Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 + 7 + 6 6 **Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,775 +12,716 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 24 - 25 25 ((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 27 27 ))) 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 31 31 ))) 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 36 - 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 -))) 40 - 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 46 46 47 47 48 48 49 -== 1.2 Features == 42 +== 1.2 Features == 50 50 51 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 52 52 * Ultra low power consumption 53 -* MonitorSoilMoisture54 -* MonitorSoil Temperature55 -* Monitor SoilConductivity56 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 62 62 63 63 64 64 65 -== 1.3 Specification == 60 +== 1.3 Specification == 66 66 67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 - [[image:image-20220606162220-5.png]]63 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 71 71 68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -== 1.4 Applications == 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 74 74 75 -* Smart Agriculture 76 76 77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 - 78 +(% style="color:#037691" %)**Battery:** 79 79 80 -== 1.5 Firmware Change log == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 81 81 82 82 83 - **LSE01v1.0 :**Release87 +(% style="color:#037691" %)**Power Consumption** 84 84 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 85 85 86 86 87 -= 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 -== 2.1 How it works == 90 90 91 -((( 92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 -))) 95 +== 1.4 Applications == 94 94 95 -((( 96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 97 -))) 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 98 98 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 99 99 100 100 101 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.109 +== 1.5 Pin Definitions == 104 104 105 105 106 -[[image:165 4503992078-669.png]]112 +[[image:1657246476176-652.png]] 107 107 108 108 109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 110 116 += 2. Use NSE01 to communicate with IoT Server = 111 111 112 - (% style="color:blue"%)**Step1**(%%):Createa device in TTN withthe OTAAkeysfrom LSE01.118 +== 2.1 How it works == 113 113 114 -Each LSE01 is shipped with a sticker with the default device EUI as below: 115 115 116 -[[image:image-20220606163732-6.jpeg]] 121 +((( 122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 123 +))) 117 117 118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 119 120 -**Add APP EUI in the application** 121 - 122 - 123 -[[image:1654504596150-405.png]] 124 - 125 - 126 - 127 -**Add APP KEY and DEV EUI** 128 - 129 -[[image:1654504683289-357.png]] 130 - 131 - 132 - 133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 - 135 - 136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 - 138 -[[image:image-20220606163915-7.png]] 139 - 140 - 141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 - 143 -[[image:1654504778294-788.png]] 144 - 145 - 146 - 147 -== 2.3 Uplink Payload == 148 - 149 - 150 -=== 2.3.1 MOD~=0(Default Mode) === 151 - 152 -LSE01 will uplink payload via LoRaWAN with below payload format: 153 - 154 154 ((( 155 - Uplinkpayloadincludesintotal11bytes.127 +The diagram below shows the working flow in default firmware of NSE01: 156 156 ))) 157 157 158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 -|((( 160 -**Size** 130 +[[image:image-20220708101605-2.png]] 161 161 162 -**(bytes)** 163 -)))|**2**|**2**|**2**|**2**|**2**|**1** 164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 -Temperature 166 - 167 -(Reserve, Ignore now) 168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 -MOD & Digital Interrupt 170 - 171 -(Optional) 132 +((( 133 + 172 172 ))) 173 173 174 174 175 175 138 +== 2.2 Configure the NSE01 == 176 176 177 177 178 -=== 2. 