Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.10
edited by Xiaoling
on 2022/06/14 14:04
Change comment: There is no comment for this version
To version 61.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "1657260785982-288.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,65 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
62 62  
62 +== 1.3  Specification ==
63 63  
64 64  
65 -== 1.3 Specification ==
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
67 67  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
70 70  
71 71  
72 72  
73 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
74 74  
75 75  * Smart Agriculture
76 76  
... ... @@ -77,732 +77,547 @@
77 77  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 78  ​
79 79  
80 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
84 84  
85 85  
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
88 88  
89 -== 2.1 How it works ==
103 +== 2.1  How it works ==
90 90  
91 -(((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 -)))
94 94  
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
97 97  )))
98 98  
99 99  
100 -
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 -
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 -
105 -
106 -[[image:1654503992078-669.png]]
107 -
108 -
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 -
111 -
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
113 -
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
115 -
116 -[[image:image-20220606163732-6.jpeg]]
117 -
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 -
120 -**Add APP EUI in the application**
121 -
122 -
123 -[[image:1654504596150-405.png]]
124 -
125 -
126 -
127 -**Add APP KEY and DEV EUI**
128 -
129 -[[image:1654504683289-357.png]]
130 -
131 -
132 -
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 -
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
112 +The diagram below shows the working flow in default firmware of NSE01:
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
115 +[[image:image-20220708101605-2.png]]
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 -
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 -
171 -(Optional)
117 +(((
118 +
172 172  )))
173 173  
174 174  
175 175  
123 +== 2.2 ​ Configure the NSE01 ==
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
126 +=== 2.2.1 Test Requirement ===
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
129 +To use NSE01 in your city, make sure meet below requirements:
185 185  
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
190 190  
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
196 196  )))
197 197  
198 198  
140 +[[image:1657249419225-449.png]]
199 199  
200 200  
201 201  
202 -=== 2.3.3 Battery Info ===
144 +=== 2.2.2 Insert SIM card ===
203 203  
204 -(((
205 -Check the battery voltage for LSE01.
206 -)))
146 +Insert the NB-IoT Card get from your provider.
207 207  
208 -(((
209 -Ex1: 0x0B45 = 2885mV
210 -)))
148 +User need to take out the NB-IoT module and insert the SIM card like below:
211 211  
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
215 215  
151 +[[image:1657249468462-536.png]]
216 216  
217 217  
218 -=== 2.3.4 Soil Moisture ===
219 219  
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
223 223  
224 224  (((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 -
228 228  (((
229 -
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
230 230  )))
231 -
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 234  )))
235 235  
236 236  
164 +**Connection:**
237 237  
238 -=== 2.3.5 Soil Temperature ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
243 243  
244 -(((
245 -**Example**:
246 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
173 +In the PC, use below serial tool settings:
255 255  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
256 256  
257 -
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 -
260 260  (((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
262 262  )))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
185 +[[image:image-20220708110657-3.png]]
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
271 271  
272 -(((
273 -
274 -)))
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -=== 2.3.7 MOD ===
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
281 281  
282 -Firmware version at least v2.1 supports changing mode.
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
283 283  
284 -For example, bytes[10]=90
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
196 +**Use below commands:**
287 287  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
288 288  
289 -**Downlink Command:**
202 +For parameter description, please refer to AT command set
290 290  
291 -If payload = 0x0A00, workmode=0
204 +[[image:1657249793983-486.png]]
292 292  
293 -If** **payload =** **0x0A01, workmode=1
294 294  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
295 295  
209 +[[image:1657249831934-534.png]]
296 296  
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 298  
299 -While using TTN network, you can add the payload format to decode the payload.
