Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,65 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 16 + 17 + 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 24 25 -((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 49 == 1.2 Features == 50 50 51 - * LoRaWAN 1.0.3 Class A52 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 62 62 62 +== 1.3 Specification == 63 63 64 64 65 - ==1.3Specification ==65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 67 67 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 70 70 71 71 72 72 73 -== 1.4 Applications == 87 +== 1.4 Applications == 74 74 75 75 * Smart Agriculture 76 76 ... ... @@ -77,732 +77,547 @@ 77 77 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 78 79 79 80 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 81 81 82 82 83 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 84 84 85 85 86 86 87 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 88 88 89 -== 2.1 How it works == 103 +== 2.1 How it works == 90 90 91 -((( 92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 -))) 94 94 95 95 ((( 96 - Incaseyoucan’tsettheOTAAkeysintheLoRaWANOTAAserver,andyouhave touse thekeys fromtheserver, youcan[[useATCommands>>||anchor="H3.200BUsingtheATCommands"]].107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 97 97 ))) 98 98 99 99 100 - 101 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 - 103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 - 105 - 106 -[[image:1654503992078-669.png]] 107 - 108 - 109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 - 111 - 112 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 - 114 -Each LSE01 is shipped with a sticker with the default device EUI as below: 115 - 116 -[[image:image-20220606163732-6.jpeg]] 117 - 118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 - 120 -**Add APP EUI in the application** 121 - 122 - 123 -[[image:1654504596150-405.png]] 124 - 125 - 126 - 127 -**Add APP KEY and DEV EUI** 128 - 129 -[[image:1654504683289-357.png]] 130 - 131 - 132 - 133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 - 135 - 136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 - 138 -[[image:image-20220606163915-7.png]] 139 - 140 - 141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 - 143 -[[image:1654504778294-788.png]] 144 - 145 - 146 - 147 -== 2.3 Uplink Payload == 148 - 149 - 150 -=== 2.3.1 MOD~=0(Default Mode) === 151 - 152 -LSE01 will uplink payload via LoRaWAN with below payload format: 153 - 154 154 ((( 155 - Uplinkpayloadincludesintotal11bytes.112 +The diagram below shows the working flow in default firmware of NSE01: 156 156 ))) 157 157 158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 -|((( 160 -**Size** 115 +[[image:image-20220708101605-2.png]] 161 161 162 -**(bytes)** 163 -)))|**2**|**2**|**2**|**2**|**2**|**1** 164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 -Temperature 166 - 167 -(Reserve, Ignore now) 168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 -MOD & Digital Interrupt 170 - 171 -(Optional) 117 +((( 118 + 172 172 ))) 173 173 174 174 175 175 123 +== 2.2 Configure the NSE01 == 176 176 177 177 178 -=== 2. 3.2MOD~=1(Originalvalue)===126 +=== 2.2.1 Test Requirement === 179 179 180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 181 181 182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 -|((( 184 -**Size** 129 +To use NSE01 in your city, make sure meet below requirements: 185 185 186 -**(bytes)** 187 -)))|**2**|**2**|**2**|**2**|**2**|**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 -Temperature 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 190 190 191 -(Reserve, Ignore now) 192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 -MOD & Digital Interrupt 194 - 195 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 196 196 ))) 197 197 198 198 140 +[[image:1657249419225-449.png]] 199 199 200 200 201 201 202 -=== 2. 3.3BatteryInfo===144 +=== 2.2.2 Insert SIM card === 203 203 204 -((( 205 -Check the battery voltage for LSE01. 206 -))) 146 +Insert the NB-IoT Card get from your provider. 