<
From version < 35.10 >
edited by Xiaoling
on 2022/06/14 14:04
To version < 65.5 >
edited by Xiaoling
on 2022/07/08 15:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,1078 +12,793 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
23 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
62 62  
63 63  
64 64  
65 -== 1.3 Specification ==
65 +== 1.3  Specification ==
66 66  
67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -[[image:image-20220606162220-5.png]]
68 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
70 +* Supply Voltage: 2.1v ~~ 3.6v
71 +* Operating Temperature: -40 ~~ 85°C
71 71  
72 72  
73 -== ​1.4 Applications ==
74 +(% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 -* Smart Agriculture
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
76 76  
77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 -​
79 79  
80 -== 1.5 Firmware Change log ==
84 +Probe(% style="color:#037691" %)** Specification:**
81 81  
86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -**LSE01 v1.0 :**  Release
88 +[[image:image-20220708101224-1.png]]
84 84  
85 85  
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
92 +== ​1. Applications ==
88 88  
89 -== 2.1 How it works ==
94 +* Smart Agriculture
90 90  
91 -(((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 -)))
96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
97 +​
94 94  
95 -(((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
97 -)))
99 +== 1.5  Pin Definitions ==
98 98  
99 99  
102 +[[image:1657246476176-652.png]]
100 100  
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 102  
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 104  
106 += 2.  Use NSE01 to communicate with IoT Server =
105 105  
106 -[[image:1654503992078-669.png]]
108 +== 2.1  How it works ==
107 107  
108 108  
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
111 +(((
112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
113 +)))
110 110  
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
113 -
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
115 -
116 -[[image:image-20220606163732-6.jpeg]]
117 -
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 -
120 -**Add APP EUI in the application**
121 -
122 -
123 -[[image:1654504596150-405.png]]
124 -
125 -
126 -
127 -**Add APP KEY and DEV EUI**
128 -
129 -[[image:1654504683289-357.png]]
130 -
131 -
132 -
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 -
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
117 +The diagram below shows the working flow in default firmware of NSE01:
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
120 +[[image:image-20220708101605-2.png]]
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 -
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 -
171 -(Optional)
122 +(((
123 +
172 172  )))
173 173  
174 174  
175 175  
128 +== 2.2 ​ Configure the NSE01 ==
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
131 +=== 2.2.1 Test Requirement ===
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
134 +To use NSE01 in your city, make sure meet below requirements:
185 185  
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
136 +* Your local operator has already distributed a NB-IoT Network there.
137 +* The local NB-IoT network used the band that NSE01 supports.
138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
190 190  
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
140 +(((
141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
196 196  )))
197 197  
198 198  
145 +[[image:1657249419225-449.png]]
199 199  
200 200  
201 201  
202 -=== 2.3.3 Battery Info ===
149 +=== 2.2.2 Insert SIM card ===
203 203  
204 -(((
205 -Check the battery voltage for LSE01.
206 -)))
151 +Insert the NB-IoT Card get from your provider.
207 207  
208 -(((
209 -Ex1: 0x0B45 = 2885mV
210 -)))
153 +User need to take out the NB-IoT module and insert the SIM card like below:
211 211  
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
215 215  
156 +[[image:1657249468462-536.png]]
216 216  
217 217  
218 -=== 2.3.4 Soil Moisture ===
219 219  
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
223 223  
224 224  (((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 -
228 228  (((
229 -
164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
230 230  )))
231 -
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 234  )))
235 235  
236 236  
169 +**Connection:**
237 237  
238 -=== 2.3.5 Soil Temperature ===
171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
243 243  
244 -(((
245 -**Example**:
246 -)))
175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
178 +In the PC, use below serial tool settings:
255 255  
180 +* Baud:  (% style="color:green" %)**9600**
181 +* Data bits:** (% style="color:green" %)8(%%)**
182 +* Stop bits: (% style="color:green" %)**1**
183 +* Parity:  (% style="color:green" %)**None**
184 +* Flow Control: (% style="color:green" %)**None**
256 256  
257 -
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 -
260 260  (((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
262 262  )))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
190 +[[image:image-20220708110657-3.png]]
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
271 271  
272 -(((
273 -
274 -)))
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -=== 2.3.7 MOD ===
196 +=== 2.2.4 Use CoAP protocol to uplink data ===
281 281  
282 -Firmware version at least v2.1 supports changing mode.
