Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,769 +12,710 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 61 62 62 63 -== 1.3 Specification == 64 64 65 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.75 +== 1.3 Specification == 66 66 67 -[[image:image-20220606162220-5.png]] 68 68 78 +(% style="color:#037691" %)**Common DC Characteristics:** 69 69 80 +* Supply Voltage: 2.1v ~~ 3.6v 81 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - ==1.4 Applications==83 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -* Smart Agriculture 85 +* - B1 @H-FDD: 2100MHz 86 +* - B3 @H-FDD: 1800MHz 87 +* - B8 @H-FDD: 900MHz 88 +* - B5 @H-FDD: 850MHz 89 +* - B20 @H-FDD: 800MHz 90 +* - B28 @H-FDD: 700MHz 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 92 +Probe(% style="color:#037691" %)** Specification:** 77 77 78 - == 1.5 FirmwareChangelog==94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 96 +[[image:image-20220708101224-1.png]] 80 80 81 -**LSE01 v1.0 :** Release 82 82 83 83 100 +== 1.4 Applications == 84 84 85 - =2. Configure LSE01toconnectto LoRaWAN network =102 +* Smart Agriculture 86 86 87 -== 2.1 How it works == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 107 +== 1.5 Pin Definitions == 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 96 96 110 +[[image:1657246476176-652.png]] 97 97 98 98 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 100 101 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.114 += 2. Use NSE01 to communicate with IoT Server = 102 102 116 +== 2.1 How it works == 103 103 104 -[[image:1654503992078-669.png]] 105 105 106 - 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 - 109 - 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== === 148 - 149 -=== 2.3.1 MOD~=0(Default Mode) === 150 - 151 -LSE01 will uplink payload via LoRaWAN with below payload format: 152 - 153 153 ((( 154 - Uplinkpayload includesin total11bytes.120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 155 155 ))) 156 156 157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 -|((( 159 -**Size** 160 160 161 -**(bytes)** 162 -)))|**2**|**2**|**2**|**2**|**2**|**1** 163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 164 -Temperature 165 - 166 -(Reserve, Ignore now) 167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 168 -MOD & Digital Interrupt 169 - 170 -(Optional) 124 +((( 125 +The diagram below shows the working flow in default firmware of NSE01: 171 171 ))) 172 172 128 +[[image:image-20220708101605-2.png]] 173 173 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 -=== 2.3.3 Battery Info === 196 - 197 197 ((( 198 - Checkthe battery voltage for LSE01.131 + 199 199 ))) 200 200 201 -((( 202 -Ex1: 0x0B45 = 2885mV 203 -))) 204 204 205 -((( 206 -Ex2: 0x0B49 = 2889mV 207 -))) 208 208 136 +== 2.2 Configure the NSE01 == 209 209 210 210 211 -=== 2. 3.4SoilMoisture ===139 +=== 2.2.1 Test Requirement === 212 212 213 -((( 214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 215 -))) 216 216 217 217 ((( 218 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is143 +To use NSE01 in your city, make sure meet below requirements: 219 219 ))) 220 220 221 - (((222 - 223 - )))146 +* Your local operator has already distributed a NB-IoT Network there. 147 +* The local NB-IoT network used the band that NSE01 supports. 148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 224 224 225 225 ((( 226 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 227 227 ))) 228 228 229 229 155 +[[image:1657249419225-449.png]] 230 230 231 -=== 2.3.5 Soil Temperature === 232 232 233 -((( 234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 235 -))) 236 236 237 -((( 238 -**Example**: 239 -))) 159 +=== 2.2.2 Insert SIM card === 240 240 241 241 ((( 242 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C162 +Insert the NB-IoT Card get from your provider. 