300 300  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
301 301  
302 -[[image:1654505570700-128.png]]
215 +This feature is supported since firmware version v1.0.1
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
310 -)))
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
311 311  
222 +[[image:1657249864775-321.png]]
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
225 +[[image:1657249930215-289.png]]
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
317 317  
318 318  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
319 319  
320 -== 2.5 Downlink Payload ==
231 +This feature is supported since firmware version v110
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 323  
324 -[[image:image-20220606165544-8.png]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
325 325  
242 +[[image:1657249978444-674.png]]
326 326  
327 -(((
328 -**Examples:**
329 -)))
330 330  
331 -(((
332 -
333 -)))
245 +[[image:1657249990869-686.png]]
334 334  
335 -* (((
336 -**Set TDC**
337 -)))
338 338  
339 339  (((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
341 341  )))
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
346 346  
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 350  
351 -(((
352 -
353 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
354 354  
355 -* (((
356 -**Reset**
357 -)))
256 +This feature is supported since firmware version v110
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
363 363  
364 -* **CFM**
262 +[[image:1657250217799-140.png]]
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
265 +[[image:1657250255956-604.png]]
368 368  
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
371 371  
372 -(((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 -)))
269 +=== 2.2.8 Change Update Interval ===
375 375  
376 -(((
377 -
378 -)))
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
379 379  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 +
380 380  (((
381 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
276 +(% style="color:red" %)**NOTE:**
382 382  )))
383 383  
384 384  (((
385 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
386 386  )))
387 387  
388 388  
389 -[[image:1654505857935-743.png]]
390 390  
285 +== 2.3  Uplink Payload ==
391 391  
392 -[[image:1654505874829-548.png]]
287 +In this mode, uplink payload includes in total 18 bytes
393 393  
394 -Step 3: Create an account or log in Datacake.
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
395 395  
396 -Step 4: Search the LSE01 and add DevEUI.
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
397 397  
398 398  
399 -[[image:1654505905236-553.png]]
298 +[[image:image-20220708111918-4.png]]
400 400  
401 401  
402 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
301 +The payload is ASCII string, representative same HEX:
403 403  
404 -[[image:1654505925508-181.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
405 405  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
406 406  
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
407 407  
408 -== 2.7 Frequency Plans ==
315 +== 2. Payload Explanation and Sensor Interface ==
409 409  
410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
411 411  
318 +=== 2.4.1  Device ID ===
412 412  
413 -=== 2.7.1 EU863-870 (EU868) ===
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
414 414  
415 -(% style="color:#037691" %)** Uplink:**
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
416 416  
417 -868.1 - SF7BW125 to SF12BW125
324 +**Example:**
418 418  
419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
326 +AT+DEUI=A84041F15612
420 420  
421 -868.5 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
422 422  
423 -867.1 - SF7BW125 to SF12BW125
424 424  
425 -867.3 - SF7BW125 to SF12BW125
426 426  
427 -867.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
428 428  
429 -867.7 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
430 430  
431 -867.9 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
432 432  
433 -868.8 - FSK
434 434  
435 435  
436 -(% style="color:#037691" %)** Downlink:**
340 +=== 2.4.3  Battery Info ===
437 437  
438 -Uplink channels 1-9 (RX1)
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
439 439  
440 -869.525 - SF9BW125 (RX2 downlink only)
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
441 441  
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
442 442  
443 443  
444 -=== 2.7.2 US902-928(US915) ===
445 445  
446 -Used in USA, Canada and South America. Default use CHE=2
356 +=== 2.4.4  Signal Strength ===
447 447  
448 -(% style="color:#037691" %)**Uplink:**
358 +NB-IoT Network signal Strength.
449 449  
450 -903.9 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
451 451  
452 -904.1 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
453 453  
454 -904.3 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
455 455  
456 -904.5 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
457 457  
458 -904.7 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
459 459  
460 -904.9 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
461 461  
462 -905.1 - SF7BW125 to SF10BW125
463 463  
464 -905.3 - SF7BW125 to SF10BW125
465 465  
374 +=== 2.4.5  Soil Moisture ===
466 466  
467 -(% style="color:#037691" %)**Downlink:**
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
468 468  
469 -923.3 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
470 470  
471 -923.9 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
472 472  
473 -924.5 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
474 474  
475 -925.1 - SF7BW500 to SF12BW500
476 476  
477 -925.7 - SF7BW500 to SF12BW500
478 478  
479 -926.3 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
480 480  
481 -926.9 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
482 482  
483 -927.5 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
484 484  
485 -923.3 - SF12BW500(RX2 downlink only)
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
486 486  
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
487 487  
488 488  
489 -=== 2.7.3 CN470-510 (CN470) ===
490 490  
491 -Used in China, Default use CHE=1
414 +=== 2.4.7  Soil Conductivity (EC) ===
492 492  
493 -(% style="color:#037691" %)**Uplink:**
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
494 494  
495 -486.3 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
496 496  
497 -486.5 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
498 498  
499 -486.7 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
500 500  
501 -486.9 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
502 502  
503 -487.1 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
504 504  
505 -487.3 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
506 506  
507 -487.5 - SF7BW125 to SF12BW125
440 +The command is:
508 508  
509 -487.7 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
510 510  
511 511  
512 -(% style="color:#037691" %)**Downlink:**
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
513 513  
514 -506.7 - SF7BW125 to SF12BW125
515 515  
516 -506.9 - SF7BW125 to SF12BW125
448 +Example:
517 517  
518 -507.1 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
519 519  
520 -507.3 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
521 521  
522 -507.5 - SF7BW125 to SF12BW125
523 523  
524 -507.7 - SF7BW125 to SF12BW125
525 525  
526 -507.9 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
527 527  
528 -508.1 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
529 529  
530 -505.3 - SF12BW125 (RX2 downlink only)
531 531  
461 +The 5V output time can be controlled by AT Command.