198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
283 283  
284 -For example, bytes[10]=90
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
201 +**Use below commands:**
287 287  
203 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
288 288  
289 -**Downlink Command:**
207 +For parameter description, please refer to AT command set
290 290  
291 -If payload = 0x0A00, workmode=0
209 +[[image:1657249793983-486.png]]
292 292  
293 -If** **payload =** **0x0A01, workmode=1
294 294  
212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
295 295  
214 +[[image:1657249831934-534.png]]
296 296  
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 298  
299 -While using TTN network, you can add the payload format to decode the payload.
300 300  
218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
301 301  
302 -[[image:1654505570700-128.png]]
220 +This feature is supported since firmware version v1.0.1
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
310 -)))
223 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
311 311  
227 +[[image:1657249864775-321.png]]
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
230 +[[image:1657249930215-289.png]]
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
317 317  
318 318  
234 +=== 2.2.6 Use MQTT protocol to uplink data ===
319 319  
320 -== 2.5 Downlink Payload ==
236 +This feature is supported since firmware version v110
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 323  
324 -[[image:image-20220606165544-8.png]]
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
325 325  
247 +[[image:1657249978444-674.png]]
326 326  
327 -(((
328 -**Examples:**
329 -)))
330 330  
331 -(((
332 -
333 -)))
250 +[[image:1657249990869-686.png]]
334 334  
335 -* (((
336 -**Set TDC**
337 -)))
338 338  
339 339  (((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
341 341  )))
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
346 346  
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 350  
351 -(((
352 -
353 -)))
259 +=== 2.2.7 Use TCP protocol to uplink data ===
354 354  
355 -* (((
356 -**Reset**
357 -)))
261 +This feature is supported since firmware version v110
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
264 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
363 363  
364 -* **CFM**
267 +[[image:1657250217799-140.png]]
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
270 +[[image:1657250255956-604.png]]
368 368  
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
371 371  
372 -(((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 -)))
274 +=== 2.2.8 Change Update Interval ===
375 375  
376 -(((
377 -
378 -)))
276 +User can use below command to change the (% style="color:green" %)**uplink interval**.
379 379  
278 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
279 +
380 380  (((
381 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
281 +(% style="color:red" %)**NOTE:**
382 382  )))
383 383  
384 384  (((
385 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
386 386  )))
387 387  
388 388  
389 -[[image:1654505857935-743.png]]
390 390  
290 +== 2.3  Uplink Payload ==
391 391  
392 -[[image:1654505874829-548.png]]
292 +In this mode, uplink payload includes in total 18 bytes
393 393  
394 -Step 3: Create an account or log in Datacake.
294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 +|=(% style="width: 50px;" %)(((
296 +**Size(bytes)**
297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
395 395  
396 -Step 4: Search the LSE01 and add DevEUI.
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
397 397  
398 398  
399 -[[image:1654505905236-553.png]]
303 +[[image:image-20220708111918-4.png]]
400 400  
401 401  
402 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
306 +The payload is ASCII string, representative same HEX:
403 403  
404 -[[image:1654505925508-181.png]]
308 +0x72403155615900640c7817075e0a8c02f900 where:
405 405  
310 +* Device ID: 0x 724031556159 = 724031556159
311 +* Version: 0x0064=100=1.0.0
406 406  
313 +* BAT: 0x0c78 = 3192 mV = 3.192V
314 +* Singal: 0x17 = 23
315 +* Soil Moisture: 0x075e= 1886 = 18.86  %
316 +* Soil Temperature:0x0a8c =2700=27 °C
317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 +* Interrupt: 0x00 = 0
407 407  
408 -== 2.7 Frequency Plans ==
409 409  
410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
411 411  
322 +== 2.4  Payload Explanation and Sensor Interface ==
412 412  
413 -=== 2.7.1 EU863-870 (EU868) ===
414 414  
415 -(% style="color:#037691" %)** Uplink:**
325 +=== 2.4.1  Device ID ===
416 416  
417 -868.1 - SF7BW125 to SF12BW125
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
418 418  
419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
420 420  
421 -868.5 - SF7BW125 to SF12BW125
331 +**Example:**
422 422  
423 -867.1 - SF7BW125 to SF12BW125
333 +AT+DEUI=A84041F15612
424 424  
425 -867.3 - SF7BW125 to SF12BW125
335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
426 426  
427 -867.5 - SF7BW125 to SF12BW125
428 428  
429 -867.7 - SF7BW125 to SF12BW125
430 430  
431 -867.9 - SF7BW125 to SF12BW125
339 +=== 2.4.2  Version Info ===
432 432  
433 -868.8 - FSK
341 +Specify the software version: 0x64=100, means firmware version 1.00.