243 243 ))) 244 244 245 245 ((( 246 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C166 +User need to take out the NB-IoT module and insert the SIM card like below: 247 247 ))) 248 248 249 249 170 +[[image:1657249468462-536.png]] 250 250 251 -=== 2.3.6 Soil Conductivity (EC) === 252 252 253 -((( 254 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 255 -))) 256 256 257 -((( 258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 259 -))) 174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 260 260 261 261 ((( 262 -Generally, the EC value of irrigation water is less than 800uS / cm. 263 -))) 264 - 265 265 ((( 266 - 178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 267 267 ))) 268 - 269 -((( 270 - 271 271 ))) 272 272 273 -=== 2.3.7 MOD === 274 274 275 - Firmware versionat least v2.1 supportschanging mode.183 +**Connection:** 276 276 277 - Forexample,bytes[10]=90185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 278 278 279 - mod=(bytes[10]>>7)&0x01=1.187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 280 280 189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 281 281 282 -**Downlink Command:** 283 283 284 -I fpayload= 0x0A00,workmode=0192 +In the PC, use below serial tool settings: 285 285 286 -If** **payload =** **0x0A01, workmode=1 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 287 287 288 - 289 - 290 -=== 2.3.8 Decode payload in The Things Network === 291 - 292 -While using TTN network, you can add the payload format to decode the payload. 293 - 294 - 295 -[[image:1654505570700-128.png]] 296 - 297 297 ((( 298 - The payloaddecoderfunction forTTNis here:201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 299 299 ))) 300 300 301 -((( 302 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 303 -))) 204 +[[image:image-20220708110657-3.png]] 304 304 305 - 306 - 307 -== 2.4 Uplink Interval == 308 - 309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 310 - 311 - 312 - 313 -== 2.5 Downlink Payload == 314 - 315 -By default, LSE50 prints the downlink payload to console port. 316 - 317 -[[image:image-20220606165544-8.png]] 318 - 319 - 320 320 ((( 321 - **Examples:**207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 322 322 ))) 323 323 324 -((( 325 - 326 -))) 327 327 328 -* ((( 329 -**Set TDC** 330 -))) 331 331 332 -((( 333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 -))) 212 +=== 2.2.4 Use CoAP protocol to uplink data === 335 335 336 -((( 337 -Payload: 01 00 00 1E TDC=30S 338 -))) 214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 339 339 340 -((( 341 -Payload: 01 00 00 3C TDC=60S 342 -))) 343 343 344 -((( 345 - 346 -))) 217 +**Use below commands:** 347 347 348 -* (( (349 -**Reset **350 -)) )219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 351 351 352 -((( 353 -If payload = 0x04FF, it will reset the LSE01 354 -))) 223 +For parameter description, please refer to AT command set 355 355 225 +[[image:1657249793983-486.png]] 356 356 357 -* **CFM** 358 358 359 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 360 360 230 +[[image:1657249831934-534.png]] 361 361 362 362 363 -== 2.6 Show Data in DataCake IoT Server == 364 364 365 -((( 366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 367 -))) 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 368 368 369 -((( 370 - 371 -))) 236 +This feature is supported since firmware version v1.0.1 372 372 373 -((( 374 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 375 -))) 376 376 377 -(( (378 -* *Step2**:To configurethe Application toforwarddata to DATACAKEyouwillneedtoadd integration.ToaddtheDATACAKE integration,performthe following steps:379 -)) )239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 380 380 243 +[[image:1657249864775-321.png]] 381 381 382 -[[image:1654505857935-743.png]] 383 383 246 +[[image:1657249930215-289.png]] 384 384 385 -[[image:1654505874829-548.png]] 386 386 387 -Step 3: Create an account or log in Datacake. 