<
From version < 35.11 >
edited by Xiaoling
on 2022/06/14 14:06
To version < 31.7 >
edited by Xiaoling
on 2022/06/06 17:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,24 +1,18 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 15  = 1. Introduction =
16 16  
17 17  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 -
21 -
22 22  The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 23  )))
24 24  
... ... @@ -60,8 +60,6 @@
60 60  * IP66 Waterproof Enclosure
61 61  * 4000mAh or 8500mAh Battery for long term use
62 62  
63 -
64 -
65 65  == 1.3 Specification ==
66 66  
67 67  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -93,7 +93,7 @@
93 93  )))
94 94  
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
88 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]].
97 97  )))
98 98  
99 99  
... ... @@ -109,7 +109,7 @@
109 109  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 110  
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
104 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
113 113  
114 114  Each LSE01 is shipped with a sticker with the default device EUI as below:
115 115  
... ... @@ -130,7 +130,7 @@
130 130  
131 131  
132 132  
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
125 +**Step 2**: Power on LSE01
134 134  
135 135  
136 136  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
... ... @@ -138,7 +138,7 @@
138 138  [[image:image-20220606163915-7.png]]
139 139  
140 140  
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
133 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 142  
143 143  [[image:1654504778294-788.png]]
144 144  
... ... @@ -146,112 +146,86 @@
146 146  
147 147  == 2.3 Uplink Payload ==
148 148  
149 -
150 150  === 2.3.1 MOD~=0(Default Mode) ===
151 151  
152 152  LSE01 will uplink payload via LoRaWAN with below payload format: 
153 153  
154 -(((
145 +
155 155  Uplink payload includes in total 11 bytes.
156 -)))
147 +
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 159  |(((
160 160  **Size**
161 161  
162 162  **(bytes)**
163 163  )))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
154 +|**Value**|[[BAT>>path:#bat]]|(((
165 165  Temperature
166 166  
167 167  (Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
158 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
169 169  MOD & Digital Interrupt
170 170  
171 171  (Optional)
172 172  )))
173 173  
164 +[[image:1654504881641-514.png]]
174 174  
175 175  
176 176  
177 -
178 178  === 2.3.2 MOD~=1(Original value) ===
179 179  
180 180  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 183  |(((
184 184  **Size**
185 185  
186 186  **(bytes)**
187 187  )))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
177 +|**Value**|[[BAT>>path:#bat]]|(((
189 189  Temperature
190 190  
191 191  (Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
181 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
193 193  MOD & Digital Interrupt
194 194  
195 195  (Optional)
196 196  )))
197 197  
187 +[[image:1654504907647-967.png]]
198 198  
199 199  
200 200  
201 -
202 202  === 2.3.3 Battery Info ===
203 203  
204 -(((
205 205  Check the battery voltage for LSE01.
206 -)))
207 207  
208 -(((
209 209  Ex1: 0x0B45 = 2885mV
210 -)))
211 211  
212 -(((
213 213  Ex2: 0x0B49 = 2889mV
214 -)))
215 215  
216 216  
217 217  
218 218  === 2.3.4 Soil Moisture ===
219 219  
220 -(((
221 221  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
223 223  
224 -(((
225 225  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 227  
228 -(((
229 -
230 -)))
231 231  
232 -(((
233 233  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 -)))
235 235  
236 236  
237 237  
238 238  === 2.3.5 Soil Temperature ===
239 239  
240 -(((
241 241   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
243 243  
244 -(((
245 245  **Example**:
246 -)))
247 247  
248 -(((
249 249  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
251 251  
252 -(((
253 253  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
255 255  
256 256  
257 257  
... ... @@ -286,7 +286,7 @@
286 286  mod=(bytes[10]>>7)&0x01=1.
287 287  
288 288  
289 -**Downlink Command:**
255 +Downlink Command:
290 290  
291 291  If payload = 0x0A00, workmode=0
292 292  
... ... @@ -301,21 +301,19 @@
301 301  
302 302  [[image:1654505570700-128.png]]
303 303  
304 -(((
305 305  The payload decoder function for TTN is here:
306 -)))
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 -)))
272 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
311 311  
312 312  
313 313  == 2.4 Uplink Interval ==
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
277 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
316 316  
279 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
317 317  
318 318  
282 +
319 319  == 2.5 Downlink Payload ==
320 320  
321 321  By default, LSE50 prints the downlink payload to console port.
... ... @@ -323,41 +323,21 @@
323 323  [[image:image-20220606165544-8.png]]
324 324  
325 325  
326 -(((
327 327  **Examples:**
328 -)))
329 329  
330 -(((
331 -
332 -)))
333 333  
334 -* (((
335 -**Set TDC**
336 -)))
293 +* **Set TDC**
337 337  
338 -(((
339 339  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 -)))
341 341  
342 -(((
343 343  Payload:    01 00 00 1E    TDC=30S
344 -)))
345 345  
346 -(((
347 347  Payload:    01 00 00 3C    TDC=60S
348 -)))
349 349  
350 -(((
351 -
352 -)))
353 353  
354 -* (((
355 -**Reset**
356 -)))
302 +* **Reset**
357 357  
358 -(((
359 359  If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
362 362  
363 363  * **CFM**
... ... @@ -368,21 +368,12 @@
368 368  
369 369  == 2.6 ​Show Data in DataCake IoT Server ==
370 370  
371 -(((
372 372  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
373 -)))
374 374  
375 -(((
376 -
377 -)))
378 378  
379 -(((
380 380  **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
381 -)))
382 382  
383 -(((
384 384  **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
386 386  
387 387  
388 388  [[image:1654505857935-743.png]]
... ... @@ -690,6 +690,7 @@
690 690  * Solid ON for 5 seconds once device successful Join the network.