434 434  
343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
435 435  
436 -(% style="color:#037691" %)** Downlink:**
437 437  
438 -Uplink channels 1-9 (RX1)
439 439  
440 -869.525 - SF9BW125 (RX2 downlink only)
347 +=== 2.4.3  Battery Info ===
441 441  
349 +(((
350 +Check the battery voltage for LSE01.
351 +)))
442 442  
353 +(((
354 +Ex1: 0x0B45 = 2885mV
355 +)))
443 443  
444 -=== 2.7.2 US902-928(US915) ===
357 +(((
358 +Ex2: 0x0B49 = 2889mV
359 +)))
445 445  
446 -Used in USA, Canada and South America. Default use CHE=2
447 447  
448 -(% style="color:#037691" %)**Uplink:**
449 449  
450 -903.9 - SF7BW125 to SF10BW125
363 +=== 2.4.4  Signal Strength ===
451 451  
452 -904.1 - SF7BW125 to SF10BW125
365 +NB-IoT Network signal Strength.
453 453  
454 -904.3 - SF7BW125 to SF10BW125
367 +**Ex1: 0x1d = 29**
455 455  
456 -904.5 - SF7BW125 to SF10BW125
369 +(% style="color:blue" %)**0**(%%)  -113dBm or less
457 457  
458 -904.7 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**1**(%%)  -111dBm
459 459  
460 -904.9 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
461 461  
462 -905.1 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
463 463  
464 -905.3 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
465 465  
466 466  
467 -(% style="color:#037691" %)**Downlink:**
468 468  
469 -923.3 - SF7BW500 to SF12BW500
381 +=== 2.4.5  Soil Moisture ===
470 470  
471 -923.9 - SF7BW500 to SF12BW500
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
472 472  
473 -924.5 - SF7BW500 to SF12BW500
387 +(((
388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 +)))
474 474  
475 -925.1 - SF7BW500 to SF12BW500
391 +(((
392 +
393 +)))
476 476  
477 -925.7 - SF7BW500 to SF12BW500
395 +(((
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 +)))
478 478  
479 -926.3 - SF7BW500 to SF12BW500
480 480  
481 -926.9 - SF7BW500 to SF12BW500
482 482  
483 -927.5 - SF7BW500 to SF12BW500
401 +=== 2.4.6  Soil Temperature ===
484 484  
485 -923.3 - SF12BW500(RX2 downlink only)
403 +(((
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 +)))
486 486  
407 +(((
408 +**Example**:
409 +)))
487 487  
411 +(((
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 +)))
488 488  
489 -=== 2.7.3 CN470-510 (CN470) ===
415 +(((
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 +)))
490 490  
491 -Used in China, Default use CHE=1
492 492  
493 -(% style="color:#037691" %)**Uplink:**
494 494  
495 -486.3 - SF7BW125 to SF12BW125
421 +=== 2.4. Soil Conductivity (EC) ===
496 496  
497 -486.5 - SF7BW125 to SF12BW125
423 +(((
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 +)))
498 498  
499 -486.7 - SF7BW125 to SF12BW125
427 +(((
428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 +)))
500 500  
501 -486.9 - SF7BW125 to SF12BW125
431 +(((
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
433 +)))
502 502  
503 -487.1 - SF7BW125 to SF12BW125
435 +(((
436 +
437 +)))
504 504  
505 -487.3 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
506 506  
507 -487.5 - SF7BW125 to SF12BW125
443 +=== 2.4. Digital Interrupt ===
508 508  
509 -487.7 - SF7BW125 to SF12BW125
445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
510 510  
447 +The command is:
511 511  
512 -(% style="color:#037691" %)**Downlink:**
449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
513 513  
514 -506.7 - SF7BW125 to SF12BW125
515 515  
516 -506.9 - SF7BW125 to SF12BW125
452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
517 517  
518 -507.1 - SF7BW125 to SF12BW125
519 519  
520 -507.3 - SF7BW125 to SF12BW125
455 +Example:
521 521  
522 -507.5 - SF7BW125 to SF12BW125
457 +0x(00): Normal uplink packet.