388 388 389 - Step4:SearchtheLSE01 andaddDevEUI.250 +=== 2.2.6 Use MQTT protocol to uplink data === 390 390 252 +This feature is supported since firmware version v110 391 391 392 -[[image:1654505905236-553.png]] 393 393 255 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 394 394 395 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.263 +[[image:1657249978444-674.png]] 396 396 397 -[[image:1654505925508-181.png]] 398 398 266 +[[image:1657249990869-686.png]] 399 399 400 400 401 -== 2.7 Frequency Plans == 269 +((( 270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 +))) 402 402 403 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 404 404 405 405 406 -=== 2. 7.1 EU863-870(EU868)===275 +=== 2.2.7 Use TCP protocol to uplink data === 407 407 408 - (%style="color:#037691"%)**Uplink:**277 +This feature is supported since firmware version v110 409 409 410 -868.1 - SF7BW125 to SF12BW125 411 411 412 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 280 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 413 413 414 - 868.5- SF7BW125to SF12BW125283 +[[image:1657250217799-140.png]] 415 415 416 -867.1 - SF7BW125 to SF12BW125 417 417 418 - 867.3 - SF7BW125to SF12BW125286 +[[image:1657250255956-604.png]] 419 419 420 -867.5 - SF7BW125 to SF12BW125 421 421 422 -867.7 - SF7BW125 to SF12BW125 423 423 424 - 867.9-SF7BW125toSF12BW125290 +=== 2.2.8 Change Update Interval === 425 425 426 - 868.8 -FSK292 +User can use below command to change the (% style="color:green" %)**uplink interval**. 427 427 294 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 428 428 429 -(% style="color:#037691" %)** Downlink:** 296 +((( 297 +(% style="color:red" %)**NOTE:** 298 +))) 430 430 431 -Uplink channels 1-9 (RX1) 300 +((( 301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 +))) 432 432 433 -869.525 - SF9BW125 (RX2 downlink only) 434 434 435 435 306 +== 2.3 Uplink Payload == 436 436 437 - ===2.7.2US902-928(US915)===308 +In this mode, uplink payload includes in total 18 bytes 438 438 439 -Used in USA, Canada and South America. Default use CHE=2 310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 +|=(% style="width: 60px;" %)((( 312 +**Size(bytes)** 313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 440 440 441 -(% style="color:#037691" %)**Uplink:** 316 +((( 317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 +))) 442 442 443 -903.9 - SF7BW125 to SF10BW125 444 444 445 - 904.1-SF7BW125 to SF10BW125321 +[[image:image-20220708111918-4.png]] 446 446 447 -904.3 - SF7BW125 to SF10BW125 448 448 449 - 904.5-SF7BW125toSF10BW125324 +The payload is ASCII string, representative same HEX: 450 450 451 - 904.7- SF7BW125to SF10BW125326 +0x72403155615900640c7817075e0a8c02f900 where: 452 452 453 -904.9 - SF7BW125 to SF10BW125 328 +* Device ID: 0x 724031556159 = 724031556159 329 +* Version: 0x0064=100=1.0.0 454 454 455 -905.1 - SF7BW125 to SF10BW125 331 +* BAT: 0x0c78 = 3192 mV = 3.192V 332 +* Singal: 0x17 = 23 333 +* Soil Moisture: 0x075e= 1886 = 18.86 % 334 +* Soil Temperature:0x0a8c =2700=27 °C 335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 +* Interrupt: 0x00 = 0 456 456 457 -905.3 - SF7BW125 to SF10BW125 458 458 459 459 460 -(% style="color:#037691" %)**Downlink:** 461 461 462 - 923.3-SF7BW500to SF12BW500341 +== 2.4 Payload Explanation and Sensor Interface == 463 463 464 -923.9 - SF7BW500 to SF12BW500 465 465 466 - 924.5-SF7BW500 to SF12BW500344 +=== 2.4.1 Device ID === 467 467 468 -925.1 - SF7BW500 to SF12BW500 346 +((( 347 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 +))) 469 469 470 -925.7 - SF7BW500 to SF12BW500 350 +((( 351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 +))) 471 471 472 -926.3 - SF7BW500 to SF12BW500 354 +((( 355 +**Example:** 356 +))) 473 473 474 -926.9 - SF7BW500 to SF12BW500 358 +((( 359 +AT+DEUI=A84041F15612 360 +))) 475 475 476 -927.5 - SF7BW500 to SF12BW500 362 +((( 363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 +))) 477 477 478 -923.3 - SF12BW500(RX2 downlink only) 479 479 480 480 368 +=== 2.4.2 Version Info === 481 481 482 -=== 2.7.3 CN470-510 (CN470) === 370 +((( 371 +Specify the software version: 0x64=100, means firmware version 1.00. 