Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,63 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 62 63 - ==1.3Specification ==65 +(% style="color:#037691" %)**Common DC Characteristics:** 64 64 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 65 65 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 68 68 69 69 70 70 71 -== 1.4 Applications == 87 +== 1.4 Applications == 72 72 73 73 * Smart Agriculture 74 74 ... ... @@ -75,728 +75,547 @@ 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 79 79 80 80 81 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 82 82 83 83 84 84 85 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 86 86 87 -== 2.1 How it works == 103 +== 2.1 How it works == 88 88 105 + 89 89 ((( 90 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 110 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 95 95 ))) 96 96 115 +[[image:image-20220708101605-2.png]] 97 97 117 +((( 118 + 119 +))) 98 98 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 123 +== 2.2 Configure the NSE01 == 103 103 104 -[[image:1654503992078-669.png]] 105 105 126 +=== 2.2.1 Test Requirement === 106 106 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 108 129 +To use NSE01 in your city, make sure meet below requirements: 109 109 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 111 111 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -**Step 2**: Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== === 148 - 149 -=== 2.3.1 MOD~=0(Default Mode) === 150 - 151 -LSE01 will uplink payload via LoRaWAN with below payload format: 152 - 153 153 ((( 154 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 155 155 ))) 156 156 157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 -|((( 159 -**Size** 160 160 161 -**(bytes)** 162 -)))|**2**|**2**|**2**|**2**|**2**|**1** 163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 164 -Temperature 140 +[[image:1657249419225-449.png]] 165 165 166 -(Reserve, Ignore now) 167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 168 -MOD & Digital Interrupt 169 169 170 -(Optional) 171 -))) 172 172 144 +=== 2.2.2 Insert SIM card === 173 173 174 - ===2.3.2MOD~=1(Originalvalue)===146 +Insert the NB-IoT Card get from your provider. 175 175 176 - Thismodecanget the original AD value ofmoisture andoriginal conductivity(withtemperaturedriftcompensation).148 +User need to take out the NB-IoT module and insert the SIM card like below: 177 177 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 181 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 151 +[[image:1657249468462-536.png]] 186 186 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 190 191 -(Optional) 192 -))) 193 193 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 194 194 195 -=== 2.3.3 Battery Info === 196 - 197 197 ((( 198 -Check the battery voltage for LSE01. 199 -))) 200 - 201 201 ((( 202 -E x1: 0x0B45=2885mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 203 203 ))) 204 - 205 -((( 206 -Ex2: 0x0B49 = 2889mV 207 207 ))) 208 208 209 209 164 +**Connection:** 210 210 211 - ===2.3.4Soil Moisture===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 212 212 213 -((( 214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 215 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 216 216 217 -((( 218 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 219 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 220 220 221 -((( 222 - 223 -))) 224 224 225 -((( 226 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 227 -))) 173 +In the PC, use below serial tool settings: 228 228 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 229 229 230 - 231 -=== 2.3.5 Soil Temperature === 232 - 233 233 ((( 234 - Getthe temperatureinthe soil. Thevaluerangeoftheregisteris-4000 - +800(Decimal),dividethis valueby100 toget thetemperatureinthesoil.Forexample,ifthedatayougetfromtheregisteris 0x09 0xEC,the temperaturecontentinthesoilis182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 235 235 ))) 236 236 237 -((( 238 -**Example**: 239 -))) 185 +[[image:image-20220708110657-3.png]] 240 240 241 -((( 242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 244 244 245 -((( 246 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 247 -))) 248 248 249 249 191 +=== 2.2.4 Use CoAP protocol to uplink data === 250 250 251 -= ==2.3.6SoilConductivity (EC) ===193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 252 252 253 -((( 254 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 255 -))) 256 256 257 -((( 258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 259 -))) 196 +**Use below commands:** 260 260 261 -(( (262 - Generally, the ECvalueofirrigationwateris lessthan800uS / cm.263 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 264 264 265 -((( 266 - 267 -))) 202 +For parameter description, please refer to AT command set 268 268 269 -((( 270 - 271 -))) 204 +[[image:1657249793983-486.png]] 272 272 273 -=== 2.3.7 MOD === 274 274 275 - Firmware versionatleast v2.1 supportschangingmode.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 276 276 277 - For example, bytes[10]=90209 +[[image:1657249831934-534.png]] 278 278 279 -mod=(bytes[10]>>7)&0x01=1. 