207 207 208 -((( 209 -Ex1: 0x0B45 = 2885mV 210 -))) 148 +User need to take out the NB-IoT module and insert the SIM card like below: 211 211 212 -((( 213 -Ex2: 0x0B49 = 2889mV 214 -))) 215 215 151 +[[image:1657249468462-536.png]] 216 216 217 217 218 -=== 2.3.4 Soil Moisture === 219 219 220 -((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 223 223 224 224 ((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 -))) 227 - 228 228 ((( 229 - 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 230 230 ))) 231 - 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 234 ))) 235 235 236 236 164 +**Connection:** 237 237 238 - ===2.3.5SoilTemperature===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 239 239 240 -((( 241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 243 243 244 -((( 245 -**Example**: 246 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 247 247 248 -((( 249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 -))) 251 251 252 -((( 253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 -))) 173 +In the PC, use below serial tool settings: 255 255 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 256 256 257 - 258 -=== 2.3.6 Soil Conductivity (EC) === 259 - 260 260 ((( 261 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 262 262 ))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 185 +[[image:image-20220708110657-3.png]] 267 267 268 -((( 269 -Generally, the EC value of irrigation water is less than 800uS / cm. 270 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 271 271 272 -((( 273 - 274 -))) 275 275 276 -((( 277 - 278 -))) 279 279 280 -=== 2. 3.7MOD===191 +=== 2.2.4 Use CoAP protocol to uplink data === 281 281 282 - Firmwareversion atleastv2.1supportschangingmode.193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 283 283 284 -For example, bytes[10]=90 285 285 286 - mod=(bytes[10]>>7)&0x01=1.196 +**Use below commands:** 287 287 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 288 288 289 - **DownlinkCommand:**202 +For parameter description, please refer to AT command set 290 290 291 - If payload = 0x0A00, workmode=0204 +[[image:1657249793983-486.png]] 292 292 293 -If** **payload =** **0x0A01, workmode=1 294 294 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 295 295 209 +[[image:1657249831934-534.png]] 296 296 297 -=== 2.3.8 Decode payload in The Things Network === 298 298 299 -While using TTN network, you can add the payload format to decode the payload. 300 300 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 301 301 302 - [[image:1654505570700-128.png]]215 +This feature is supported since firmware version v1.0.1 303 303 304 -((( 305 -The payload decoder function for TTN is here: 306 -))) 307 307 308 -(( (309 - LSE01TTNPayload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]310 -)) )218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 311 311 222 +[[image:1657249864775-321.png]] 312 312 313 313 314 - ==2.4Uplink Interval ==225 +[[image:1657249930215-289.png]] 315 315 316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 317 317 318 318 229 +=== 2.2.6 Use MQTT protocol to uplink data === 319 319 320 - ==2.5DownlinkPayload==231 +This feature is supported since firmware version v110 321 321 322 -By default, LSE50 prints the downlink payload to console port. 323 323 324 -[[image:image-20220606165544-8.png]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 325 325 242 +[[image:1657249978444-674.png]] 326 326 327 -((( 328 -**Examples:** 329 -))) 330 330 331 -((( 332 - 333 -))) 245 +[[image:1657249990869-686.png]] 334 334 335 -* ((( 336 -**Set TDC** 337 -))) 338 338 339 339 ((( 340 - Ifthe payload=0100003C,itmeanssettheEND Node’sTDCto0x00003C=60(S),whiletypecodeis01.249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 341 341 ))) 342 342 343 -((( 344 -Payload: 01 00 00 1E TDC=30S 345 -))) 346 346 347 -((( 348 -Payload: 01 00 00 3C TDC=60S 349 -))) 350 350 351 -((( 352 - 353 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 354 354 355 -* ((( 356 -**Reset** 357 -))) 256 +This feature is supported since firmware version v110 358 358 359 -((( 360 -If payload = 0x04FF, it will reset the LSE01 361 -))) 362 362 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 363 363 364 - * **CFM**262 +[[image:1657250217799-140.png]] 365 365 366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 367 367 265 +[[image:1657250255956-604.png]] 368 368 369 369 370 -== 2.6 Show Data in DataCake IoT Server == 371 371 372 -((( 373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 374 -))) 269 +=== 2.2.8 Change Update Interval === 375 375 376 -((( 377 - 378 -))) 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 274 + 380 380 ((( 381 - **Step1**: Besurethatyour device is programmed and properly connectedto the network at this time.276 +(% style="color:red" %)**NOTE:** 382 382 ))) 383 383 384 384 ((( 385 - **Step 2**: Toconfigure the Application to forward datatoDATACAKEyouwillneedtoaddintegration. To add theDATACAKE integration, performthefollowing steps:280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 386 386 ))) 387 387 388 388 389 -[[image:1654505857935-743.png]] 390 390 285 +== 2.3 Uplink Payload == 391 391 392 - [[image:1654505874829-548.png]]287 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -Step 3: Create an account or log in Datacake. 