372 +))) 483 483 484 -Used in China, Default use CHE=1 374 +((( 375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 +))) 485 485 486 -(% style="color:#037691" %)**Uplink:** 487 487 488 -486.3 - SF7BW125 to SF12BW125 489 489 490 -4 86.5- SF7BW125toSF12BW125380 +=== 2.4.3 Battery Info === 491 491 492 -486.7 - SF7BW125 to SF12BW125 382 +((( 383 +Check the battery voltage for LSE01. 384 +))) 493 493 494 -486.9 - SF7BW125 to SF12BW125 386 +((( 387 +Ex1: 0x0B45 = 2885mV 388 +))) 495 495 496 -487.1 - SF7BW125 to SF12BW125 390 +((( 391 +Ex2: 0x0B49 = 2889mV 392 +))) 497 497 498 -487.3 - SF7BW125 to SF12BW125 499 499 500 -487.5 - SF7BW125 to SF12BW125 501 501 502 -4 87.7-SF7BW125toSF12BW125396 +=== 2.4.4 Signal Strength === 503 503 398 +((( 399 +NB-IoT Network signal Strength. 400 +))) 504 504 505 -(% style="color:#037691" %)**Downlink:** 402 +((( 403 +**Ex1: 0x1d = 29** 404 +))) 506 506 507 -506.7 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:blue" %)**0**(%%) -113dBm or less 408 +))) 508 508 509 -506.9 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**1**(%%) -111dBm 412 +))) 510 510 511 -507.1 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 +))) 512 512 513 -507.3 - SF7BW125 to SF12BW125 418 +((( 419 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 +))) 514 514 515 -507.5 - SF7BW125 to SF12BW125 422 +((( 423 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 +))) 516 516 517 -507.7 - SF7BW125 to SF12BW125 518 518 519 -507.9 - SF7BW125 to SF12BW125 520 520 521 - 508.1- SF7BW125toSF12BW125428 +=== 2.4.5 Soil Moisture === 522 522 523 -505.3 - SF12BW125 (RX2 downlink only) 430 +((( 431 +((( 432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 +))) 434 +))) 524 524 436 +((( 437 +((( 438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 +))) 440 +))) 525 525 442 +((( 443 + 444 +))) 526 526 527 -=== 2.7.4 AU915-928(AU915) === 446 +((( 447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 +))) 528 528 529 -Default use CHE=2 530 530 531 -(% style="color:#037691" %)**Uplink:** 532 532 533 - 916.8-SF7BW125toSF12BW125452 +=== 2.4.6 Soil Temperature === 534 534 535 -917.0 - SF7BW125 to SF12BW125 454 +((( 455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 +))) 536 536 537 -917.2 - SF7BW125 to SF12BW125 458 +((( 459 +**Example**: 460 +))) 538 538 539 -917.4 - SF7BW125 to SF12BW125 462 +((( 463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 +))) 540 540 541 -917.6 - SF7BW125 to SF12BW125 466 +((( 467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 +))) 542 542 543 -917.8 - SF7BW125 to SF12BW125 544 544 545 -918.0 - SF7BW125 to SF12BW125 546 546 547 - 918.2-SF7BW125toSF12BW125472 +=== 2.4.7 Soil Conductivity (EC) === 548 548 474 +((( 475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 +))) 549 549 550 -(% style="color:#037691" %)**Downlink:** 478 +((( 479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 +))) 551 551 552 -923.3 - SF7BW500 to SF12BW500 482 +((( 483 +Generally, the EC value of irrigation water is less than 800uS / cm. 484 +))) 553 553 554 -923.9 - SF7BW500 to SF12BW500 486 +((( 487 + 488 +))) 555 555 556 -924.5 - SF7BW500 to SF12BW500 490 +((( 491 + 492 +))) 557 557 558 - 925.1-SF7BW500toSF12BW500494 +=== 2.4.8 Digital Interrupt === 559 559 560 -925.7 - SF7BW500 to SF12BW500 496 +((( 497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 +))) 561 561 562 -926.3 - SF7BW500 to SF12BW500 500 +((( 501 +The command is: 502 +))) 563 563 564 -926.9 - SF7BW500 to SF12BW500 504 +((( 505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 +))) 565 565 566 -927.5 - SF7BW500 to SF12BW500 567 567 568 -923.3 - SF12BW500(RX2 downlink only) 509 +((( 510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 +))) 569 569 570 570 514 +((( 515 +Example: 516 +))) 571 571 572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 518 +((( 519 +0x(00): Normal uplink packet. 