Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.1
edited by Xiaoling
on 2022/06/10 17:24
Change comment: Uploaded new attachment "image-20220610172436-1.png", version {1}
To version 68.2
edited by Xiaoling
on 2022/07/09 08:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,74 +1,88 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 13  
11 +**Table of Contents:**
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
17 +
18 +
19 += 1.  Introduction =
20 +
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
24 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
60 60  
60 +== 1.3  Specification ==
61 61  
62 62  
63 -== 1.3 Specification ==
63 +(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
67 +
68 +(% style="color:#037691" %)**NB-IoT Spec:**
69 +
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,706 +75,623 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
101 +== 2.1  How it works ==
88 88  
103 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
108 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
113 +[[image:image-20220708101605-2.png]]
97 97  
115 +(((
116 +
117 +)))
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
121 +== 2.2 ​ Configure the NSE01 ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
124 +=== 2.2.1 Test Requirement ===
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
109 109  
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
117 117  
118 -**Add APP EUI in the application**
119 119  
120 120  
121 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
122 122  
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
123 123  
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
124 124  
125 -**Add APP KEY and DEV EUI**
126 126  
127 -[[image:1654504683289-357.png]]
155 +[[image:1657249468462-536.png]]
128 128  
129 129  
130 130  
131 -**Step 2**: Power on LSE01
159 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
132 132  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 135  
136 -[[image:image-20220606163915-7.png]]
168 +**Connection:**
137 137  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
138 138  
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
141 -[[image:1654504778294-788.png]]
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
142 142  
143 143  
177 +In the PC, use below serial tool settings:
144 144  
145 -== 2.3 Uplink Payload ==
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
146 146  
147 -=== ===
185 +(((
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 +)))
148 148  
149 -=== 2.3.1 MOD~=0(Default Mode) ===
189 +[[image:image-20220708110657-3.png]]
150 150  
151 -LSE01 will uplink payload via LoRaWAN with below payload format: 
152 -
153 153  (((
154 -Uplink payload includes in total 11 bytes.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
155 155  )))
156 156  
157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
158 -|(((
159 -**Size**
160 160  
161 -**(bytes)**
162 -)))|**2**|**2**|**2**|**2**|**2**|**1**
163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
164 -Temperature
165 165  
166 -(Reserve, Ignore now)
167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
168 -MOD & Digital Interrupt
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
169 169  
170 -(Optional)
171 -)))
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
172 172  
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
202 +**Use below commands:**
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
208 +For parameter description, please refer to AT command set
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
210 +[[image:1657249793983-486.png]]
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
193 193  
215 +[[image:1657249831934-534.png]]
194 194  
195 -=== 2.3.3 Battery Info ===
196 196  
197 -(((
198 -Check the battery voltage for LSE01.
199 -)))
200 200  
201 -(((
202 -Ex1: 0x0B45 = 2885mV
203 -)))
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
204 204  
205 -(((
206 -Ex2: 0x0B49 = 2889mV
207 -)))
221 +This feature is supported since firmware version v1.0.1
208 208  
209 209  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
210 210  
211 -=== 2.3.4 Soil Moisture ===
228 +[[image:1657249864775-321.png]]
212 212  
213 -(((
214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
215 -)))
216 216  
217 -(((
218 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
219 -)))
231 +[[image:1657249930215-289.png]]
220 220  
221 -(((
222 -
223 -)))
224 224  
225 -(((
226 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
227 -)))
228 228  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
229 229  
237 +This feature is supported since firmware version v110
230 230  
231 -=== 2.3.5 Soil Temperature ===
232 232  
233 -(((
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 -)))
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
236 236  
237 -(((
238 -**Example**:
239 -)))
248 +[[image:1657249978444-674.png]]
240 240  
241 -(((
242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
243 -)))
244 244  
251 +[[image:1657249990869-686.png]]
252 +
253 +
245 245  (((
246 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
247 247  )))
248 248  
249 249  
250 250  
251 -=== 2.3.6 Soil Conductivity (EC) ===
260 +=== 2.2.7 Use TCP protocol to uplink data ===
252 252  
253 -(((
254 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
255 -)))
262 +This feature is supported since firmware version v110
256 256  
257 -(((
258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
259 -)))
260 260  
261 -(((
262 -Generally, the EC value of irrigation water is less than 800uS / cm.