3.2MOD~=1(Originalvalue)===141 +=== 2.2.1 Test Requirement === 179 179 180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 181 181 182 -( % border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)183 - |(((184 - **Size**144 +((( 145 +To use NSE01 in your city, make sure meet below requirements: 146 +))) 185 185 186 -**(bytes)** 187 -)))|**2**|**2**|**2**|**2**|**2**|**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 -Temperature 148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 190 190 191 -(Reserve, Ignore now) 192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 -MOD & Digital Interrupt 194 - 195 -(Optional) 152 +((( 153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 196 196 ))) 197 197 198 198 157 +[[image:1657249419225-449.png]] 199 199 200 200 201 201 202 -=== 2. 3.3BatteryInfo===161 +=== 2.2.2 Insert SIM card === 203 203 204 204 ((( 205 - Checkthebatteryvoltage forLSE01.164 +Insert the NB-IoT Card get from your provider. 206 206 ))) 207 207 208 208 ((( 209 - Ex1:0x0B45=2885mV168 +User need to take out the NB-IoT module and insert the SIM card like below: 210 210 ))) 211 211 212 -((( 213 -Ex2: 0x0B49 = 2889mV 214 -))) 215 215 172 +[[image:1657249468462-536.png]] 216 216 217 217 218 -=== 2.3.4 Soil Moisture === 219 219 220 -((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 223 223 224 224 ((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 -))) 227 - 228 228 ((( 229 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 230 230 ))) 231 - 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 234 ))) 235 235 236 236 185 +**Connection:** 237 237 238 - ===2.3.5SoilTemperature===187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 239 239 240 -((( 241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 243 243 244 -((( 245 -**Example**: 246 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 247 247 248 -((( 249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 -))) 251 251 252 -((( 253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 -))) 194 +In the PC, use below serial tool settings: 255 255 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 256 256 257 - 258 -=== 2.3.6 Soil Conductivity (EC) === 259 - 260 260 ((( 261 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 262 262 ))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 206 +[[image:image-20220708110657-3.png]] 267 267 268 268 ((( 269 - Generally,theECvalueofirrigationwaterisless than800uS/209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 270 270 ))) 271 271 272 -((( 273 - 274 -))) 275 275 276 -((( 277 - 278 -))) 279 279 280 -=== 2. 3.7MOD===214 +=== 2.2.4 Use CoAP protocol to uplink data === 281 281 282 - Firmwareversion atleastv2.1supportschangingmode.216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 283 283 284 -For example, bytes[10]=90 285 285 286 - mod=(bytes[10]>>7)&0x01=1.219 +**Use below commands:** 287 287 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 288 288 289 - **DownlinkCommand:**225 +For parameter description, please refer to AT command set 290 290 291 - If payload = 0x0A00, workmode=0227 +[[image:1657249793983-486.png]] 292 292 293 -If** **payload =** **0x0A01, workmode=1 294 294 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 295 295 232 +[[image:1657249831934-534.png]] 296 296 297 -=== 2.3.8 Decode payload in The Things Network === 298 298 299 -While using TTN network, you can add the payload format to decode the payload. 300 300 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 301 301 302 - [[image:1654505570700-128.png]]238 +This feature is supported since firmware version v1.0.1 303 303 304 -((( 305 -The payload decoder function for TTN is here: 306 -))) 307 307 308 -(( (309 - LSE01TTNPayload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]310 -)) )241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 311 311 245 +[[image:1657249864775-321.png]] 312 312 313 313 314 - ==2.4Uplink Interval ==248 +[[image:1657249930215-289.png]] 315 315 316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 317 317 318 318 252 +=== 2.2.6 Use MQTT protocol to uplink data === 319 319 320 - ==2.5DownlinkPayload==254 +This feature is supported since firmware version v110 321 321 322 -By default, LSE50 prints the downlink payload to console port. 323 323 324 -[[image:image-20220606165544-8.png]] 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 325 325 265 +[[image:1657249978444-674.png]] 326 326 327 -((( 328 -**Examples:** 329 -))) 330 330 331 -((( 332 - 333 -))) 268 +[[image:1657249990869-686.png]] 334 334 335 -* ((( 336 -**Set TDC** 337 -))) 338 338 339 339 ((( 340 - Ifthe payload=0100003C,itmeanssettheEND Node’sTDCto0x00003C=60(S),whiletypecodeis01.272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 341 341 ))) 342 342 343 -((( 344 -Payload: 01 00 00 1E TDC=30S 345 -))) 346 346 347 -((( 348 -Payload: 01 00 00 3C TDC=60S 349 -))) 350 350 351 -((( 352 - 353 -))) 277 +=== 2.2.7 Use TCP protocol to uplink data === 354 354 355 -* ((( 356 -**Reset** 357 -))) 279 +This feature is supported since firmware version v110 358 358 359 -((( 360 -If payload = 0x04FF, it will reset the LSE01 361 -))) 362 362 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 363 363 364 - * **CFM**285 +[[image:1657250217799-140.png]] 365 365 366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 367 367 288 +[[image:1657250255956-604.png]] 368 368 369 369 370 -== 2.6 Show Data in DataCake IoT Server == 371 371 372 -((( 373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 374 -))) 292 +=== 2.2.8 Change Update Interval === 375 375 376 -((( 377 - 378 -))) 294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 297 + 380 380 ((( 381 - **Step1**: Besurethatyour device is programmed and properly connectedto the network at this time.299 +(% style="color:red" %)**NOTE:** 382 382 ))) 383 383 384 384 ((( 385 - **Step 2**: Toconfigure the Application to forward datatoDATACAKEyouwillneedtoaddintegration. To add theDATACAKE integration, performthefollowing steps:303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 386 386 ))) 387 387 388 388 389 -[[image:1654505857935-743.png]] 390 390 308 +== 2.3 Uplink Payload == 391 391 392 - [[image:1654505874829-548.png]]310 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -Step 3: Create an account or log in Datacake. 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 395 395 396 -Step 4: Search the LSE01 and add DevEUI. 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 397 397 398 398 399 -[[image: 1654505905236-553.png]]323 +[[image:image-20220708111918-4.png]] 400 400 401 401 402 - Afteradded,thesensordataarrive TTN,it will also arriveandshow in Mydevices.326 +The payload is ASCII string, representative same HEX: 403 403 404 - [[image:1654505925508-181.png]]328 +0x72403155615900640c7817075e0a8c02f900 where: 405 405 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 406 406 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 407 407 408 -== 2. 7FrequencyPlans ==340 +== 2.4 Payload Explanation and Sensor Interface == 409 409 410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 343 +=== 2.4.1 Device ID === 412 412 413 -=== 2.7.1 EU863-870 (EU868) === 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 414 414 415 -(% style="color:#037691" %)** Uplink:** 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 416 416 417 -868.1 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 418 418 419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 420 420 421 -868.5 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 422 422 423 -867.1 - SF7BW125 to SF12BW125 424 424 425 -867.3 - SF7BW125 to SF12BW125 426 426 427 - 867.5- SF7BW125toSF12BW125367 +=== 2.4.2 Version Info === 428 428 429 -867.7 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 430 430 431 -867.9 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 432 432 433 -868.8 - FSK 434 434 435 435 436 - (%style="color:#037691"%)** Downlink:**379 +=== 2.4.3 Battery Info === 437 437 438 -Uplink channels 1-9 (RX1) 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 439 439 440 -869.525 - SF9BW125 (RX2 downlink only) 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 441 441 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 442 442 443 443 444 -=== 2.7.2 US902-928(US915) === 445 445 446 - UsedinUSA, CanadaandSouth America. Defaultuse CHE=2395 +=== 2.4.4 Signal Strength === 447 447 448 -(% style="color:#037691" %)**Uplink:** 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 449 449 450 -903.9 - SF7BW125 to SF10BW125 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 451 451 452 -904.1 - SF7BW125 to SF10BW125 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 453 453 454 -904.3 - SF7BW125 to SF10BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 455 455 456 -904.5 - SF7BW125 to SF10BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 457 457 458 -904.7 - SF7BW125 to