)**Downlink:**577 +=== 2.9.1 Battery Type === 622 622 623 -Uplink channels 1-8 (RX1) 624 624 625 - 923.2-SF10BW125 (RX2)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 626 626 627 627 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 628 628 629 -=== 2.7.6 KR920-923 (KR920) === 630 630 631 - Default channel:586 +The battery related documents as below: 632 632 633 -922.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 634 634 635 -922.3 - SF7BW125 to SF12BW125 636 - 637 -922.5 - SF7BW125 to SF12BW125 638 - 639 - 640 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 641 - 642 -922.1 - SF7BW125 to SF12BW125 643 - 644 -922.3 - SF7BW125 to SF12BW125 645 - 646 -922.5 - SF7BW125 to SF12BW125 647 - 648 -922.7 - SF7BW125 to SF12BW125 649 - 650 -922.9 - SF7BW125 to SF12BW125 651 - 652 -923.1 - SF7BW125 to SF12BW125 653 - 654 -923.3 - SF7BW125 to SF12BW125 655 - 656 - 657 -(% style="color:#037691" %)**Downlink:** 658 - 659 -Uplink channels 1-7(RX1) 660 - 661 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 662 - 663 - 664 - 665 -=== 2.7.7 IN865-867 (IN865) === 666 - 667 -(% style="color:#037691" %)** Uplink:** 668 - 669 -865.0625 - SF7BW125 to SF12BW125 670 - 671 -865.4025 - SF7BW125 to SF12BW125 672 - 673 -865.9850 - SF7BW125 to SF12BW125 674 - 675 - 676 -(% style="color:#037691" %) **Downlink:** 677 - 678 -Uplink channels 1-3 (RX1) 679 - 680 -866.550 - SF10BW125 (RX2) 681 - 682 - 683 - 684 - 685 -== 2.8 LED Indicator == 686 - 687 -The LSE01 has an internal LED which is to show the status of different state. 688 - 689 -* Blink once when device power on. 690 -* Solid ON for 5 seconds once device successful Join the network. 691 -* Blink once when device transmit a packet. 692 - 693 -== 2.9 Installation in Soil == 694 - 695 -**Measurement the soil surface** 696 - 697 - 698 -[[image:1654506634463-199.png]] 699 - 700 700 ((( 701 -((( 702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 703 703 ))) 704 -))) 705 705 706 706 707 -[[image:1654506665940-119.png]] 708 708 709 -((( 710 -Dig a hole with diameter > 20CM. 711 -))) 598 +2.9.2 712 712 713 -((( 714 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 715 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 716 716 717 717 718 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 719 719 720 -((( 721 -**Firmware download link:** 722 -))) 723 723 724 -((( 725 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 726 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 727 727 728 -((( 729 - 730 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 731 731 732 -((( 733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 734 -))) 735 735 736 -((( 737 - 738 -))) 611 +Step 2: Open it and choose 739 739 740 - (((741 -* *V1.0.**742 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 743 743 744 -((( 745 -Release 746 -))) 617 +And the Life expectation in difference case will be shown on the right. 747 747 748 748 749 -== 2.11 Battery Analysis == 750 750 751 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 752 752 753 753 ((( 754 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 755 -))) 756 - 757 -((( 758 -The battery is designed to last for more than 5 years for the LSN50. 759 -))) 760 - 761 -((( 762 -((( 763 -The battery-related documents are as below: 764 -))) 765 -))) 766 - 767 -* ((( 768 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 769 -))) 770 -* ((( 771 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 772 -))) 773 -* ((( 774 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 775 -))) 776 - 777 - [[image:image-20220610172436-1.png]] 778 - 779 - 780 - 781 -=== 2.11.2 Battery Note === 782 - 783 -((( 784 784 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 785 785 ))) 786 786 787 787 788 788 789 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 790 790 791 -((( 792 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 793 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 794 794 795 -((( 796 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 797 -))) 798 798 799 -((( 800 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 801 -))) 802 802 803 - 804 - 805 805 = 3. Using the AT Commands = 806 806 807 807 == 3.1 Access AT Commands == ... ... @@ -825,7 +825,7 @@ 825 825 [[image:1654502050864-459.png||height="564" width="806"]] 826 826 827 827 828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 829 829 830 830 831 831 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -983,19 +983,14 @@ 983 983 984 984 ((( 985 985 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 986 -))) 987 987 988 -(% class="box infomessage" %) 989 -((( 990 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 991 991 ))) 992 992 993 -(% class="box infomessage" %) 994 994 ((( 995 -**ATZ** 996 -))) 822 + 997 997 998 -((( 999 999 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 1000 ))) 1001 1001 ... ... @@ -1010,18 +1010,22 @@ 1010 1010 [[image:image-20220606154825-4.png]] 1011 1011 1012 1012 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1013 1013 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1014 1014 = 5. Trouble Shooting = 1015 1015 1016 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1017 1017 1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1019 1019 1020 1020 1021 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1022 1022 1023 1023 ((( 1024 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 1025 ))) 1026 1026 1027 1027
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content