263 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
264 264  
265 -(((
266 -
267 -)))
268 +[[image:1657250217799-140.png]]
268 268  
269 -(((
270 -
271 -)))
272 272  
273 -=== 2.3.7 MOD ===
271 +[[image:1657250255956-604.png]]
274 274  
275 -Firmware version at least v2.1 supports changing mode.
276 276  
277 -For example, bytes[10]=90
278 278  
279 -mod=(bytes[10]>>7)&0x01=1.
275 +=== 2.2.8 Change Update Interval ===
280 280  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
281 281  
282 -**Downlink Command:**
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
283 283  
284 -If payload = 0x0A00, workmode=0
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
285 285  
286 -If** **payload =** **0x0A01, workmode=1
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
287 287  
288 288  
289 289  
290 -=== 2.3.8 ​Decode payload in The Things Network ===
291 +== 2.3  Uplink Payload ==
291 291  
292 -While using TTN network, you can add the payload format to decode the payload.
293 +In this mode, uplink payload includes in total 18 bytes
293 293  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
294 294  
295 -[[image:1654505570700-128.png]]
296 -
297 297  (((
298 -The payload decoder function for TTN is here:
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
299 299  )))
300 300  
301 -(((
302 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303 -)))
304 304  
306 +[[image:image-20220708111918-4.png]]
305 305  
306 306  
307 -== 2.4 Uplink Interval ==
309 +The payload is ASCII string, representative same HEX:
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
311 +0x72403155615900640c7817075e0a8c02f900 where:
310 310  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
311 311  
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
312 312  
313 -== 2.5 Downlink Payload ==
323 +== 2. Payload Explanation and Sensor Interface ==
314 314  
315 -By default, LSE50 prints the downlink payload to console port.
316 316  
317 -[[image:image-20220606165544-8.png]]
326 +=== 2.4.1  Device ID ===
318 318  
328 +(((
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
330 +)))
319 319  
320 320  (((
321 -**Examples:**
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
322 322  )))
323 323  
324 324  (((
325 -
337 +**Example:**
326 326  )))
327 327  
328 -* (((
329 -**Set TDC**
340 +(((
341 +AT+DEUI=A84041F15612
330 330  )))
331 331  
332 332  (((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
334 334  )))
335 335  
348 +
349 +
350 +=== 2.4.2  Version Info ===
351 +
336 336  (((
337 -Payload:    01 00 00 1E    TDC=30S
353 +Specify the software version: 0x64=100, means firmware version 1.00.
338 338  )))
339 339  
340 340  (((
341 -Payload:    01 00 00 3C    TDC=60S
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
342 342  )))
343 343  
360 +
361 +
362 +=== 2.4.3  Battery Info ===
363 +
344 344  (((
345 -
365 +Check the battery voltage for LSE01.
346 346  )))
347 347  
348 -* (((
349 -**Reset**
368 +(((
369 +Ex1: 0x0B45 = 2885mV
350 350  )))
351 351  
352 352  (((
353 -If payload = 0x04FF, it will reset the LSE01
373 +Ex2: 0x0B49 = 2889mV
354 354  )))
355 355  
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
378 +=== 2.4.4  Signal Strength ===
360 360  
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
361 361  
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
388 +(((
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +)))
364 364  
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
393 +(% style="color:blue" %)**1**(%%)  -111dBm
367 367  )))
368 368  
369 369  (((
370 -
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
371 371  )))
372 372  
373 373  (((
374 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
375 375  )))
376 376  
377 377  (((
378 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
379 379  )))
380 380  
381 381  
382 -[[image:1654505857935-743.png]]
383 383  
410 +=== 2.4.5  Soil Moisture ===
384 384  
385 -[[image:1654505874829-548.png]]
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
386 386  
387 -Step 3: Create an account or log in Datacake.
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
388 388  
389 -Step 4: Search the LSE01 and add DevEUI.