532 532  
463 +(% style="color:blue" %)**AT+5VT=1000**
533 533  
534 -=== 2.7.4 AU915-928(AU915) ===
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
535 535  
536 -Default use CHE=2
537 537  
538 -(% style="color:#037691" %)**Uplink:**
539 539  
540 -916.8 - SF7BW125 to SF12BW125
469 +== 2.5  Downlink Payload ==
541 541  
542 -917.0 - SF7BW125 to SF12BW125
471 +By default, NSE01 prints the downlink payload to console port.
543 543  
544 -917.2 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
545 545  
546 -917.4 - SF7BW125 to SF12BW125
547 547  
548 -917.6 - SF7BW125 to SF12BW125
549 549  
550 -917.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
551 551  
552 -918.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
553 553  
554 -918.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
555 555  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
556 556  
557 -(% style="color:#037691" %)**Downlink:**
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
558 558  
559 -923.3 - SF7BW500 to SF12BW500
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
560 560  
561 -923.9 - SF7BW500 to SF12BW500
501 +(((
502 +
503 +)))
562 562  
563 -924.5 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
564 564  
565 -925.1 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
566 566  
567 -925.7 - SF7BW500 to SF12BW500
568 568  
569 -926.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
570 570  
571 -926.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
572 572  
573 -927.5 - SF7BW500 to SF12BW500
574 574  
575 -923.3 - SF12BW500(RX2 downlink only)
576 576  
520 +== 2.6  ​LED Indicator ==
577 577  
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
578 578  
579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
580 580  
581 -(% style="color:#037691" %)**Default Uplink channel:**
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
582 582  
583 -923.2 - SF7BW125 to SF10BW125
584 584  
585 -923.4 - SF7BW125 to SF10BW125
586 586  
587 587  
588 -(% style="color:#037691" %)**Additional Uplink Channel**:
535 +== 2.7  Installation in Soil ==
589 589  
590 -(OTAA mode, channel added by JoinAccept message)
537 +__**Measurement the soil surface**__
591 591  
592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
593 593  
594 -922.2 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
595 595  
596 -922.4 - SF7BW125 to SF10BW125
597 597  
598 -922.6 - SF7BW125 to SF10BW125
544 +(((
545 +
599 599  
600 -922.8 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
601 601  
602 -923.0 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
603 603  
604 -922.0 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
605 605  
558 +(((
559 +
560 +)))
606 606  
607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
608 608  
609 -923.6 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
610 610  
611 -923.8 - SF7BW125 to SF10BW125
612 612  
613 -924.0 - SF7BW125 to SF10BW125
566 +Download URL & Firmware Change log
614 614  
615 -924.2 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
616 616  
617 -924.4 - SF7BW125 to SF10BW125
618 618  
619 -924.6 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
620 620  
621 621  
622 -(% style="color:#037691" %)** Downlink:**
623 623  
624 -Uplink channels 1-8 (RX1)
575 +== 2.9  ​Battery Analysis ==
625 625  
626 -923.2 - SF10BW125 (RX2)
577 +=== 2.9.1  ​Battery Type ===
627 627  
628 628  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
629 629  
630 -=== 2.7.6 KR920-923 (KR920) ===
631 631  
632 -Default channel:
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
633 633  
634 -922.1 - SF7BW125 to SF12BW125
635 635  
636 -922.3 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
637 637  
638 -922.5 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 639  
640 -
641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
642 -
643 -922.1 - SF7BW125 to SF12BW125
644 -
645 -922.3 - SF7BW125 to SF12BW125
646 -
647 -922.5 - SF7BW125 to SF12BW125
648 -
649 -922.7 - SF7BW125 to SF12BW125
650 -
651 -922.9 - SF7BW125 to SF12BW125
652 -
653 -923.1 - SF7BW125 to SF12BW125
654 -
655 -923.3 - SF7BW125 to SF12BW125
656 -
657 -
658 -(% style="color:#037691" %)**Downlink:**
659 -
660 -Uplink channels 1-7(RX1)
661 -
662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
663 -
664 -
665 -
666 -=== 2.7.7 IN865-867 (IN865) ===
667 -
668 -(% style="color:#037691" %)** Uplink:**
669 -
670 -865.0625 - SF7BW125 to SF12BW125
671 -
672 -865.4025 - SF7BW125 to SF12BW125
673 -
674 -865.9850 - SF7BW125 to SF12BW125
675 -
676 -
677 -(% style="color:#037691" %) **Downlink:**
678 -
679 -Uplink channels 1-3 (RX1)
680 -
681 -866.550 - SF10BW125 (RX2)
682 -
683 -
684 -
685 -
686 -== 2.8 LED Indicator ==
687 -
688 -The LSE01 has an internal LED which is to show the status of different state.