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 395 395 396 - Step4:Search theLSE01andadd DevEUI.295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 397 397 398 398 399 -[[image: 1654505905236-553.png]]298 +[[image:image-20220708111918-4.png]] 400 400 401 401 402 - Afteradded,thesensordataarrive TTN,it will also arriveandshow in Mydevices.301 +The payload is ASCII string, representative same HEX: 403 403 404 - [[image:1654505925508-181.png]]303 +0x72403155615900640c7817075e0a8c02f900 where: 405 405 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 406 406 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 407 407 408 -== 2. 7FrequencyPlans ==315 +== 2.4 Payload Explanation and Sensor Interface == 409 409 410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 318 +=== 2.4.1 Device ID === 412 412 413 - ===2.7.1EU863-870(EU868)===320 +By default, the Device ID equal to the last 6 bytes of IMEI. 414 414 415 -(% style="color: #037691" %)**plink:**322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 416 416 417 - 868.1 - SF7BW125 to SF12BW125324 +**Example:** 418 418 419 -8 68.3 - SF7BW125to SF12BW125 and SF7BW250326 +AT+DEUI=A84041F15612 420 420 421 - 868.5-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 422 422 423 -867.1 - SF7BW125 to SF12BW125 424 424 425 -867.3 - SF7BW125 to SF12BW125 426 426 427 - 867.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 428 428 429 - 867.7-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 430 430 431 - 867.9-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 432 432 433 -868.8 - FSK 434 434 435 435 436 - (%style="color:#037691"%)** Downlink:**340 +=== 2.4.3 Battery Info === 437 437 438 -Uplink channels 1-9 (RX1) 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 439 439 440 -869.525 - SF9BW125 (RX2 downlink only) 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 441 441 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 442 442 443 443 444 -=== 2.7.2 US902-928(US915) === 445 445 446 - UsedinUSA, CanadaandSouth America. Defaultuse CHE=2356 +=== 2.4.4 Signal Strength === 447 447 448 - (%style="color:#037691"%)**Uplink:**358 +NB-IoT Network signal Strength. 449 449 450 - 903.9 - SF7BW125to SF10BW125360 +**Ex1: 0x1d = 29** 451 451 452 - 904.1-SF7BW125toSF10BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 453 453 454 - 904.3-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 455 455 456 - 904.5- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 457 457 458 - 904.7-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 459 459 460 -9 04.9-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 461 461 462 -905.1 - SF7BW125 to SF10BW125 463 463 464 -905.3 - SF7BW125 to SF10BW125 465 465 374 +=== 2.4.5 Soil Moisture === 466 466 467 -(% style="color:#037691" %)**Downlink:** 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 468 468 469 -923.3 - SF7BW500 to SF12BW500 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 470 470 471 -923.9 - SF7BW500 to SF12BW500 384 +((( 385 + 386 +))) 472 472 473 -924.5 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 474 474 475 -925.1 - SF7BW500 to SF12BW500 476 476 477 -925.7 - SF7BW500 to SF12BW500 478 478 479 - 926.3-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 480 480 481 -926.9 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 482 482 483 -927.5 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 484 484 485 -923.3 - SF12BW500(RX2 downlink only) 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 486 486 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 487 487 488 488 489 -=== 2.7.3 CN470-510 (CN470) === 490 490 491 - UsedinChina, Defaultuse CHE=1414 +=== 2.4.7 Soil Conductivity (EC) === 492 492 493 -(% style="color:#037691" %)**Uplink:** 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 494 494 495 -486.3 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 496 496 497 -486.5 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 498 498 499 -486.7 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 500 500 501 -486.9 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 502 502 503 -4 87.1-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 504 504 505 - 487.3-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 506 506 507 - 487.5- SF7BW125 toSF12BW125440 +The command is: 508 508 509 - 487.7-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 510 510 511 511 512 - (%style="color:#037691"%)**Downlink:**445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 513 513 514 -506.7 - SF7BW125 to SF12BW125 515 515 516 - 506.9 - SF7BW125 to SF12BW125448 +Example: 517 517 518 - 507.1-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 519 519 520 - 507.3 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 521 521 522 -507.5 - SF7BW125 to SF12BW125 523 523 524 -507.7 - SF7BW125 to SF12BW125 525 525 526 - 507.9- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 527 527 528 - 508.1-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 529 529 530 -505.3 - SF12BW125 (RX2 downlink only) 531 531 461 +The 5V output time can be controlled by AT Command. 