424 +(((
425 +
426 +)))
390 390  
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
391 391  
392 -[[image:1654505905236-553.png]]
393 393  
394 394  
395 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
434 +=== 2.4.6  Soil Temperature ===
396 396  
397 -[[image:1654505925508-181.png]]
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
398 398  
440 +(((
441 +**Example**:
442 +)))
399 399  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
400 400  
401 -== 2.7 Frequency Plans ==
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
402 402  
403 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
404 404  
405 405  
406 -=== 2.7.1 EU863-870 (EU868) ===
454 +=== 2.4.7  Soil Conductivity (EC) ===
407 407  
408 -(% style="color:#037691" %)** Uplink:**
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
409 409  
410 -868.1 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
411 411  
412 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
413 413  
414 -868.5 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
415 415  
416 -867.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
417 417  
418 -867.3 - SF7BW125 to SF12BW125
476 +=== 2.4.8  Digital Interrupt ===
419 419  
420 -867.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
421 421  
422 -867.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
423 423  
424 -867.9 - SF7BW125 to SF12BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
425 425  
426 -868.8 - FSK
427 427  
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
428 428  
429 -(% style="color:#037691" %)** Downlink:**
430 430  
431 -Uplink channels 1-9 (RX1)
496 +(((
497 +Example:
498 +)))
432 432  
433 -869.525 - SF9BW125 (RX2 downlink only)
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
434 434  
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
435 435  
436 436  
437 -=== 2.7.2 US902-928(US915) ===
438 438  
439 -Used in USA, Canada and South America. Default use CHE=2
510 +=== 2.4.9  ​+5V Output ===
440 440  
441 -(% style="color:#037691" %)**Uplink:**
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
442 442  
443 -903.9 - SF7BW125 to SF10BW125
444 444  
445 -904.1 - SF7BW125 to SF10BW125
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
446 446  
447 -904.3 - SF7BW125 to SF10BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
448 448  
449 -904.5 - SF7BW125 to SF10BW125
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
450 450  
451 -904.7 - SF7BW125 to SF10BW125
452 452  
453 -904.9 - SF7BW125 to SF10BW125
454 454  
455 -905.1 - SF7BW125 to SF10BW125
531 +== 2.5  Downlink Payload ==
456 456  
457 -905.3 - SF7BW125 to SF10BW125
533 +By default, NSE01 prints the downlink payload to console port.
458 458  
535 +[[image:image-20220708133731-5.png]]
459 459  
460 -(% style="color:#037691" %)**Downlink:**
461 461  
462 -923.3 - SF7BW500 to SF12BW500
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
463 463  
464 -923.9 - SF7BW500 to SF12BW500
542 +(((
543 +
544 +)))
465 465  
466 -924.5 - SF7BW500 to SF12BW500
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
467 467  
468 -925.1 - SF7BW500 to SF12BW500
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
469 469  
470 -925.7 - SF7BW500 to SF12BW500
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
471 471  
472 -926.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
473 473  
474 -926.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
475 475  
476 -927.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
477 477  
478 -923.3 - SF12BW500(RX2 downlink only)
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
479 479  
480 480  
575 +* (% style="color:blue" %)**INTMOD**
481 481  
482 -=== 2.7.3 CN470-510 (CN470) ===
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
483 483  
484 -Used in China, Default use CHE=1
485 485  
486 -(% style="color:#037691" %)**Uplink:**
487 487  
488 -486.3 - SF7BW125 to SF12BW125
583 +== 2.6  ​LED Indicator ==
489 489  
490 -486.5 - SF7BW125 to SF12BW125
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
491 491  
492 -486.7 - SF7BW125 to SF12BW125
493 493  
494 -486.9 - SF7BW125 to SF12BW125
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
495 495  
496 -487.1 - SF7BW125 to SF12BW125
497 497  
498 -487.3 - SF7BW125 to SF12BW125
499 499  
500 -487.5 - SF7BW125 to SF12BW125
501 501  
502 -487.7 - SF7BW125 to SF12BW125