280 280 281 281 282 - **DownlinkCommand:**213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 283 283 284 - If payload=0x0A00, workmode=0215 +This feature is supported since firmware version v1.0.1 285 285 286 -If** **payload =** **0x0A01, workmode=1 287 287 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 288 288 222 +[[image:1657249864775-321.png]] 289 289 290 -=== 2.3.8 Decode payload in The Things Network === 291 291 292 - While using TTN network, you can add the payload format to decode the payload.225 +[[image:1657249930215-289.png]] 293 293 294 294 295 -[[image:1654505570700-128.png]] 296 296 297 -((( 298 -The payload decoder function for TTN is here: 299 -))) 229 +=== 2.2.6 Use MQTT protocol to uplink data === 300 300 301 -((( 302 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 303 -))) 231 +This feature is supported since firmware version v110 304 304 305 305 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - ==2.4Uplink Interval ==242 +[[image:1657249978444-674.png]] 308 308 309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 310 310 245 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.5 Downlink Payload == 314 - 315 -By default, LSE50 prints the downlink payload to console port. 316 - 317 -[[image:image-20220606165544-8.png]] 318 - 319 - 320 320 ((( 321 - **Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 322 322 ))) 323 323 324 -((( 325 - 326 -))) 327 327 328 -* ((( 329 -**Set TDC** 330 -))) 331 331 332 -((( 333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 335 335 336 -((( 337 -Payload: 01 00 00 1E TDC=30S 338 -))) 256 +This feature is supported since firmware version v110 339 339 340 -((( 341 -Payload: 01 00 00 3C TDC=60S 342 -))) 343 343 344 -((( 345 - 346 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 347 347 348 -* ((( 349 -**Reset** 350 -))) 262 +[[image:1657250217799-140.png]] 351 351 352 -((( 353 -If payload = 0x04FF, it will reset the LSE01 354 -))) 355 355 265 +[[image:1657250255956-604.png]] 356 356 357 -* **CFM** 358 358 359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 360 360 269 +=== 2.2.8 Change Update Interval === 361 361 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 362 362 363 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 364 364 365 365 ((( 366 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 367 367 ))) 368 368 369 369 ((( 370 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 371 371 ))) 372 372 373 -((( 374 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 375 -))) 376 376 377 -((( 378 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 379 -))) 380 380 285 +== 2.3 Uplink Payload == 381 381 382 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 383 383 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 384 384 385 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 386 386 387 -Step 3: Create an account or log in Datacake. 388 388 389 - Step 4:Search theLSE01and add DevEUI.298 +[[image:image-20220708111918-4.png]] 390 390 391 391 392 - [[image:1654505905236-553.png]]301 +The payload is ASCII string, representative same HEX: 393 393 303 +0x72403155615900640c7817075e0a8c02f900 where: 394 394 395 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 396 396 397 -[[image:1654505925508-181.png]] 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 398 398 315 +== 2.4 Payload Explanation and Sensor Interface == 399 399 400 400 401 -== 2. 7 FrequencyPlans==318 +=== 2.4.1 Device ID === 402 402 403 - TheLSE01 uses OTAA modendbelowfrequency plans by default.Ifuser wanttouse itwithdifferentfrequency plan, pleaserefertheAT commandsets.320 +By default, the Device ID equal to the last 6 bytes of IMEI. 404 404 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 405 405 406 - === 2.7.1EU863-870 (EU868) ===324 +**Example:** 407 407 408 - (% style="color:#037691" %)** Uplink:**326 +AT+DEUI=A84041F15612 409 409 410 - 868.1-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 411 411 412 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 413 413 414 -868.5 - SF7BW125 to SF12BW125 415 415 416 - 867.1- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 417 417 418 - 867.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 419 419 420 - 867.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 421 421 422 -867.7 - SF7BW125 to SF12BW125 423 423 424 -867.9 - SF7BW125 to SF12BW125 425 425 426 - 868.8-FSK340 +=== 2.4.3 Battery Info === 427 427 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 428 428 429 -(% style="color:#037691" %)** Downlink:** 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 430 430 431 -Uplink channels 1-9 (RX1) 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 432 432 433 -869.525 - SF9BW125 (RX2 downlink only) 434 434 435 435 356 +=== 2.4.4 Signal Strength === 436 436 437 - ===2.7.2US902-928(US915)===358 +NB-IoT Network signal Strength. 438 438 439 - Usedin USA, Canadaand South America. Default use CHE=2360 +**Ex1: 0x1d = 29** 440 440 441 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 442 442 443 - 903.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 444 444 445 - 904.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 446 446 447 - 904.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 448 448 449 -9 04.5-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 450 450 451 -904.7 - SF7BW125 to SF10BW125 452 452 453 -904.9 - SF7BW125 to SF10BW125 454 454 455 - 905.1- SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 456 456 457 -905.