691 691  * Blink once when device transmit a packet.
692 692  
628 +
693 693  == 2.9 Installation in Soil ==
694 694  
695 695  **Measurement the soil surface**
... ... @@ -698,21 +698,16 @@
698 698  [[image:1654506634463-199.png]] ​
699 699  
700 700  (((
701 -(((
702 702  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
703 703  )))
704 -)))
705 705  
706 706  
641 +
707 707  [[image:1654506665940-119.png]]
708 708  
709 -(((
710 710  Dig a hole with diameter > 20CM.
711 -)))
712 712  
713 -(((
714 714  Horizontal insert the probe to the soil and fill the hole for long term measurement.
715 -)))
716 716  
717 717  
718 718  == 2.10 ​Firmware Change Log ==
... ... @@ -774,7 +774,7 @@
774 774  [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
775 775  )))
776 776  
777 - [[image:image-20220610172436-1.png]]
708 + [[image:image-20220606171726-9.png]]
778 778  
779 779  
780 780  
... ... @@ -809,13 +809,13 @@
809 809  
810 810  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
811 811  
812 -[[image:1654501986557-872.png||height="391" width="800"]]
743 +[[image:1654501986557-872.png]]
813 813  
814 814  
815 815  Or if you have below board, use below connection:
816 816  
817 817  
818 -[[image:1654502005655-729.png||height="503" width="801"]]
749 +[[image:1654502005655-729.png]]
819 819  
820 820  
821 821  
... ... @@ -822,7 +822,7 @@
822 822  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 823  
824 824  
825 - [[image:1654502050864-459.png||height="564" width="806"]]
756 + [[image:1654502050864-459.png]]
826 826  
827 827  
828 828  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
... ... @@ -937,38 +937,20 @@
937 937  
938 938  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 939  
940 -(((
941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
871 +You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
942 942  When downloading the images, choose the required image file for download. ​
943 -)))
944 944  
945 -(((
946 -
947 -)))
948 948  
949 -(((
950 950  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
951 -)))
952 952  
953 -(((
954 -
955 -)))
956 956  
957 -(((
958 958  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 -)))
960 960  
961 -(((
962 -
963 -)))
964 964  
965 -(((
966 966  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
967 -)))
968 968  
969 969  [[image:image-20220606154726-3.png]]
970 970  
971 -
972 972  When you use the TTN network, the US915 frequency bands use are:
973 973  
974 974  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -981,9 +981,7 @@
981 981  * 905.3 - SF7BW125 to SF10BW125
982 982  * 904.6 - SF8BW500
983 983  
984 -(((
985 985  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
986 -)))
987 987  
988 988  (% class="box infomessage" %)
989 989  (((
... ... @@ -995,17 +995,10 @@
995 995  **ATZ**
996 996  )))
997 997  
998 -(((
999 999  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
1001 1001  
1002 -(((
1003 -
1004 -)))
1005 1005  
1006 -(((
1007 1007  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 -)))
1009 1009  
1010 1010  [[image:image-20220606154825-4.png]]
1011 1011  
... ... @@ -1020,9 +1020,7 @@
1020 1020  
1021 1021  == 5.2 AT Command input doesn’t work ==
1022 1022  
1023 -(((
1024 1024  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 -)))
1026 1026  
1027 1027  
1028 1028  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1034,9 +1034,7 @@
1034 1034  
1035 1035  (% style="color:#4f81bd" %)**Cause for this issue:**
1036 1036  
1037 -(((
1038 1038  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1039 -)))
1040 1040  
1041 1041  
1042 1042  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1043,7 +1043,7 @@
1043 1043  
1044 1044  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 1045  
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
946 +[[image:1654500929571-736.png]]
1047 1047  
1048 1048  
1049 1049  = 6. ​Order Info =
... ... @@ -1068,17 +1068,10 @@
1068 1068  * (% style="color:red" %)**4**(%%): 4000mAh battery
1069 1069  * (% style="color:red" %)**8**(%%): 8500mAh battery
1070 1070  
1071 -(% class="wikigeneratedid" %)
1072 -(((
1073 -
1074 -)))
1075 -
1076 1076  = 7. Packing Info =
1077 1077  
1078 1078  (((
1079 -
1080 -
1081 -(% style="color:#037691" %)**Package Includes**:
974 +**Package Includes**:
1082 1082  )))
1083 1083  
1084 1084  * (((
... ... @@ -1087,8 +1087,10 @@
1087 1087  
1088 1088  (((
1089 1089  
983 +)))
1090 1090  
1091 -(% style="color:#037691" %)**Dimension and weight**:
985 +(((
986 +**Dimension and weight**:
1092 1092  )))
1093 1093  
1094 1094  * (((
... ... @@ -1102,8 +1102,6 @@
1102 1102  )))
1103 1103  * (((
1104 1104  Weight / pcs : g
1105 -
1106 -
1107 1107  )))
1108 1108  
1109 1109  = 8. Support =
... ... @@ -1110,3 +1110,5 @@
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1006 +
1007 +
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0