598 +== 2.7  Installation in Soil ==
503 503  
600 +__**Measurement the soil surface**__
504 504  
505 -(% style="color:#037691" %)**Downlink:**
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
506 506  
507 -506.7 - SF7BW125 to SF12BW125
606 +[[image:1657259653666-883.png]] ​
508 508  
509 -506.9 - SF7BW125 to SF12BW125
510 510  
511 -507.1 - SF7BW125 to SF12BW125
609 +(((
610 +
512 512  
513 -507.3 - SF7BW125 to SF12BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
514 514  
515 -507.5 - SF7BW125 to SF12BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
516 516  
517 -507.7 - SF7BW125 to SF12BW125
621 +[[image:1654506665940-119.png]]
518 518  
519 -507.9 - SF7BW125 to SF12BW125
623 +(((
624 +
625 +)))
520 520  
521 -508.1 - SF7BW125 to SF12BW125
522 522  
523 -505.3 - SF12BW125 (RX2 downlink only)
628 +== 2.8  ​Firmware Change Log ==
524 524  
525 525  
631 +Download URL & Firmware Change log
526 526  
527 -=== 2.7.4 AU915-928(AU915) ===
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
528 528  
529 -Default use CHE=2
530 530  
531 -(% style="color:#037691" %)**Uplink:**
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
532 532  
533 -916.8 - SF7BW125 to SF12BW125
534 534  
535 -917.0 - SF7BW125 to SF12BW125
536 536  
537 -917.2 - SF7BW125 to SF12BW125
640 +== 2.9  ​Battery Analysis ==
538 538  
539 -917.4 - SF7BW125 to SF12BW125
642 +=== 2.9.1  ​Battery Type ===
540 540  
541 -917.6 - SF7BW125 to SF12BW125
542 542  
543 -917.8 - SF7BW125 to SF12BW125
544 -
545 -918.0 - SF7BW125 to SF12BW125
546 -
547 -918.2 - SF7BW125 to SF12BW125
548 -
549 -
550 -(% style="color:#037691" %)**Downlink:**
551 -
552 -923.3 - SF7BW500 to SF12BW500
553 -
554 -923.9 - SF7BW500 to SF12BW500
555 -
556 -924.5 - SF7BW500 to SF12BW500
557 -
558 -925.1 - SF7BW500 to SF12BW500
559 -
560 -925.7 - SF7BW500 to SF12BW500
561 -
562 -926.3 - SF7BW500 to SF12BW500
563 -
564 -926.9 - SF7BW500 to SF12BW500
565 -
566 -927.5 - SF7BW500 to SF12BW500
567 -
568 -923.3 - SF12BW500(RX2 downlink only)
569 -
570 -
571 -
572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
573 -
574 -(% style="color:#037691" %)**Default Uplink channel:**
575 -
576 -923.2 - SF7BW125 to SF10BW125
577 -
578 -923.4 - SF7BW125 to SF10BW125
579 -
580 -
581 -(% style="color:#037691" %)**Additional Uplink Channel**:
582 -
583 -(OTAA mode, channel added by JoinAccept message)
584 -
585 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
586 -
587 -922.2 - SF7BW125 to SF10BW125
588 -
589 -922.4 - SF7BW125 to SF10BW125
590 -
591 -922.6 - SF7BW125 to SF10BW125
592 -
593 -922.8 - SF7BW125 to SF10BW125
594 -
595 -923.0 - SF7BW125 to SF10BW125
596 -
597 -922.0 - SF7BW125 to SF10BW125
598 -
599 -
600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
601 -
602 -923.6 - SF7BW125 to SF10BW125
603 -
604 -923.8 - SF7BW125 to SF10BW125
605 -
606 -924.0 - SF7BW125 to SF10BW125
607 -
608 -924.2 - SF7BW125 to SF10BW125
609 -
610 -924.4 - SF7BW125 to SF10BW125
611 -
612 -924.6 - SF7BW125 to SF10BW125
613 -
614 -
615 -(% style="color:#037691" %)** Downlink:**
616 -
617 -Uplink channels 1-8 (RX1)
618 -
619 -923.2 - SF10BW125 (RX2)
620 -
621 -
622 -
623 -=== 2.7.6 KR920-923 (KR920) ===
624 -
625 -Default channel:
626 -
627 -922.1 - SF7BW125 to SF12BW125
628 -
629 -922.3 - SF7BW125 to SF12BW125
630 -
631 -922.5 - SF7BW125 to SF12BW125
632 -
633 -
634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
635 -
636 -922.1 - SF7BW125 to SF12BW125
637 -
638 -922.3 - SF7BW125 to SF12BW125
639 -
640 -922.5 - SF7BW125 to SF12BW125
641 -
642 -922.7 - SF7BW125 to SF12BW125
643 -
644 -922.9 - SF7BW125 to SF12BW125
645 -
646 -923.1 - SF7BW125 to SF12BW125
647 -
648 -923.3 - SF7BW125 to SF12BW125
649 -
650 -
651 -(% style="color:#037691" %)**Downlink:**
652 -
653 -Uplink channels 1-7(RX1)
654 -
655 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
656 -
657 -
658 -
659 -=== 2.7.7 IN865-867 (IN865) ===
660 -
661 -(% style="color:#037691" %)** Uplink:**
662 -
663 -865.0625 - SF7BW125 to SF12BW125
664 -
665 -865.4025 - SF7BW125 to SF12BW125
666 -
667 -865.9850 - SF7BW125 to SF12BW125
668 -
669 -
670 -(% style="color:#037691" %) **Downlink:**
671 -
672 -Uplink channels 1-3 (RX1)
673 -
674 -866.550 - SF10BW125 (RX2)
675 -
676 -
677 -
678 -
679 -== 2.8 LED Indicator ==
680 -
681 -The LSE01 has an internal LED which is to show the status of different state.
