Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.1
edited by Xiaoling
on 2022/06/10 17:24
Change comment: Uploaded new attachment "image-20220610172436-1.png", version {1}
To version 61.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "1657260785982-288.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,63 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
62 +== 1.3  Specification ==
61 61  
62 62  
63 -== 1.3 Specification ==
65 +(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,728 +75,547 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
103 +== 2.1  How it works ==
88 88  
105 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
110 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
115 +[[image:image-20220708101605-2.png]]
97 97  
117 +(((
118 +
119 +)))
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
123 +== 2.2 ​ Configure the NSE01 ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
126 +=== 2.2.1 Test Requirement ===
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
129 +To use NSE01 in your city, make sure meet below requirements:
109 109  
110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -**Step 2**: Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -=== ===
148 -
149 -=== 2.3.1 MOD~=0(Default Mode) ===
150 -
151 -LSE01 will uplink payload via LoRaWAN with below payload format: 
152 -
153 153  (((
154 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
155 155  )))
156 156  
157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
158 -|(((
159 -**Size**
160 160  
161 -**(bytes)**
162 -)))|**2**|**2**|**2**|**2**|**2**|**1**
163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
164 -Temperature
140 +[[image:1657249419225-449.png]]
165 165  
166 -(Reserve, Ignore now)
167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
168 -MOD & Digital Interrupt
169 169  
170 -(Optional)
171 -)))
172 172  
144 +=== 2.2.2 Insert SIM card ===
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
146 +Insert the NB-IoT Card get from your provider.
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
148 +User need to take out the NB-IoT module and insert the SIM card like below:
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
151 +[[image:1657249468462-536.png]]
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
193 193  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
194 194  
195 -=== 2.3.3 Battery Info ===
196 -
197 197  (((
198 -Check the battery voltage for LSE01.
199 -)))
200 -
201 201  (((
202 -Ex1: 0x0B45 = 2885mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
203 203  )))
204 -
205 -(((
206 -Ex2: 0x0B49 = 2889mV
207 207  )))
208 208  
209 209  
164 +**Connection:**
210 210  
211 -=== 2.3.4 Soil Moisture ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
212 212  
213 -(((
214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
215 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
216 216  
217 -(((
218 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
219 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
220 220  
221 -(((
222 -
223 -)))
224 224  
225 -(((
226 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
227 -)))
173 +In the PC, use below serial tool settings:
228 228  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
229 229  
230 -
231 -=== 2.3.5 Soil Temperature ===
232 -
233 233  (((
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
235 235  )))
236 236  
237 -(((
238 -**Example**:
239 -)))
185 +[[image:image-20220708110657-3.png]]
240 240  
241 -(((
242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
243 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
244 244  
245 -(((
246 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
247 -)))
248 248  
249 249  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
250 250  
251 -=== 2.3.6 Soil Conductivity (EC) ===
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
252 252  
253 -(((
254 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
255 -)))
256 256  
257 -(((
258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
259 -)))
196 +**Use below commands:**
260 260  
261 -(((
262 -Generally, the EC value of irrigation water is less than 800uS / cm.
263 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
264 264  
265 -(((
266 -
267 -)))
202 +For parameter description, please refer to AT command set
268 268  
269 -(((
270 -
271 -)))
204 +[[image:1657249793983-486.png]]
272 272  
273 -=== 2.3.7 MOD ===
274 274  
275 -Firmware version at least v2.1 supports changing mode.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
276 276  
277 -For example, bytes[10]=90
209 +[[image:1657249831934-534.png]]
278 278  
279 -mod=(bytes[10]>>7)&0x01=1.
280 280  
281 281  
282 -**Downlink Command:**
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
283 283  
284 -If payload = 0x0A00, workmode=0
215 +This feature is supported since firmware version v1.0.1
285 285  
286 -If** **payload =** **0x0A01, workmode=1
287 287  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
288 288  
222 +[[image:1657249864775-321.png]]
289 289  
290 -=== 2.3.8 ​Decode payload in The Things Network ===
291 291  
292 -While using TTN network, you can add the payload format to decode the payload.
225 +[[image:1657249930215-289.png]]
293 293  
294 294  
295 -[[image:1654505570700-128.png]]
296 296  
297 -(((
298 -The payload decoder function for TTN is here:
299 -)))
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
300 300  
301 -(((
302 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
303 -)))
231 +This feature is supported since firmware version v110
304 304  
305 305  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
306 306  
307 -== 2.4 Uplink Interval ==
242 +[[image:1657249978444-674.png]]
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
310 310  
245 +[[image:1657249990869-686.png]]
311 311  
312 312  
313 -== 2.5 Downlink Payload ==
314 -
315 -By default, LSE50 prints the downlink payload to console port.