SF10BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 459 459 460 -904.9 - SF7BW125 to SF10BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 461 461 462 -905.1 - SF7BW125 to SF10BW125 463 463 464 -905.3 - SF7BW125 to SF10BW125 465 465 427 +=== 2.4.5 Soil Moisture === 466 466 467 -(% style="color:#037691" %)**Downlink:** 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 468 468 469 -923.3 - SF7BW500 to SF12BW500 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 470 470 471 -923.9 - SF7BW500 to SF12BW500 441 +((( 442 + 443 +))) 472 472 473 -924.5 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 474 474 475 -925.1 - SF7BW500 to SF12BW500 476 476 477 -925.7 - SF7BW500 to SF12BW500 478 478 479 - 926.3-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 480 480 481 -926.9 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 482 482 483 -927.5 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 484 484 485 -923.3 - SF12BW500(RX2 downlink only) 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 486 486 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 487 487 488 488 489 -=== 2.7.3 CN470-510 (CN470) === 490 490 491 - UsedinChina, Defaultuse CHE=1471 +=== 2.4.7 Soil Conductivity (EC) === 492 492 493 -(% style="color:#037691" %)**Uplink:** 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 494 494 495 -486.3 - SF7BW125 to SF12BW125 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 496 496 497 -486.5 - SF7BW125 to SF12BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 498 498 499 -486.7 - SF7BW125 to SF12BW125 485 +((( 486 + 487 +))) 500 500 501 -486.9 - SF7BW125 to SF12BW125 489 +((( 490 + 491 +))) 502 502 503 -4 87.1-SF7BW125toSF12BW125493 +=== 2.4.8 Digital Interrupt === 504 504 505 -487.3 - SF7BW125 to SF12BW125 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 506 506 507 -487.5 - SF7BW125 to SF12BW125 499 +((( 500 +The command is: 501 +))) 508 508 509 -487.7 - SF7BW125 to SF12BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 510 510 511 511 512 -(% style="color:#037691" %)**Downlink:** 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 513 513 514 -506.7 - SF7BW125 to SF12BW125 515 515 516 -506.9 - SF7BW125 to SF12BW125 513 +((( 514 +Example: 515 +))) 517 517 518 -507.1 - SF7BW125 to SF12BW125 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 519 519 520 -507.3 - SF7BW125 to SF12BW125 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 521 521 522 -507.5 - SF7BW125 to SF12BW125 523 523 524 -507.7 - SF7BW125 to SF12BW125 525 525 526 - 507.9- SF7BW125 toSF12BW125527 +=== 2.4.9 +5V Output === 527 527 528 -508.1 - SF7BW125 to SF12BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 529 529 530 -505.3 - SF12BW125 (RX2 downlink only) 531 531 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 532 532 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 533 533 534 -=== 2.7.4 AU915-928(AU915) === 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 535 535 536 -Default use CHE=2 537 537 538 -(% style="color:#037691" %)**Uplink:** 539 539 540 - 916.8- SF7BW125toSF12BW125548 +== 2.5 Downlink Payload == 541 541 542 - 917.0-SF7BW125toSF12BW125550 +By default, NSE01 prints the downlink payload to console port. 543 543 544 - 917.2-SF7BW125 to SF12BW125552 +[[image:image-20220708133731-5.png]] 545 545 546 -917.4 - SF7BW125 to SF12BW125 547 547 548 -917.6 - SF7BW125 to SF12BW125 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 549 549 550 -917.8 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 551 551 552 -918.0 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 553 553 554 -918.2 - SF7BW125 to SF12BW125 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 555 555 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 556 556 557 -(% style="color:#037691" %)**Downlink:** 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 558 558 559 -923.3 - SF7BW500 to SF12BW500 579 +((( 580 + 581 +))) 560 560 561 -923.9 - SF7BW500 to SF12BW500 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 562 562 563 -924.5 - SF7BW500 to SF12BW500 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 564 564 565 -925.1 - SF7BW500 to SF12BW500 566 566 567 - 925.7-SF7BW500toSF12BW500592 +* (% style="color:blue" %)**INTMOD** 568 568 569 -926.3 - SF7BW500 to SF12BW500 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 