523 523  
524 -507.7 - SF7BW125 to SF12BW125
459 +0x(01): Interrupt Uplink Packet.
525 525  
526 -507.9 - SF7BW125 to SF12BW125
527 527  
528 -508.1 - SF7BW125 to SF12BW125
529 529  
530 -505.3 - SF12BW125 (RX2 downlink only)
463 +=== 2.4.9  ​+5V Output ===
531 531  
465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 532  
533 533  
534 -=== 2.7.4 AU915-928(AU915) ===
468 +The 5V output time can be controlled by AT Command.
535 535  
536 -Default use CHE=2
470 +(% style="color:blue" %)**AT+5VT=1000**
537 537  
538 -(% style="color:#037691" %)**Uplink:**
472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
539 539  
540 -916.8 - SF7BW125 to SF12BW125
541 541  
542 -917.0 - SF7BW125 to SF12BW125
543 543  
544 -917.2 - SF7BW125 to SF12BW125
476 +== 2.5  Downlink Payload ==
545 545  
546 -917.4 - SF7BW125 to SF12BW125
478 +By default, NSE01 prints the downlink payload to console port.
547 547  
548 -917.6 - SF7BW125 to SF12BW125
480 +[[image:image-20220708133731-5.png]]
549 549  
550 -917.8 - SF7BW125 to SF12BW125
551 551  
552 -918.0 - SF7BW125 to SF12BW125
483 +(((
484 +(% style="color:blue" %)**Examples:**
485 +)))
553 553  
554 -918.2 - SF7BW125 to SF12BW125
487 +(((
488 +
489 +)))
555 555  
491 +* (((
492 +(% style="color:blue" %)**Set TDC**
493 +)))
556 556  
557 -(% style="color:#037691" %)**Downlink:**
495 +(((
496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 +)))
558 558  
559 -923.3 - SF7BW500 to SF12BW500
499 +(((
500 +Payload:    01 00 00 1E    TDC=30S
501 +)))
560 560  
561 -923.9 - SF7BW500 to SF12BW500
503 +(((
504 +Payload:    01 00 00 3C    TDC=60S
505 +)))
562 562  
563 -924.5 - SF7BW500 to SF12BW500
507 +(((
508 +
509 +)))
564 564  
565 -925.1 - SF7BW500 to SF12BW500
511 +* (((
512 +(% style="color:blue" %)**Reset**
513 +)))
566 566  
567 -925.7 - SF7BW500 to SF12BW500
515 +(((
516 +If payload = 0x04FF, it will reset the NSE01
517 +)))
568 568  
569 -926.3 - SF7BW500 to SF12BW500
570 570  
571 -926.9 - SF7BW500 to SF12BW500
520 +* (% style="color:blue" %)**INTMOD**
572 572  
573 -927.5 - SF7BW500 to SF12BW500
522 +Downlink Payload: 06000003, Set AT+INTMOD=3
574 574  
575 -923.3 - SF12BW500(RX2 downlink only)
576 576  
577 577  
526 +== 2.6  ​LED Indicator ==
578 578  
579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
528 +(((
529 +The NSE01 has an internal LED which is to show the status of different state.
580 580  
581 -(% style="color:#037691" %)**Default Uplink channel:**
582 582  
583 -923.2 - SF7BW125 to SF10BW125
532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 +* Then the LED will be on for 1 second means device is boot normally.
534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 +* For each uplink probe, LED will be on for 500ms.
536 +)))
584 584  
585 -923.4 - SF7BW125 to SF10BW125
586 586  
587 587  
588 -(% style="color:#037691" %)**Additional Uplink Channel**:
589 589  
590 -(OTAA mode, channel added by JoinAccept message)
541 +== 2.7  Installation in Soil ==
591 591  
592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
543 +__**Measurement the soil surface**__
593 593  
594 -922.2 - SF7BW125 to SF10BW125
545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
595 595  
596 -922.4 - SF7BW125 to SF10BW125
547 +[[image:1657259653666-883.png]] ​
597 597  
598 -922.6 - SF7BW125 to SF10BW125
599 599  
600 -922.8 - SF7BW125 to SF10BW125
550 +(((
551 +
601 601  
602 -923.0 - SF7BW125 to SF10BW125
553 +(((
554 +Dig a hole with diameter > 20CM.