316 -
317 -[[image:image-20220606165544-8.png]]
318 -
319 -
320 320  (((
321 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
322 322  )))
323 323  
324 -(((
325 -
326 -)))
327 327  
328 -* (((
329 -**Set TDC**
330 -)))
331 331  
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
338 -)))
256 +This feature is supported since firmware version v110
339 339  
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
342 -)))
343 343  
344 -(((
345 -
346 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
347 347  
348 -* (((
349 -**Reset**
350 -)))
262 +[[image:1657250217799-140.png]]
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
355 355  
265 +[[image:1657250255956-604.png]]
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
360 360  
269 +=== 2.2.8 Change Update Interval ===
361 361  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
364 364  
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
367 367  )))
368 368  
369 369  (((
370 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
371 371  )))
372 372  
373 -(((
374 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
375 -)))
376 376  
377 -(((
378 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 -)))
380 380  
285 +== 2.3  Uplink Payload ==
381 381  
382 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
383 383  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
384 384  
385 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
386 386  
387 -Step 3: Create an account or log in Datacake.
388 388  
389 -Step 4: Search the LSE01 and add DevEUI.
298 +[[image:image-20220708111918-4.png]]
390 390  
391 391  
392 -[[image:1654505905236-553.png]]
301 +The payload is ASCII string, representative same HEX:
393 393  
303 +0x72403155615900640c7817075e0a8c02f900 where:
394 394  
395 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
396 396  
397 -[[image:1654505925508-181.png]]
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
398 398  
315 +== 2.4  Payload Explanation and Sensor Interface ==
399 399  
400 400  
401 -== 2.7 Frequency Plans ==
318 +=== 2.4.1  Device ID ===
402 402  
403 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
404 404  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
405 405  
406 -=== 2.7.1 EU863-870 (EU868) ===
324 +**Example:**
407 407  
408 -(% style="color:#037691" %)** Uplink:**
326 +AT+DEUI=A84041F15612
409 409  
410 -868.1 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
411 411  
412 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
413 413  
414 -868.5 - SF7BW125 to SF12BW125
415 415  
416 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
417 417  
418 -867.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
419 419  
420 -867.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
421 421  
422 -867.7 - SF7BW125 to SF12BW125
423 423  
424 -867.9 - SF7BW125 to SF12BW125
425 425  
426 -868.8 - FSK
340 +=== 2.4.3  Battery Info ===
427 427  
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
428 428  
429 -(% style="color:#037691" %)** Downlink:**
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
430 430  
431 -Uplink channels 1-9 (RX1)
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
432 432  
433 -869.525 - SF9BW125 (RX2 downlink only)
434 434  
435 435  
356 +=== 2.4.4  Signal Strength ===
436 436  
437 -=== 2.7.2 US902-928(US915) ===
358 +NB-IoT Network signal Strength.
438 438  
439 -Used in USA, Canada and South America. Default use CHE=2
360 +**Ex1: 0x1d = 29**
440 440  
441 -(% style="color:#037691" %)**Uplink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
442 442  
443 -903.9 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
444 444  
445 -904.1 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
446 446  
447 -904.3 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
448 448  
449 -904.5 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
450 450  
451 -904.7 - SF7BW125 to SF10BW125
452 452  
453 -904.9 - SF7BW125 to SF10BW125
454 454  
455 -905.1 - SF7BW125 to SF10BW125
374 +=== 2.4.5  Soil Moisture ===
456 456  
457 -905.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
458 458  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
459 459  
460 -(% style="color:#037691" %)**Downlink:**
384 +(((
385 +
386 +)))
461 461  
462 -923.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
463 463  
464 -923.9 - SF7BW500 to SF12BW500
465 465  
466 -924.5 - SF7BW500 to SF12BW500
467 467  
468 -925.1 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
469 469  
470 -925.7 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
471 471  
472 -926.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
473 473  
474 -926.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
475 475  
476 -927.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
477 477  
478 -923.3 - SF12BW500(RX2 downlink only)
479 479  
480 480  
414 +=== 2.4.7  Soil Conductivity (EC) ===
481 481  
482 -=== 2.7.3 CN470-510 (CN470) ===
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
483 483  
484 -Used in China, Default use CHE=1
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
485 485  
486 -(% style="color:#037691" %)**Uplink:**
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
487 487  
488 -486.3 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
489 489  
490 -486.5 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
491 491  
492 -486.7 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
493 493  
494 -486.9 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
495 495  
496 -487.1 - SF7BW125 to SF12BW125
440 +The command is:
497 497  
498 -487.3 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 499  