520 +))) 573 573 574 -(% style="color:#037691" %)**Default Uplink channel:** 522 +((( 523 +0x(01): Interrupt Uplink Packet. 524 +))) 575 575 576 -923.2 - SF7BW125 to SF10BW125 577 577 578 -923.4 - SF7BW125 to SF10BW125 579 579 528 +=== 2.4.9 +5V Output === 580 580 581 -(% style="color:#037691" %)**Additional Uplink Channel**: 530 +((( 531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 +))) 582 582 583 -(OTAA mode, channel added by JoinAccept message) 584 584 585 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 535 +((( 536 +The 5V output time can be controlled by AT Command. 537 +))) 586 586 587 -922.2 - SF7BW125 to SF10BW125 539 +((( 540 +(% style="color:blue" %)**AT+5VT=1000** 541 +))) 588 588 589 -922.4 - SF7BW125 to SF10BW125 543 +((( 544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 +))) 590 590 591 -922.6 - SF7BW125 to SF10BW125 592 592 593 -922.8 - SF7BW125 to SF10BW125 594 594 595 - 923.0- SF7BW125toSF10BW125549 +== 2.5 Downlink Payload == 596 596 597 - 922.0-SF7BW125toSF10BW125551 +By default, NSE01 prints the downlink payload to console port. 598 598 553 +[[image:image-20220708133731-5.png]] 599 599 600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 601 601 602 -923.6 - SF7BW125 to SF10BW125 556 +((( 557 +(% style="color:blue" %)**Examples:** 558 +))) 603 603 604 -923.8 - SF7BW125 to SF10BW125 560 +((( 561 + 562 +))) 605 605 606 -924.0 - SF7BW125 to SF10BW125 564 +* ((( 565 +(% style="color:blue" %)**Set TDC** 566 +))) 607 607 608 -924.2 - SF7BW125 to SF10BW125 568 +((( 569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 +))) 609 609 610 -924.4 - SF7BW125 to SF10BW125 572 +((( 573 +Payload: 01 00 00 1E TDC=30S 574 +))) 611 611 612 -924.6 - SF7BW125 to SF10BW125 576 +((( 577 +Payload: 01 00 00 3C TDC=60S 578 +))) 613 613 580 +((( 581 + 582 +))) 614 614 615 -(% style="color:#037691" %)** Downlink:** 584 +* ((( 585 +(% style="color:blue" %)**Reset** 586 +))) 616 616 617 -Uplink channels 1-8 (RX1) 588 +((( 589 +If payload = 0x04FF, it will reset the NSE01 590 +))) 618 618 619 -923.2 - SF10BW125 (RX2) 620 620 593 +* (% style="color:blue" %)**INTMOD** 621 621 595 +((( 596 +Downlink Payload: 06000003, Set AT+INTMOD=3 597 +))) 622 622 623 -=== 2.7.6 KR920-923 (KR920) === 624 624 625 -Default channel: 626 626 627 - 922.1-SF7BW125toSF12BW125601 +== 2.6 LED Indicator == 628 628 629 -922.3 - SF7BW125 to SF12BW125 603 +((( 604 +The NSE01 has an internal LED which is to show the status of different state. 630 630 631 -922.5 - SF7BW125 to SF12BW125 632 632 607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 +* Then the LED will be on for 1 second means device is boot normally. 609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 +* For each uplink probe, LED will be on for 500ms. 611 +))) 633 633 634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 635 635 636 -922.1 - SF7BW125 to SF12BW125 637 637 638 -922.3 - SF7BW125 to SF12BW125 639 639 640 - 922.5 - SF7BW125to SF12BW125616 +== 2.7 Installation in Soil == 641 641 642 - 922.7- SF7BW125toSF12BW125618 +__**Measurement the soil surface**__ 643 643 644 -922.9 - SF7BW125 to SF12BW125 620 +((( 621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 +))) 645 645 646 - 923.1- SF7BW125to SF12BW125624 +[[image:1657259653666-883.png]] 647 647 648 -923.3 - SF7BW125 to SF12BW125 649 649 627 +((( 628 + 650 650 651 -(% style="color:#037691" %)**Downlink:** 630 +((( 631 +Dig a hole with diameter > 20CM. 632 +))) 652 652 653 -Uplink channels 1-7(RX1) 634 +((( 635 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 +))) 637 +))) 654 654 655 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125might be changed to SF9BW125)639 +[[image:1654506665940-119.png]] 656 656 641 +((( 642 + 643 +))) 657 657 658 658 659 -== =2.7.7 IN865-867(IN865)===646 +== 2.8 Firmware Change Log == 660 660 661 -(% style="color:#037691" %)** Uplink:** 662 662 663 - 865.0625-SF7BW125toSF12BW125649 +Download URL & Firmware Change log 664 664 665 - 865.4025-F7BW125toSF12BW125651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 666 666 667 -865.9850 - SF7BW125 to SF12BW125 668 668 654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 669 669 670 -(% style="color:#037691" %) **Downlink:** 671 671 672 -Uplink channels 1-3 (RX1) 673 673 674 - 866.550- SF10BW125(RX2)658 +== 2.9 Battery Analysis == 675 675 660 +=== 2.9.1 Battery Type === 676 676 677 677 678 - 679 -== 2.8 LED Indicator == 680 - 681 -The LSE01 has an internal LED which is to show the status of different state. 