570 570 571 -926.9 - SF7BW500 to SF12BW500 572 572 573 -927.5 - SF7BW500 to SF12BW500 574 574 575 - 923.3-SF12BW500(RX2 downlinkonly)600 +== 2.6 LED Indicator == 576 576 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 577 577 578 578 579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 580 580 581 -(% style="color:#037691" %)**Default Uplink channel:** 582 582 583 -923.2 - SF7BW125 to SF10BW125 584 584 585 -923.4 - SF7BW125 to SF10BW125 586 586 615 +== 2.7 Installation in Soil == 587 587 588 - (% style="color:#037691"%)**AdditionalUplink Channel**:617 +__**Measurement the soil surface**__ 589 589 590 -(OTAA mode, channel added by JoinAccept message) 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 591 591 592 - (% style="color:#037691" %)**AS920~~AS923for Japan, Malaysia, Singapore**:623 +[[image:1657259653666-883.png]] 593 593 594 -922.2 - SF7BW125 to SF10BW125 595 595 596 -922.4 - SF7BW125 to SF10BW125 626 +((( 627 + 597 597 598 -922.6 - SF7BW125 to SF10BW125 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 599 599 600 -922.8 - SF7BW125 to SF10BW125 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 601 601 602 -9 23.0SF7BW125 to SF10BW125638 +[[image:1654506665940-119.png]] 603 603 604 -922.0 - SF7BW125 to SF10BW125 640 +((( 641 + 642 +))) 605 605 606 606 607 - (% style="color:#037691"%)**AS923~~ AS925 forBrunei,Cambodia, HongKong, Indonesia,Laos,Taiwan, Thailand, Vietnam**:645 +== 2.8 Firmware Change Log == 608 608 609 -923.6 - SF7BW125 to SF10BW125 610 610 611 - 923.8-SF7BW125toSF10BW125648 +Download URL & Firmware Change log 612 612 613 - 924.0-F7BW125toSF10BW125650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 614 614 615 -924.2 - SF7BW125 to SF10BW125 616 616 617 - 924.4- SF7BW125toSF10BW125653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 618 618 619 -924.6 - SF7BW125 to SF10BW125 620 620 621 621 622 - (%style="color:#037691"%)** Downlink:**657 +== 2.9 Battery Analysis == 623 623 624 - Uplinkchannels1-8(RX1)659 +=== 2.9.1 Battery Type === 625 625 626 -923.2 - SF10BW125 (RX2) 627 627 628 - 629 - 630 -=== 2.7.6 KR920-923 (KR920) === 631 - 632 -Default channel: 633 - 634 -922.1 - SF7BW125 to SF12BW125 635 - 636 -922.3 - SF7BW125 to SF12BW125 637 - 638 -922.5 - SF7BW125 to SF12BW125 639 - 640 - 641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 642 - 643 -922.1 - SF7BW125 to SF12BW125 644 - 645 -922.3 - SF7BW125 to SF12BW125 646 - 647 -922.5 - SF7BW125 to SF12BW125 648 - 649 -922.7 - SF7BW125 to SF12BW125 650 - 651 -922.9 - SF7BW125 to SF12BW125 652 - 653 -923.1 - SF7BW125 to SF12BW125 654 - 655 -923.3 - SF7BW125 to SF12BW125 656 - 657 - 658 -(% style="color:#037691" %)**Downlink:** 659 - 660 -Uplink channels 1-7(RX1) 661 - 662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 663 - 664 - 665 - 666 -=== 2.7.7 IN865-867 (IN865) === 667 - 668 -(% style="color:#037691" %)** Uplink:** 669 - 670 -865.0625 - SF7BW125 to SF12BW125 671 - 672 -865.4025 - SF7BW125 to SF12BW125 673 - 674 -865.9850 - SF7BW125 to SF12BW125 675 - 676 - 677 -(% style="color:#037691" %) **Downlink:** 678 - 679 -Uplink channels 1-3 (RX1) 680 - 681 -866.550 - SF10BW125 (RX2) 682 - 683 - 684 - 685 - 686 -== 2.8 LED Indicator == 687 - 688 -The LSE01 has an internal LED which is to show the status of different state. 689 - 690 -* Blink once when device power on. 691 -* Solid ON for 5 seconds once device successful Join the network. 692 -* Blink once when device transmit a packet. 693 - 694 -== 2.9 Installation in Soil == 695 - 696 -**Measurement the soil surface** 697 - 698 - 699 -[[image:1654506634463-199.png]] 700 - 701 701 ((( 702 -((( 703 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 704 704 ))) 705 -))) 706 706 707 707 708 -[[image:1654506665940-119.png]] 709 - 710 710 ((( 711 - Dig aholewithdiameter>20CM.668 +The battery is designed to last for several years depends on the actually use environment and update interval. 712 712 ))) 713 713 714 -((( 715 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 716 -))) 717 717 718 - 719 -== 2.10 Firmware Change Log == 720 - 721 721 ((( 722 - **Firmware downloadlink:**673 +The battery related documents as below: 723 723 ))) 724 724 725 - (((726 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]727 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 728 728 729 729 ((( 730 - 681 +[[image:image-20220708140453-6.png]] 731 731 ))) 732 732 733 -((( 734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 735 -))) 736 736 737 -((( 738 - 739 -))) 740 740 741 -((( 742 -**V1.0.