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 458 458 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 459 459 460 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 461 461 462 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 463 463 464 -923.9 - SF7BW500 to SF12BW500 465 465 466 -924.5 - SF7BW500 to SF12BW500 467 467 468 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 469 469 470 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 471 471 472 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 473 473 474 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 475 475 476 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 477 477 478 -923.3 - SF12BW500(RX2 downlink only) 479 479 480 480 414 +=== 2.4.7 Soil Conductivity (EC) === 481 481 482 -=== 2.7.3 CN470-510 (CN470) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 483 483 484 -Used in China, Default use CHE=1 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 485 485 486 -(% style="color:#037691" %)**Uplink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 487 487 488 -486.3 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 489 489 490 -486.5 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 491 491 492 -4 86.7-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 493 493 494 - 486.9-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 495 495 496 - 487.1- SF7BW125 toSF12BW125440 +The command is: 497 497 498 - 487.3-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 499 500 -487.5 - SF7BW125 to SF12BW125 501 501 502 - 487.7-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 503 503 504 504 505 - (% style="color:#037691" %)**Downlink:**448 +Example: 506 506 507 - 506.7-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 508 508 509 - 506.9 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 510 510 511 -507.1 - SF7BW125 to SF12BW125 512 512 513 -507.3 - SF7BW125 to SF12BW125 514 514 515 - 507.5- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 516 516 517 - 507.7-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 518 518 519 -507.9 - SF7BW125 to SF12BW125 520 520 521 -5 08.1-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 522 522 523 - 505.3 - SF12BW125(RX2downlinkonly)463 +(% style="color:blue" %)**AT+5VT=1000** 524 524 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 525 525 526 526 527 -=== 2.7.4 AU915-928(AU915) === 528 528 529 -D efaultuse CHE=2469 +== 2.5 Downlink Payload == 530 530 531 - (% style="color:#037691"%)**Uplink:**471 +By default, NSE01 prints the downlink payload to console port. 532 532 533 - 916.8-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 534 534 535 -917.0 - SF7BW125 to SF12BW125 536 536 537 -917.2 - SF7BW125 to SF12BW125 538 538 539 -917.4 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 540 540 541 -917.6 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 542 542 543 -917.8 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 544 544 545 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 546 546 547 -918.2 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 548 548 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 549 549 550 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 + 503 +))) 551 551 552 -923.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 553 553 554 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 555 555 556 -924.5 - SF7BW500 to SF12BW500 557 557 558 - 925.1-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 559 559 560 - 925.7-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 561 561 562 -926.3 - SF7BW500 to SF12BW500 563 563 564 -926.9 - SF7BW500 to SF12BW500 565 565 566 - 927.5-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 567 567 568 -923.3 - SF12BW500(RX2 downlink only) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 569 569 570 570 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 571 571 572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 573 573 574 -(% style="color:#037691" %)**Default Uplink channel:** 575 575 576 -923.2 - SF7BW125 to SF10BW125 577 577 578 - 923.4 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 579 579 537 +__**Measurement the soil surface**__ 580 580 581 - (%style="color:#037691"%)**AdditionalUplinkChannel**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 582 582 583 - (OTAA mode, channel added by JoinAcceptmessage)541 +[[image:1657259653666-883.png]] 584 584 585 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 586 586 587 -922.2 - SF7BW125 to SF10BW125 544 +((( 545 + 588 588 589 -922.4 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 590 590 591 -922.6 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 592 592 593 - 922.8 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 594 594 595 -923.0 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 596 596 597 -922.0 - SF7BW125 to SF10BW125 598 598 563 +== 2.8 Firmware Change Log == 599 599 600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 601 601 602 - 923.6-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 603 603 604 - 923.8-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 605 605 606 -924.0 - SF7BW125 to SF10BW125 607 607 608 - 924.2- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 609 609 610 -924.4 - SF7BW125 to SF10BW125 611 611 612 -924.6 - SF7BW125 to SF10BW125 613 613 575 +== 2.9 Battery Analysis == 614 614 615 - (%style="color:#037691"%)**Downlink:**577 +=== 2.9.1 Battery Type === 616 616 617 -Uplink channels 1-8 (RX1) 618 618 619 - 923.2-SF10BW125 (RX2)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 620 620 621 621 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 622 622 623 -=== 2.7.6 KR920-923 (KR920) === 624 624 625 - Default channel:586 +The battery related documents as below: 626 626 627 -922.