682 - 683 -* Blink once when device power on. 684 -* Solid ON for 5 seconds once device successful Join the network. 685 -* Blink once when device transmit a packet. 686 - 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 - 704 704 ((( 705 - Dig aholewithdiameter>20CM.669 +The battery is designed to last for several years depends on the actually use environment and update interval. 706 706 ))) 707 707 708 -((( 709 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 -))) 711 711 712 - 713 -== 2.10 Firmware Change Log == 714 - 715 715 ((( 716 - **Firmware downloadlink:**674 +The battery related documents as below: 717 717 ))) 718 718 719 - (((720 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]721 - )))677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 722 722 723 723 ((( 724 - 682 +[[image:image-20220708140453-6.png]] 725 725 ))) 726 726 727 -((( 728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 -))) 730 730 731 -((( 732 - 733 -))) 734 734 735 -((( 736 -**V1.0.** 737 -))) 687 +=== 2.9.2 Power consumption Analyze === 738 738 739 739 ((( 740 - Release690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 741 741 ))) 742 742 743 743 744 -== 2.11 Battery Analysis == 745 - 746 -=== 2.11.1 Battery Type === 747 - 748 748 ((( 749 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.695 +Instruction to use as below: 750 750 ))) 751 751 752 752 ((( 753 - Thebatterys designedlastforrethan5 years fortheSN50.699 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 754 754 ))) 755 755 702 + 756 756 ((( 757 -((( 758 -The battery-related documents are as below: 704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 759 759 ))) 760 -))) 761 761 762 762 * ((( 763 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],708 +Product Model 764 764 ))) 765 765 * ((( 766 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],711 +Uplink Interval 767 767 ))) 768 768 * ((( 769 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]714 +Working Mode 770 770 ))) 771 771 772 - [[image:image-20220606171726-9.png]] 717 +((( 718 +And the Life expectation in difference case will be shown on the right. 719 +))) 773 773 721 +[[image:image-20220708141352-7.jpeg]] 774 774 775 775 776 -=== 2.11.2 Battery Note === 777 777 725 +=== 2.9.3 Battery Note === 726 + 778 778 ((( 779 779 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 780 780 ))) ... ... @@ -781,303 +781,169 @@ 781 781 782 782 783 783 784 -=== 2. 11.3Replace the battery ===733 +=== 2.9.4 Replace the battery === 785 785 786 786 ((( 787 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 788 788 ))) 789 789 739 + 740 + 741 += 3. Access NB-IoT Module = 742 + 790 790 ((( 791 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.744 +Users can directly access the AT command set of the NB-IoT module. 792 792 ))) 793 793 794 794 ((( 795 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 796 796 ))) 797 797 751 +[[image:1657261278785-153.png]] 798 798 799 799 800 -= 3. Using the AT Commands = 801 801 802 -= =3.1AccessAT Commands ==755 += 4. Using the AT Commands = 803 803 757 +== 4.1 Access AT Commands == 804 804 805 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 806 806 807 -[[image:1654501986557-872.png||height="391" width="800"]] 808 808 762 +AT+<CMD>? : Help on <CMD> 809 809 810 - Orifyouhavebelowboard,usebelowconnection:764 +AT+<CMD> : Run <CMD> 811 811 766 +AT+<CMD>=<value> : Set the value 812 812 813 - [[image:1654502005655-729.png||height="503"width="801"]]768 +AT+<CMD>=? : Get the value 814 814 815 815 816 - 817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 - 819 - 820 - [[image:1654502050864-459.png||height="564" width="806"]] 821 - 822 - 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 - 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 - 834 - 835 835 (% style="color:#037691" %)**General Commands**(%%) 836 836 837 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention773 +AT : Attention 838 838 839 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help775 +AT? : Short Help 840 840 841 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset777 +ATZ : MCU Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval779 +AT+TDC : Application Data Transmission Interval 844 844 781 +AT+CFG : Print all configurations 845 845 846 - (%style="color:#037691"%)**Keys,IDsand EUIs management**783 +AT+CFGMOD : Working mode selection 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI785 +AT+INTMOD : Set the trigger interrupt mode 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey787 +AT+5VT : Set extend the time of 5V power 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key789 +AT+PRO : Choose agreement 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress791 +AT+WEIGRE : Get weight or set weight to 0 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI793 +AT+WEIGAP : Get or Set the GapValue of weight 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)795 +AT+RXDL : Extend the sending and receiving time 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network797 +AT+CNTFAC : Get or set counting parameters 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode799 +AT+SERVADDR : Server Address 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 865 865 866 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network802 +(% style="color:#037691" %)**COAP Management** 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode804 +AT+URI : Resource parameters 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format807 +(% style="color:#037691" %)**UDP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat809 +AT+CFM : Upload confirmation mode (only valid for UDP) 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data812 +(% style="color:#037691" %)**MQTT Management** 879 879 814 +AT+CLIENT : Get or Set MQTT client 880 880 881 - (%style="color:#037691"%)**LoRaNetworkManagement**816 +AT+UNAME : Get or Set MQTT Username 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate818 +AT+PWD : Get or Set MQTT password 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA820 +AT+PUBTOPIC : Get or Set MQTT publish topic 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting822 +AT+SUBTOPIC : Get or Set MQTT subscription topic 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink825 +(% style="color:#037691" %)**Information** 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink827 +AT+FDR : Factory Data Reset 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1829 +AT+PWORD : Serial Access Password 896 896 897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 900 900 901 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1833 += 5. FAQ = 902 902 903 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2835 +== 5.1 How to Upgrade Firmware == 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 - 909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 - 911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 - 913 - 914 -(% style="color:#037691" %)**Information** 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 - 928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 - 930 - 931 -= 4. FAQ = 932 - 933 -== 4.1 How to change the LoRa Frequency Bands/Region? == 934 - 935 935 ((( 936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 -When downloading the images, choose the required image file for download. 