** 743 -))) 686 +=== 2.9.2 Power consumption Analyze === 744 744 745 745 ((( 746 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 747 747 ))) 748 748 749 749 750 -== 2.11 Battery Analysis == 751 - 752 -=== 2.11.1 Battery Type === 753 - 754 754 ((( 755 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 756 756 ))) 757 757 758 758 ((( 759 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 760 760 ))) 761 761 701 + 762 762 ((( 763 -((( 764 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 765 765 ))) 766 -))) 767 767 768 768 * ((( 769 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],707 +Product Model 770 770 ))) 771 771 * ((( 772 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],710 +Uplink Interval 773 773 ))) 774 774 * ((( 775 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]713 +Working Mode 776 776 ))) 777 777 778 - [[image:image-20220610172436-1.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 779 779 720 +[[image:image-20220708141352-7.jpeg]] 780 780 781 781 782 -=== 2.11.2 Battery Note === 783 783 724 +=== 2.9.3 Battery Note === 725 + 784 784 ((( 785 785 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 786 786 ))) ... ... @@ -787,303 +787,176 @@ 787 787 788 788 789 789 790 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 791 791 792 792 ((( 793 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 794 794 ))) 795 795 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 796 796 ((( 797 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 798 798 ))) 799 799 800 800 ((( 801 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 802 802 ))) 803 803 750 +[[image:1657261278785-153.png]] 804 804 805 805 806 -= 3. Using the AT Commands = 807 807 808 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 809 809 756 +== 4.1 Access AT Commands == 810 810 811 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 812 812 813 -[[image:1654501986557-872.png||height="391" width="800"]] 814 814 761 +AT+<CMD>? : Help on <CMD> 815 815 816 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 817 817 765 +AT+<CMD>=<value> : Set the value 818 818 819 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 820 820 821 821 822 - 823 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 824 - 825 - 826 - [[image:1654502050864-459.png||height="564" width="806"]] 827 - 828 - 829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 830 - 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 835 - 836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 837 - 838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 839 - 840 - 841 841 (% style="color:#037691" %)**General Commands**(%%) 842 842 843 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 844 844 845 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 846 846 847 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 848 848 849 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 850 850 780 +AT+CFG : Print all configurations 851 851 852 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 879 879 880 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 881 881 882 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 883 883 884 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 885 885 813 +AT+CLIENT : Get or Set MQTT client 886 886 887 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 896 896 897 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 898 898 899 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 900 900 901 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 906 906 907 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 908 908 909 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 910 910 911 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 912 912 913 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 914 - 915 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 916 - 917 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 918 - 919 - 920 -(% style="color:#037691" %)**Information** 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 927 - 928 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 