532 532 463 +(% style="color:blue" %)**AT+5VT=1000** 533 533 534 - ===2.7.4AU915-928(AU915)===465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 535 535 536 -Default use CHE=2 537 537 538 -(% style="color:#037691" %)**Uplink:** 539 539 540 - 916.8- SF7BW125toSF12BW125469 +== 2.5 Downlink Payload == 541 541 542 - 917.0-SF7BW125toSF12BW125471 +By default, NSE01 prints the downlink payload to console port. 543 543 544 - 917.2-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 545 545 546 -917.4 - SF7BW125 to SF12BW125 547 547 548 -917.6 - SF7BW125 to SF12BW125 549 549 550 -917.8 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 551 551 552 -918.0 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 553 553 554 -918.2 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 555 555 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 556 556 557 -(% style="color:#037691" %)**Downlink:** 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 558 558 559 -923.3 - SF7BW500 to SF12BW500 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 560 560 561 -923.9 - SF7BW500 to SF12BW500 501 +((( 502 + 503 +))) 562 562 563 -924.5 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 564 564 565 -925.1 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 566 566 567 -925.7 - SF7BW500 to SF12BW500 568 568 569 - 926.3-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 570 570 571 - 926.9-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 572 572 573 -927.5 - SF7BW500 to SF12BW500 574 574 575 -923.3 - SF12BW500(RX2 downlink only) 576 576 520 +== 2.6 LED Indicator == 577 577 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 578 578 579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 580 580 581 -(% style="color:#037691" %)**Default Uplink channel:** 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 582 582 583 -923.2 - SF7BW125 to SF10BW125 584 584 585 -923.4 - SF7BW125 to SF10BW125 586 586 587 587 588 - (%style="color:#037691" %)**AdditionalUplinkChannel**:535 +== 2.7 Installation in Soil == 589 589 590 - (OTAAmode,channeladded by JoinAcceptmessage)537 +__**Measurement the soil surface**__ 591 591 592 - (%style="color:#037691"%)**AS920~~AS923forJapan,Malaysia,Singapore**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 593 593 594 - 922.2 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 595 595 596 -922.4 - SF7BW125 to SF10BW125 597 597 598 -922.6 - SF7BW125 to SF10BW125 544 +((( 545 + 599 599 600 -922.8 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 601 601 602 -923.0 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 603 603 604 -9 22.0SF7BW125 to SF10BW125556 +[[image:1654506665940-119.png]] 605 605 558 +((( 559 + 560 +))) 606 606 607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 608 608 609 - 923.6- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 610 610 611 -923.8 - SF7BW125 to SF10BW125 612 612 613 - 924.0-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 614 614 615 - 924.2-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 616 616 617 -924.4 - SF7BW125 to SF10BW125 618 618 619 - 924.6- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 620 620 621 621 622 -(% style="color:#037691" %)** Downlink:** 623 623 624 - Uplinkchannels1-8 (RX1)575 +== 2.9 Battery Analysis == 625 625 626 - 923.2 - SF10BW125(RX2)577 +=== 2.9.1 Battery Type === 627 627 628 628 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 629 629 630 -=== 2.7.6 KR920-923 (KR920) === 631 631 632 - Default channel:583 +The battery is designed to last for several years depends on the actually use environment and update interval. 