500 -487.5 - SF7BW125 to SF12BW125
501 501  
502 -487.7 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
503 503  
504 504  
505 -(% style="color:#037691" %)**Downlink:**
448 +Example:
506 506  
507 -506.7 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
508 508  
509 -506.9 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
510 510  
511 -507.1 - SF7BW125 to SF12BW125
512 512  
513 -507.3 - SF7BW125 to SF12BW125
514 514  
515 -507.5 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
516 516  
517 -507.7 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
518 518  
519 -507.9 - SF7BW125 to SF12BW125
520 520  
521 -508.1 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
522 522  
523 -505.3 - SF12BW125 (RX2 downlink only)
463 +(% style="color:blue" %)**AT+5VT=1000**
524 524  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
525 525  
526 526  
527 -=== 2.7.4 AU915-928(AU915) ===
528 528  
529 -Default use CHE=2
469 +== 2.5  Downlink Payload ==
530 530  
531 -(% style="color:#037691" %)**Uplink:**
471 +By default, NSE01 prints the downlink payload to console port.
532 532  
533 -916.8 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
534 534  
535 -917.0 - SF7BW125 to SF12BW125
536 536  
537 -917.2 - SF7BW125 to SF12BW125
538 538  
539 -917.4 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
540 540  
541 -917.6 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
542 542  
543 -917.8 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
544 544  
545 -918.0 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
546 546  
547 -918.2 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
548 548  
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
549 549  
550 -(% style="color:#037691" %)**Downlink:**
501 +(((
502 +
503 +)))
551 551  
552 -923.3 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
553 553  
554 -923.9 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
555 555  
556 -924.5 - SF7BW500 to SF12BW500
557 557  
558 -925.1 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
559 559  
560 -925.7 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
561 561  
562 -926.3 - SF7BW500 to SF12BW500
563 563  
564 -926.9 - SF7BW500 to SF12BW500
565 565  
566 -927.5 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
567 567  
568 -923.3 - SF12BW500(RX2 downlink only)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
569 569  
570 570  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
571 571  
572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
573 573  
574 -(% style="color:#037691" %)**Default Uplink channel:**
575 575  
576 -923.2 - SF7BW125 to SF10BW125
577 577  
578 -923.4 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
579 579  
537 +__**Measurement the soil surface**__
580 580  
581 -(% style="color:#037691" %)**Additional Uplink Channel**:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 582  
583 -(OTAA mode, channel added by JoinAccept message)
541 +[[image:1657259653666-883.png]] ​
584 584  
585 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
586 586  
587 -922.2 - SF7BW125 to SF10BW125
544 +(((
545 +
588 588  
589 -922.4 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
590 590  
591 -922.6 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
592 592  
593 -922.8 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
594 594  
595 -923.0 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
596 596  
597 -922.0 - SF7BW125 to SF10BW125
598 598  
563 +== 2.8  ​Firmware Change Log ==
599 599  
600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
601 601  
602 -923.6 - SF7BW125 to SF10BW125
566 +Download URL & Firmware Change log
603 603  
604 -923.8 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
605 605  
606 -924.0 - SF7BW125 to SF10BW125
607 607  
608 -924.2 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
609 609  
610 -924.4 - SF7BW125 to SF10BW125
611 611  
612 -924.6 - SF7BW125 to SF10BW125
613 613  
575 +== 2.9  ​Battery Analysis ==
614 614  
615 -(% style="color:#037691" %)** Downlink:**
577 +=== 2.9.1  ​Battery Type ===
616 616  
617 -Uplink channels 1-8 (RX1)
618 618  
619 -923.2 - SF10BW125 (RX2)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
620 620  
621 621  
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
622 622  
623 -=== 2.7.6 KR920-923 (KR920) ===
624 624  
625 -Default channel:
586 +The battery related documents as below:
626 626  
627 -922.1 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
628 628  
629 -922.3 - SF7BW125 to SF12BW125
630 -
631 -922.5 - SF7BW125 to SF12BW125
632 -
633 -
634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
635 -
636 -922.1 - SF7BW125 to SF12BW125
637 -
638 -922.3 - SF7BW125 to SF12BW125
639 -
640 -922.5 - SF7BW125 to SF12BW125
641 -
642 -922.7 - SF7BW125 to SF12BW125
643 -
644 -922.9 - SF7BW125 to SF12BW125
645 -
646 -923.1 - SF7BW125 to SF12BW125
647 -
648 -923.3 - SF7BW125 to SF12BW125
649 -
650 -
651 -(% style="color:#037691" %)**Downlink:**
652 -
653 -Uplink channels 1-7(RX1)
654 -
655 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
656 -
657 -
658 -
659 -=== 2.7.7 IN865-867 (IN865) ===
660 -
661 -(% style="color:#037691" %)** Uplink:**
662 -
663 -865.0625 - SF7BW125 to SF12BW125
664 -
665 -865.4025 - SF7BW125 to SF12BW125
666 -
667 -865.9850 - SF7BW125 to SF12BW125
668 -
669 -
670 -(% style="color:#037691" %) **Downlink:**
671 -
672 -Uplink channels 1-3 (RX1)
673 -
674 -866.550 - SF10BW125 (RX2)
675 -
676 -
677 -
678 -
679 -== 2.8 LED Indicator ==
680 -
681 -The LSE01 has an internal LED which is to show the status of different state.