555 +)))
603 603  
604 -922.0 - SF7BW125 to SF10BW125
557 +(((
558 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 +)))
560 +)))
605 605  
562 +[[image:1654506665940-119.png]]
606 606  
607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
564 +(((
565 +
566 +)))
608 608  
609 -923.6 - SF7BW125 to SF10BW125
610 610  
611 -923.8 - SF7BW125 to SF10BW125
569 +== 2.8  Firmware Change Log ==
612 612  
613 -924.0 - SF7BW125 to SF10BW125
614 614  
615 -924.2 - SF7BW125 to SF10BW125
572 +Download URL & Firmware Change log
616 616  
617 -924.4 - SF7BW125 to SF10BW125
574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
618 618  
619 -924.6 - SF7BW125 to SF10BW125
620 620  
577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
621 621  
622 -(% style="color:#037691" %)** Downlink:**
623 623  
624 -Uplink channels 1-8 (RX1)
625 625  
626 -923.2 - SF10BW125 (RX2)
581 +== 2. Battery Analysis ==
627 627  
583 +=== 2.9.1  ​Battery Type ===
628 628  
629 629  
630 -=== 2.7.6 KR920-923 (KR920) ===
586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
631 631  
632 -Default channel:
633 633  
634 -922.1 - SF7BW125 to SF12BW125
589 +The battery is designed to last for several years depends on the actually use environment and update interval. 
635 635  
636 -922.3 - SF7BW125 to SF12BW125
637 637  
638 -922.5 - SF7BW125 to SF12BW125
592 +The battery related documents as below:
639 639  
594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
640 640  
641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
642 -
643 -922.1 - SF7BW125 to SF12BW125
644 -
645 -922.3 - SF7BW125 to SF12BW125
646 -
647 -922.5 - SF7BW125 to SF12BW125
648 -
649 -922.7 - SF7BW125 to SF12BW125
650 -
651 -922.9 - SF7BW125 to SF12BW125
652 -
653 -923.1 - SF7BW125 to SF12BW125
654 -
655 -923.3 - SF7BW125 to SF12BW125
656 -
657 -
658 -(% style="color:#037691" %)**Downlink:**
659 -
660 -Uplink channels 1-7(RX1)
661 -
662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
663 -
664 -
665 -
666 -=== 2.7.7 IN865-867 (IN865) ===
667 -
668 -(% style="color:#037691" %)** Uplink:**
669 -
670 -865.0625 - SF7BW125 to SF12BW125
671 -
672 -865.4025 - SF7BW125 to SF12BW125
673 -
674 -865.9850 - SF7BW125 to SF12BW125
675 -
676 -
677 -(% style="color:#037691" %) **Downlink:**
678 -
679 -Uplink channels 1-3 (RX1)
680 -
681 -866.550 - SF10BW125 (RX2)
682 -
683 -
684 -
685 -
686 -== 2.8 LED Indicator ==
687 -
688 -The LSE01 has an internal LED which is to show the status of different state.
689 -
690 -* Blink once when device power on.
691 -* Solid ON for 5 seconds once device successful Join the network.
692 -* Blink once when device transmit a packet.
693 -
694 -== 2.9 Installation in Soil ==
695 -
696 -**Measurement the soil surface**
697 -
698 -
699 -[[image:1654506634463-199.png]] ​
700 -
701 701  (((
702 -(((
703 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 +[[image:image-20220708140453-6.png]]
704 704  )))
705 -)))
706 706  
707 707  
708 -[[image:1654506665940-119.png]]
709 709  
710 -(((
711 -Dig a hole with diameter > 20CM.
712 -)))
604 +=== 2.9.2  Power consumption Analyze ===
713 713  
714 714  (((
715 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
716 716  )))
717 717  
718 718  
719 -== 2.10 ​Firmware Change Log ==
720 -
721 721  (((
722 -**Firmware download link:**
612 +Instruction to use as below:
723 723  )))
724 724  
725 725  (((
726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
616 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
727 727  )))
728 728  
729 -(((
730 -
731 -)))
732 732  
733 733  (((
734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
735 735  )))
736 736  
737 -(((
738 -
624 +* (((
625 +Product Model
739 739  )))
740 -
741 -(((
742 -**V1.0.**
627 +* (((
628 +Uplink Interval
743 743  )))
630 +* (((
631 +Working Mode
632 +)))
744 744  
745 745  (((
746 -Release
635 +And the Life expectation in difference case will be shown on the right.