929 - 930 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 931 - 932 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 933 - 934 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 935 - 936 - 937 -= 4. FAQ = 938 - 939 -== 4.1 How to change the LoRa Frequency Bands/Region? == 940 - 941 941 ((( 942 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 943 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 944 944 ))) 945 945 946 946 ((( 947 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 948 948 ))) 949 949 950 950 ((( 951 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 952 952 ))) 953 953 954 -((( 955 - 956 -))) 957 957 958 -((( 959 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 960 -))) 961 961 962 -((( 963 - 964 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 965 965 966 966 ((( 967 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 968 968 ))) 969 969 970 -[[image:image-20220606154726-3.png]] 971 971 858 += 6. Trouble Shooting = 972 972 973 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 974 974 975 -* 903.9 - SF7BW125 to SF10BW125 976 -* 904.1 - SF7BW125 to SF10BW125 977 -* 904.3 - SF7BW125 to SF10BW125 978 -* 904.5 - SF7BW125 to SF10BW125 979 -* 904.7 - SF7BW125 to SF10BW125 980 -* 904.9 - SF7BW125 to SF10BW125 981 -* 905.1 - SF7BW125 to SF10BW125 982 -* 905.3 - SF7BW125 to SF10BW125 983 -* 904.6 - SF8BW500 984 984 985 985 ((( 986 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 987 987 ))) 988 988 989 -(% class=" boxinfomessage" %)867 +(% class="wikigeneratedid" %) 990 990 ((( 991 -**AT+CHE=2** 992 -))) 993 - 994 -(% class="box infomessage" %) 995 -((( 996 -**ATZ** 997 -))) 998 - 999 -((( 1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1001 -))) 1002 - 1003 -((( 1004 1004 1005 1005 ))) 1006 1006 1007 -((( 1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1009 -))) 1010 1010 1011 - [[image:image-20220606154825-4.png]]873 +== 6.2 AT Command input doesn't work == 1012 1012 1013 - 1014 - 1015 -= 5. Trouble Shooting = 1016 - 1017 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1018 - 1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1020 - 1021 - 1022 -== 5.2 AT Command input doesn’t work == 1023 - 1024 1024 ((( 1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 -))) 876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 1027 1028 - 1029 -== 5.3 Device rejoin in at the second uplink packet == 1030 - 1031 -(% style="color:#4f81bd" %)**Issue describe as below:** 1032 - 1033 -[[image:1654500909990-784.png]] 1034 - 1035 - 1036 -(% style="color:#4f81bd" %)**Cause for this issue:** 1037 - 1038 -((( 1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1040 1040 ))) 1041 1041 1042 1042 1043 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1044 1044 1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1046 1046 1047 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1048 1048 1049 1049 1050 -= 6. Order Info = 1051 - 1052 - 1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1054 - 1055 - 1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1057 - 1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1064 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1066 - 1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1068 - 1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1071 - 1072 1072 (% class="wikigeneratedid" %) 1073 1073 ((( 1074 1074 1075 1075 ))) 1076 1076 1077 -= 7. Packing Info =893 += 8. Packing Info = 1078 1078 1079 1079 ((( 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Package Includes**: 1083 -))) 1084 1084 1085 -* (((1086 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1087 1087 ))) 1088 1088 1089 1089 ((( ... ... @@ -1090,24 +1090,19 @@ 1090 1090 1091 1091 1092 1092 (% style="color:#037691" %)**Dimension and weight**: 1093 -))) 1094 1094 1095 -* (((1096 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1097 1097 ))) 1098 -* ((( 1099 -Device Weight: g 1100 -))) 1101 -* ((( 1102 -Package Size / pcs : cm 1103 -))) 1104 -* ((( 1105 -Weight / pcs : g 1106 1106 913 +((( 1107 1107 915 + 916 + 917 + 1108 1108 ))) 1109 1109 1110 -= 8. Support =920 += 9. Support = 1111 1111 1112 1112 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1113 1113 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content