682 -
683 -* Blink once when device power on.
684 -* Solid ON for 5 seconds once device successful Join the network.
685 -* Blink once when device transmit a packet.
686 -
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
698 698  )))
699 -)))
700 700  
701 701  
702 -[[image:1654506665940-119.png]]
703 703  
704 -(((
705 -Dig a hole with diameter > 20CM.
706 -)))
598 +2.9.2 
707 707  
708 -(((
709 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
710 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
711 711  
712 712  
713 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
714 714  
715 -(((
716 -**Firmware download link:**
717 -)))
718 718  
719 -(((
720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
721 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
722 722  
723 -(((
724 -
725 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
726 726  
727 -(((
728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
729 -)))
730 730  
731 -(((
732 -
733 -)))
611 +Step 2: Open it and choose
734 734  
735 -(((
736 -**V1.0.**
737 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
738 738  
739 -(((
740 -Release
741 -)))
617 +And the Life expectation in difference case will be shown on the right.
742 742  
743 743  
744 -== 2.11 ​Battery Analysis ==
745 745  
746 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
747 747  
748 748  (((
749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
750 -)))
751 -
752 -(((
753 -The battery is designed to last for more than 5 years for the LSN50.
754 -)))
755 -
756 -(((
757 -(((
758 -The battery-related documents are as below:
759 -)))
760 -)))
761 -
762 -* (((
763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
764 -)))
765 -* (((
766 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
767 -)))
768 -* (((
769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
770 -)))
771 -
772 - [[image:image-20220606171726-9.png]]
773 -
774 -
775 -
776 -=== 2.11.2 ​Battery Note ===
777 -
778 -(((
779 779  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
780 780  )))
781 781  
782 782  
783 783  
784 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
785 785  
786 -(((
787 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
788 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
789 789  
790 -(((
791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
792 -)))
793 793  
794 -(((
795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
796 -)))
797 797  
798 -
799 -
800 800  = 3. ​Using the AT Commands =
801 801  
802 802  == 3.1 Access AT Commands ==
... ... @@ -820,7 +820,7 @@
820 820   [[image:1654502050864-459.png||height="564" width="806"]]
821 821  
822 822  
823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
824 824  
825 825  
826 826  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -978,19 +978,14 @@
978 978  
979 979  (((
980 980  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
981 -)))
982 982  
983 -(% class="box infomessage" %)
984 -(((
985 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
986 986  )))
987 987  
988 -(% class="box infomessage" %)
989 989  (((
990 -**ATZ**
991 -)))
822 +
992 992  
993 -(((
994 994  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 995  )))
996 996  
... ... @@ -1005,18 +1005,22 @@
1005 1005  [[image:image-20220606154825-4.png]]
1006 1006  
1007 1007  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1008 1008  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
1009 1009  = 5. Trouble Shooting =
1010 1010  
1011 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1012 1012  
1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1014 1014  
1015 1015  
1016 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
1017 1017  
1018 1018  (((
1019 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 1020  )))
1021 1021  
1022 1022  
... ... @@ -1105,5 +1105,3 @@
1105 1105  
1106 1106  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1108 -
1109 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content