747 747  )))
748 748  
638 +[[image:image-20220708141352-7.jpeg]]
749 749  
750 -== 2.11 ​Battery Analysis ==
751 751  
752 -=== 2.11.1 ​Battery Type ===
753 753  
754 -(((
755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
756 -)))
642 +=== 2.9.3  ​Battery Note ===
757 757  
758 758  (((
759 -The battery is designed to last for more than 5 years for the LSN50.
645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
760 760  )))
761 761  
762 -(((
763 -(((
764 -The battery-related documents are as below:
765 -)))
766 -)))
767 767  
768 -* (((
769 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
770 -)))
771 -* (((
772 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
773 -)))
774 -* (((
775 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
776 -)))
777 777  
778 - [[image:image-20220610172436-1.png]]
650 +=== 2.9.4  Replace the battery ===
779 779  
780 -
781 -
782 -=== 2.11.2 ​Battery Note ===
783 -
784 784  (((
785 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
786 786  )))
787 787  
788 788  
789 789  
790 -=== 2.11.3 Replace the battery ===
658 += 3. ​ Access NB-IoT Module =
791 791  
792 792  (((
793 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
661 +Users can directly access the AT command set of the NB-IoT module.
794 794  )))
795 795  
796 796  (((
797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
798 798  )))
799 799  
800 -(((
801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
802 -)))
668 +[[image:1657261278785-153.png]]
803 803  
804 804  
805 805  
806 -= 3. Using the AT Commands =
672 += 4.  Using the AT Commands =
807 807  
808 -== 3.1 Access AT Commands ==
674 +== 4.1  Access AT Commands ==
809 809  
676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
810 810  
811 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
812 812  
813 -[[image:1654501986557-872.png||height="391" width="800"]]
679 +AT+<CMD>?  : Help on <CMD>
814 814  
681 +AT+<CMD>         : Run <CMD>
815 815  
816 -Or if you have below board, use below connection:
683 +AT+<CMD>=<value> : Set the value
817 817  
685 +AT+<CMD>=?  : Get the value
818 818  
819 -[[image:1654502005655-729.png||height="503" width="801"]]
820 820  
821 -
822 -
823 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 -
825 -
826 - [[image:1654502050864-459.png||height="564" width="806"]]
827 -
828 -
829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
830 -
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 -
840 -
841 841  (% style="color:#037691" %)**General Commands**(%%)      
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
690 +AT  : Attention       
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
692 +AT?  : Short Help     
846 846  
847 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
694 +ATZ  : MCU Reset    
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
696 +AT+TDC  : Application Data Transmission Interval
850 850  
698 +AT+CFG  : Print all configurations
851 851  
852 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
700 +AT+CFGMOD           : Working mode selection
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
702 +AT+INTMOD            : Set the trigger interrupt mode
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
704 +AT+5VT  : Set extend the time of 5V power  
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
706 +AT+PRO  : Choose agreement
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
708 +AT+WEIGRE  : Get weight or set weight to 0
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
710 +AT+WEIGAP  : Get or Set the GapValue of weight
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
712 +AT+RXDL  : Extend the sending and receiving time
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
714 +AT+CNTFAC  : Get or set counting parameters
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
716 +AT+SERVADDR  : Server Address
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
719 +(% style="color:#037691" %)**COAP Management**      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
721 +AT+URI            : Resource parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
724 +(% style="color:#037691" %)**UDP Management**
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
726 +AT+CFM          : Upload confirmation mode (only valid for UDP)
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
729 +(% style="color:#037691" %)**MQTT Management**
885 885  
731 +AT+CLIENT               : Get or Set MQTT client
886 886  
887 -(% style="color:#037691" %)**LoRa Network Management**
733 +AT+UNAME  : Get or Set MQTT Username
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
735 +AT+PWD                  : Get or Set MQTT password
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
737 +AT+PUBTOPI : Get or Set MQTT publish topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
739 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
742 +(% style="color:#037691" %)**Information**          