682 -
683 -* Blink once when device power on.
684 -* Solid ON for 5 seconds once device successful Join the network.
685 -* Blink once when device transmit a packet.
686 -
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 -)))
700 700  
701 701  
702 -[[image:1654506665940-119.png]]
703 -
704 704  (((
705 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
706 706  )))
707 707  
708 -(((
709 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
710 -)))
711 711  
712 -
713 -== 2.10 ​Firmware Change Log ==
714 -
715 715  (((
716 -**Firmware download link:**
656 +The battery related documents as below:
717 717  )))
718 718  
719 -(((
720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
721 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
722 722  
723 723  (((
724 -
664 +[[image:image-20220708140453-6.png]]
725 725  )))
726 726  
727 -(((
728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
729 -)))
730 730  
731 -(((
732 -
733 -)))
734 734  
735 -(((
736 -**V1.0.**
737 -)))
669 +=== 2.9.2  Power consumption Analyze ===
738 738  
739 739  (((
740 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
741 741  )))
742 742  
743 743  
744 -== 2.11 ​Battery Analysis ==
745 -
746 -=== 2.11.1 ​Battery Type ===
747 -
748 748  (((
749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
750 750  )))
751 751  
752 752  (((
753 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
754 754  )))
755 755  
684 +
756 756  (((
757 -(((
758 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
759 759  )))
760 -)))
761 761  
762 762  * (((
763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
764 764  )))
765 765  * (((
766 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
767 767  )))
768 768  * (((
769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
770 770  )))
771 771  
772 - [[image:image-20220606171726-9.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
773 773  
703 +[[image:image-20220708141352-7.jpeg]]
774 774  
775 775  
776 -=== 2.11.2 ​Battery Note ===
777 777  
707 +=== 2.9.3  ​Battery Note ===
708 +
778 778  (((
779 779  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
780 780  )))
... ... @@ -781,303 +781,176 @@
781 781  
782 782  
783 783  
784 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
785 785  
786 786  (((
787 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
788 788  )))
789 789  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
790 790  (((
791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
792 792  )))
793 793  
794 794  (((
795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
796 796  )))
797 797  
733 +[[image:1657261278785-153.png]]
798 798  
799 799  
800 -= 3. ​Using the AT Commands =
801 801  
802 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
803 803  
739 +== 4.1  Access AT Commands ==
804 804  
805 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
806 806  
807 -[[image:1654501986557-872.png||height="391" width="800"]]
808 808  
744 +AT+<CMD>?  : Help on <CMD>
809 809  
810 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
811 811  
748 +AT+<CMD>=<value> : Set the value
812 812  
813 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
814 814  
815 815  
816 -
817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
818 -
819 -
820 - [[image:1654502050864-459.png||height="564" width="806"]]
821 -
822 -
823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
824 -
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
833 -
834 -
835 835  (% style="color:#037691" %)**General Commands**(%%)      
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
840 840  
841 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
844 844  
763 +AT+CFG  : Print all configurations
845 845  
846 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
879 879  
796 +AT+CLIENT               : Get or Set MQTT client
880 880  
881 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
908 -
909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
912 -
913 -
914 -(% style="color:#037691" %)**Information** 
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
927 -
928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
929 -
930 -