839 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 938 938 ))) 939 939 940 940 ((( 941 - 843 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 942 942 ))) 943 943 944 944 ((( 945 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 946 946 ))) 947 947 948 -((( 949 - 950 -))) 951 951 952 -((( 953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 -))) 955 955 956 -((( 957 - 958 -))) 852 += 6. Trouble Shooting = 959 959 960 -((( 961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 962 -))) 854 +== 6.1 Connection problem when uploading firmware == 963 963 964 -[[image:image-20220606154726-3.png]] 965 965 966 - 967 -When you use the TTN network, the US915 frequency bands use are: 968 - 969 -* 903.9 - SF7BW125 to SF10BW125 970 -* 904.1 - SF7BW125 to SF10BW125 971 -* 904.3 - SF7BW125 to SF10BW125 972 -* 904.5 - SF7BW125 to SF10BW125 973 -* 904.7 - SF7BW125 to SF10BW125 974 -* 904.9 - SF7BW125 to SF10BW125 975 -* 905.1 - SF7BW125 to SF10BW125 976 -* 905.3 - SF7BW125 to SF10BW125 977 -* 904.6 - SF8BW500 978 - 979 979 ((( 980 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 981 981 ))) 982 982 983 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 984 984 ((( 985 -**AT+CHE=2** 986 -))) 987 - 988 -(% class="box infomessage" %) 989 -((( 990 -**ATZ** 991 -))) 992 - 993 -((( 994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 -))) 996 - 997 -((( 998 998 999 999 ))) 1000 1000 1001 -((( 1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 -))) 1004 1004 1005 - [[image:image-20220606154825-4.png]]867 +== 6.2 AT Command input doesn't work == 1006 1006 1007 - 1008 - 1009 -= 5. Trouble Shooting = 1010 - 1011 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1012 - 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 - 1015 - 1016 -== 5.2 AT Command input doesn’t work == 1017 - 1018 1018 ((( 1019 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 1020 ))) 1021 1021 1022 1022 1023 -== 5.3 Device rejoin in at the second uplink packet == 1024 1024 1025 - (% style="color:#4f81bd"%)**Issuedescribeas below:**875 += 7. Order Info = 1026 1026 1027 -[[image:1654500909990-784.png]] 1028 1028 878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1029 1029 1030 -(% style="color:#4f81bd" %)**Cause for this issue:** 1031 1031 1032 -((( 1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1034 -))) 1035 - 1036 - 1037 -(% style="color:#4f81bd" %)**Solution: ** 1038 - 1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1040 - 1041 -[[image:1654500929571-736.png||height="458" width="832"]] 1042 - 1043 - 1044 -= 6. Order Info = 1045 - 1046 - 1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 - 1049 - 1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 - 1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 - 1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 - 1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 - 1066 1066 (% class="wikigeneratedid" %) 1067 1067 ((( 1068 1068 1069 1069 ))) 1070 1070 1071 -= 7. Packing Info =886 += 8. Packing Info = 1072 1072 1073 1073 ((( 1074 1074 1075 1075 1076 1076 (% style="color:#037691" %)**Package Includes**: 1077 -))) 1078 1078 1079 -* ((( 1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 893 + 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 1081 1081 ))) 1082 1082 1083 1083 ((( ... ... @@ -1084,26 +1084,20 @@ 1084 1084 1085 1085 1086 1086 (% style="color:#037691" %)**Dimension and weight**: 1087 -))) 1088 1088 1089 -* ((( 1090 -Device Size: cm 903 + 904 +* Size: 195 x 125 x 55 mm 905 +* Weight: 420g 1091 1091 ))) 1092 -* ((( 1093 -Device Weight: g 1094 -))) 1095 -* ((( 1096 -Package Size / pcs : cm 1097 -))) 1098 -* ((( 1099 -Weight / pcs : g 1100 1100 908 +((( 1101 1101 910 + 911 + 912 + 1102 1102 ))) 1103 1103 1104 -= 8. Support =915 += 9. Support = 1105 1105 1106 1106 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1107 1107 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1108 - 1109 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content