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
744 +AT+FDR  : Factory Data Reset
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
746 +AT+PWOR : Serial Access Password
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
750 += ​5.  FAQ =
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
752 +== 5.1 How to Upgrade Firmware ==
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 -
919 -
920 -(% style="color:#037691" %)**Information** 
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 -
934 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 -
936 -
937 -= ​4. FAQ =
938 -
939 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 -
941 941  (((
942 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 -When downloading the images, choose the required image file for download. ​
756 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
944 944  )))
945 945  
946 946  (((
947 -
760 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
948 948  )))
949 949  
950 950  (((
951 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
952 952  )))
953 953  
954 -(((
955 -
956 -)))
957 957  
958 -(((
959 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 -)))
961 961  
962 -(((
963 -
964 -)))
769 += 6.  Trouble Shooting =
965 965  
966 -(((
967 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
968 -)))
771 +== 6.1  ​Connection problem when uploading firmware ==
969 969  
970 -[[image:image-20220606154726-3.png]]
971 971  
972 -
973 -When you use the TTN network, the US915 frequency bands use are:
974 -
975 -* 903.9 - SF7BW125 to SF10BW125
976 -* 904.1 - SF7BW125 to SF10BW125
977 -* 904.3 - SF7BW125 to SF10BW125
978 -* 904.5 - SF7BW125 to SF10BW125
979 -* 904.7 - SF7BW125 to SF10BW125
980 -* 904.9 - SF7BW125 to SF10BW125
981 -* 905.1 - SF7BW125 to SF10BW125
982 -* 905.3 - SF7BW125 to SF10BW125
983 -* 904.6 - SF8BW500
984 -
774 +(% class="wikigeneratedid" %)
985 985  (((
986 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
987 987  )))
988 988  
989 -(% class="box infomessage" %)
990 -(((
991 -**AT+CHE=2**
992 -)))
993 993  
994 -(% class="box infomessage" %)
995 -(((
996 -**ATZ**
997 -)))
998 998  
999 -(((
1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1001 -)))
781 +== 6.2  AT Command input doesn't work ==
1002 1002  
1003 1003  (((
1004 -
784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1005 1005  )))
1006 1006  
1007 -(((
1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1009 -)))
1010 1010  
1011 -[[image:image-20220606154825-4.png]]
1012 1012  
789 += 7. ​ Order Info =
1013 1013  
1014 1014  
1015 -= 5. Trouble Shooting =
792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1016 1016  
1017 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1018 1018  
1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1020 -
1021 -
1022 -== 5.2 AT Command input doesn’t work ==
1023 -
1024 -(((
1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 -)))
1027 -
1028 -
1029 -== 5.3 Device rejoin in at the second uplink packet ==
1030 -
1031 -(% style="color:#4f81bd" %)**Issue describe as below:**
1032 -
1033 -[[image:1654500909990-784.png]]
1034 -
1035 -
1036 -(% style="color:#4f81bd" %)**Cause for this issue:**
1037 -
1038 -(((
1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1040 -)))
1041 -
1042 -
1043 -(% style="color:#4f81bd" %)**Solution: **
1044 -
1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 -
1047 -[[image:1654500929571-736.png||height="458" width="832"]]
1048 -
1049 -
1050 -= 6. ​Order Info =
1051 -
1052 -
1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1054 -
1055 -
1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1057 -
1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1064 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1066 -
1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1068 -
1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1071 -
1072 1072  (% class="wikigeneratedid" %)
1073 1073  (((
1074 1074  
1075 1075  )))
1076 1076  
1077 -= 7. Packing Info =
800 += 8.  Packing Info =
1078 1078  
1079 1079  (((
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Package Includes**:
1083 -)))
1084 1084  
1085 -* (((
1086 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
807 +
808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 +* External antenna x 1
1087 1087  )))
1088 1088  
1089 1089  (((
... ... @@ -1090,24 +1090,20 @@
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Dimension and weight**:
1093 -)))
1094 1094  
1095 -* (((
1096 -Device Size: cm
817 +
818 +* Size: 195 x 125 x 55 mm
819 +* Weight:   420g
1097 1097  )))
1098 -* (((
1099 -Device Weight: g
1100 -)))
1101 -* (((
1102 -Package Size / pcs : cm
1103 -)))
1104 -* (((
1105 -Weight / pcs : g
1106 1106  
822 +(((
1107 1107  
824 +
825 +
826 +
1108 1108  )))
1109 1109  
1110 -= 8. Support =
829 += 9.  Support =
1111 1111  
1112 1112  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1113 1113  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0