633 633 634 -922.1 - SF7BW125 to SF12BW125 635 635 636 - 922.3-SF7BW125toSF12BW125586 +The battery related documents as below: 637 637 638 -922.5 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 639 639 640 - 641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 642 - 643 -922.1 - SF7BW125 to SF12BW125 644 - 645 -922.3 - SF7BW125 to SF12BW125 646 - 647 -922.5 - SF7BW125 to SF12BW125 648 - 649 -922.7 - SF7BW125 to SF12BW125 650 - 651 -922.9 - SF7BW125 to SF12BW125 652 - 653 -923.1 - SF7BW125 to SF12BW125 654 - 655 -923.3 - SF7BW125 to SF12BW125 656 - 657 - 658 -(% style="color:#037691" %)**Downlink:** 659 - 660 -Uplink channels 1-7(RX1) 661 - 662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 663 - 664 - 665 - 666 -=== 2.7.7 IN865-867 (IN865) === 667 - 668 -(% style="color:#037691" %)** Uplink:** 669 - 670 -865.0625 - SF7BW125 to SF12BW125 671 - 672 -865.4025 - SF7BW125 to SF12BW125 673 - 674 -865.9850 - SF7BW125 to SF12BW125 675 - 676 - 677 -(% style="color:#037691" %) **Downlink:** 678 - 679 -Uplink channels 1-3 (RX1) 680 - 681 -866.550 - SF10BW125 (RX2) 682 - 683 - 684 - 685 - 686 -== 2.8 LED Indicator == 687 - 688 -The LSE01 has an internal LED which is to show the status of different state. 689 - 690 -* Blink once when device power on. 691 -* Solid ON for 5 seconds once device successful Join the network. 692 -* Blink once when device transmit a packet. 693 - 694 -== 2.9 Installation in Soil == 695 - 696 -**Measurement the soil surface** 697 - 698 - 699 -[[image:1654506634463-199.png]] 700 - 701 701 ((( 702 -((( 703 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 704 704 ))) 705 -))) 706 706 707 707 708 -[[image:1654506665940-119.png]] 709 709 710 -((( 711 -Dig a hole with diameter > 20CM. 712 -))) 598 +2.9.2 713 713 714 -((( 715 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 716 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 717 717 718 718 719 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 720 720 721 -((( 722 -**Firmware download link:** 723 -))) 724 724 725 -((( 726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 727 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 728 728 729 -((( 730 - 731 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 732 732 733 -((( 734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 735 -))) 736 736 737 -((( 738 - 739 -))) 611 +Step 2: Open it and choose 740 740 741 - (((742 -* *V1.0.**743 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 744 744 745 -((( 746 -Release 747 -))) 617 +And the Life expectation in difference case will be shown on the right. 748 748 749 749 750 -== 2.11 Battery Analysis == 751 751 752 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 753 753 754 754 ((( 755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 756 -))) 757 - 758 -((( 759 -The battery is designed to last for more than 5 years for the LSN50. 760 -))) 761 - 762 -((( 763 -((( 764 -The battery-related documents are as below: 765 -))) 766 -))) 767 - 768 -* ((( 769 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 770 -))) 771 -* ((( 772 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 773 -))) 774 -* ((( 775 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 776 -))) 777 - 778 - [[image:image-20220610172436-1.png]] 779 - 780 - 781 - 782 -=== 2.11.2 Battery Note === 783 - 784 -((( 785 785 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 786 786 ))) 787 787 788 788 789 789 790 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 791 791 792 -((( 793 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 794 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 795 795 796 -((( 797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 798 -))) 799 799 800 -((( 801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 802 -))) 803 803 804 - 805 - 806 806 = 3. Using the AT Commands = 807 807 808 808 == 3.1 Access AT Commands == ... ... @@ -826,7 +826,7 @@ 826 826 [[image:1654502050864-459.png||height="564" width="806"]] 827 827 828 828 829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 830 830 831 831 832 832 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -984,19 +984,14 @@ 984 984 985 985 ((( 986 986 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 987 -))) 988 988 989 -(% class="box infomessage" %) 990 -((( 991 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 992 992 ))) 993 993 994 -(% class="box infomessage" %) 995 995 ((( 996 -**ATZ** 997 -))) 822 + 998 998 999 -((( 1000 1000 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1001 1001 ))) 1002 1002 ... ... @@ -1011,18 +1011,22 @@ 1011 1011 [[image:image-20220606154825-4.png]] 1012 1012 1013 1013 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1014 1014 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1015 1015 = 5. Trouble Shooting = 1016 1016 1017 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1018 1018 1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1020 1020 1021 1021 1022 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1023 1023 1024 1024 ((( 1025 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 1026 ))) 1027 1027 1028 1028
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content