931 -= ​4. FAQ =
932 -
933 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
934 -
935 935  (((
936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
937 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
938 938  )))
939 939  
940 940  (((
941 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
942 942  )))
943 943  
944 944  (((
945 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
946 946  )))
947 947  
948 -(((
949 -
950 -)))
951 951  
952 -(((
953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
954 -)))
955 955  
956 -(((
957 -
958 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
959 959  
960 960  (((
961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
962 962  )))
963 963  
964 -[[image:image-20220606154726-3.png]]
965 965  
841 += 6.  Trouble Shooting =
966 966  
967 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
968 968  
969 -* 903.9 - SF7BW125 to SF10BW125
970 -* 904.1 - SF7BW125 to SF10BW125
971 -* 904.3 - SF7BW125 to SF10BW125
972 -* 904.5 - SF7BW125 to SF10BW125
973 -* 904.7 - SF7BW125 to SF10BW125
974 -* 904.9 - SF7BW125 to SF10BW125
975 -* 905.1 - SF7BW125 to SF10BW125
976 -* 905.3 - SF7BW125 to SF10BW125
977 -* 904.6 - SF8BW500
978 978  
979 979  (((
980 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
981 981  )))
982 982  
983 -(% class="box infomessage" %)
850 +(% class="wikigeneratedid" %)
984 984  (((
985 -**AT+CHE=2**
986 -)))
987 -
988 -(% class="box infomessage" %)
989 -(((
990 -**ATZ**
991 -)))
992 -
993 -(((
994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 -)))
996 -
997 -(((
998 998  
999 999  )))
1000 1000  
1001 -(((
1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1003 -)))
1004 1004  
1005 -[[image:image-20220606154825-4.png]]
856 +== 6.2  AT Command input doesn't work ==
1006 1006  
1007 -
1008 -
1009 -= 5. Trouble Shooting =
1010 -
1011 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1012 -
1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1014 -
1015 -
1016 -== 5.2 AT Command input doesn’t work ==
1017 -
1018 1018  (((
1019 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 -)))
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1021 1021  
1022 -
1023 -== 5.3 Device rejoin in at the second uplink packet ==
1024 -
1025 -(% style="color:#4f81bd" %)**Issue describe as below:**
1026 -
1027 -[[image:1654500909990-784.png]]
1028 -
1029 -
1030 -(% style="color:#4f81bd" %)**Cause for this issue:**
1031 -
1032 -(((
1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
1034 1034  )))
1035 1035  
1036 1036  
1037 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
1038 1038  
1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1040 1040  
1041 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1042 1042  
1043 1043  
1044 -= 6. ​Order Info =
1045 -
1046 -
1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1048 -
1049 -
1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1051 -
1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1058 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1060 -
1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1062 -
1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1065 -
1066 1066  (% class="wikigeneratedid" %)
1067 1067  (((
1068 1068  
1069 1069  )))
1070 1070  
1071 -= 7. Packing Info =
876 += 8.  Packing Info =
1072 1072  
1073 1073  (((
1074 1074  
1075 1075  
1076 1076  (% style="color:#037691" %)**Package Includes**:
1077 -)))
1078 1078  
1079 -* (((
1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1081 1081  )))
1082 1082  
1083 1083  (((
... ... @@ -1084,26 +1084,19 @@
1084 1084  
1085 1085  
1086 1086  (% style="color:#037691" %)**Dimension and weight**:
1087 -)))
1088 1088  
1089 -* (((
1090 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1091 1091  )))
1092 -* (((
1093 -Device Weight: g
1094 -)))
1095 -* (((
1096 -Package Size / pcs : cm
1097 -)))
1098 -* (((
1099 -Weight / pcs : g
1100 1100  
896 +(((
1101 1101  
898 +
899 +
900 +
1102 1102  )))
1103 1103  
1104 -= 8. Support =
903 += 9.  Support =
1105 1105  
1106 1106  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1108 -
1109 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content