689 -
690 -* Blink once when device power on.
691 -* Solid ON for 5 seconds once device successful Join the network.
692 -* Blink once when device transmit a packet.
693 -
694 -== 2.9 Installation in Soil ==
695 -
696 -**Measurement the soil surface**
697 -
698 -
699 -[[image:1654506634463-199.png]] ​
700 -
701 701  (((
702 -(((
703 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
704 704  )))
705 -)))
706 706  
707 707  
708 -[[image:1654506665940-119.png]]
709 709  
710 -(((
711 -Dig a hole with diameter > 20CM.
712 -)))
598 +2.9.2 
713 713  
714 -(((
715 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
716 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
717 717  
718 718  
719 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
720 720  
721 -(((
722 -**Firmware download link:**
723 -)))
724 724  
725 -(((
726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
727 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
728 728  
729 -(((
730 -
731 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
732 732  
733 -(((
734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
735 -)))
736 736  
737 -(((
738 -
739 -)))
611 +Step 2: Open it and choose
740 740  
741 -(((
742 -**V1.0.**
743 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
744 744  
745 -(((
746 -Release
747 -)))
617 +And the Life expectation in difference case will be shown on the right.
748 748  
749 749  
750 -== 2.11 ​Battery Analysis ==
751 751  
752 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
753 753  
754 754  (((
755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
756 -)))
757 -
758 -(((
759 -The battery is designed to last for more than 5 years for the LSN50.
760 -)))
761 -
762 -(((
763 -(((
764 -The battery-related documents are as below:
765 -)))
766 -)))
767 -
768 -* (((
769 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
770 -)))
771 -* (((
772 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
773 -)))
774 -* (((
775 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
776 -)))
777 -
778 - [[image:image-20220610172436-1.png]]
779 -
780 -
781 -
782 -=== 2.11.2 ​Battery Note ===
783 -
784 -(((
785 785  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
786 786  )))
787 787  
788 788  
789 789  
790 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
791 791  
792 -(((
793 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
794 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
795 795  
796 -(((
797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
798 -)))
799 799  
800 -(((
801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
802 -)))
803 803  
804 -
805 -
806 806  = 3. ​Using the AT Commands =
807 807  
808 808  == 3.1 Access AT Commands ==
... ... @@ -826,7 +826,7 @@
826 826   [[image:1654502050864-459.png||height="564" width="806"]]
827 827  
828 828  
829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 830  
831 831  
832 832  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -984,19 +984,14 @@
984 984  
985 985  (((
986 986  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 -)))
988 988  
989 -(% class="box infomessage" %)
990 -(((
991 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
992 992  )))
993 993  
994 -(% class="box infomessage" %)
995 995  (((
996 -**ATZ**
997 -)))
822 +
998 998  
999 -(((
1000 1000  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1001 1001  )))
1002 1002  
... ... @@ -1011,18 +1011,22 @@
1011 1011  [[image:image-20220606154825-4.png]]
1012 1012  
1013 1013  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1014 1014  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
1015 1015  = 5. Trouble Shooting =
1016 1016  
1017 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1018 1018  
1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1020 1020  
1021 1021  
1022 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
1023 1023  
1024 1024  (((
1025 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 1026  )))
1027 1027  
1028 1028  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content