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 628 628 629 -922.3 - SF7BW125 to SF12BW125 630 - 631 -922.5 - SF7BW125 to SF12BW125 632 - 633 - 634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 635 - 636 -922.1 - SF7BW125 to SF12BW125 637 - 638 -922.3 - SF7BW125 to SF12BW125 639 - 640 -922.5 - SF7BW125 to SF12BW125 641 - 642 -922.7 - SF7BW125 to SF12BW125 643 - 644 -922.9 - SF7BW125 to SF12BW125 645 - 646 -923.1 - SF7BW125 to SF12BW125 647 - 648 -923.3 - SF7BW125 to SF12BW125 649 - 650 - 651 -(% style="color:#037691" %)**Downlink:** 652 - 653 -Uplink channels 1-7(RX1) 654 - 655 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 656 - 657 - 658 - 659 -=== 2.7.7 IN865-867 (IN865) === 660 - 661 -(% style="color:#037691" %)** Uplink:** 662 - 663 -865.0625 - SF7BW125 to SF12BW125 664 - 665 -865.4025 - SF7BW125 to SF12BW125 666 - 667 -865.9850 - SF7BW125 to SF12BW125 668 - 669 - 670 -(% style="color:#037691" %) **Downlink:** 671 - 672 -Uplink channels 1-3 (RX1) 673 - 674 -866.550 - SF10BW125 (RX2) 675 - 676 - 677 - 678 - 679 -== 2.8 LED Indicator == 680 - 681 -The LSE01 has an internal LED which is to show the status of different state. 682 - 683 -* Blink once when device power on. 684 -* Solid ON for 5 seconds once device successful Join the network. 685 -* Blink once when device transmit a packet. 686 - 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 703 704 -((( 705 -Dig a hole with diameter > 20CM. 706 -))) 598 +2.9.2 707 707 708 -((( 709 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 711 711 712 712 713 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 714 714 715 -((( 716 -**Firmware download link:** 717 -))) 718 718 719 -((( 720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 721 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 722 722 723 -((( 724 - 725 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 726 726 727 -((( 728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 -))) 730 730 731 -((( 732 - 733 -))) 611 +Step 2: Open it and choose 734 734 735 - (((736 -* *V1.0.**737 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 738 738 739 -((( 740 -Release 741 -))) 617 +And the Life expectation in difference case will be shown on the right. 742 742 743 743 744 -== 2.11 Battery Analysis == 745 745 746 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 747 747 748 748 ((( 749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 750 -))) 751 - 752 -((( 753 -The battery is designed to last for more than 5 years for the LSN50. 754 -))) 755 - 756 -((( 757 -((( 758 -The battery-related documents are as below: 759 -))) 760 -))) 761 - 762 -* ((( 763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 764 -))) 765 -* ((( 766 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 767 -))) 768 -* ((( 769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 770 -))) 771 - 772 - [[image:image-20220606171726-9.png]] 773 - 774 - 775 - 776 -=== 2.11.2 Battery Note === 777 - 778 -((( 779 779 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 780 780 ))) 781 781 782 782 783 783 784 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 785 785 786 -((( 787 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 788 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 789 789 790 -((( 791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 792 -))) 793 793 794 -((( 795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 796 -))) 797 797 798 - 799 - 800 800 = 3. Using the AT Commands = 801 801 802 802 == 3.1 Access AT Commands == ... ... @@ -820,7 +820,7 @@ 820 820 [[image:1654502050864-459.png||height="564" width="806"]] 821 821 822 822 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 824 824 825 825 826 826 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -978,19 +978,14 @@ 978 978 979 979 ((( 980 980 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 981 -))) 982 982 983 -(% class="box infomessage" %) 984 -((( 985 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 986 986 ))) 987 987 988 -(% class="box infomessage" %) 989 989 ((( 990 -**ATZ** 991 -))) 822 + 992 992 993 -((( 994 994 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 995 ))) 996 996 ... ... @@ -1005,18 +1005,22 @@ 1005 1005 [[image:image-20220606154825-4.png]] 1006 1006 1007 1007 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1008 1008 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1009 1009 = 5. Trouble Shooting = 1010 1010 1011 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1012 1012 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1014 1014 1015 1015 1016 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1017 1017 1018 1018 ((( 1019 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 1020 ))) 1021 1021 1022 1022 ... ... @@ -1105,5 +1105,3 @@ 1105 1105 1106 1106 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1107 1107 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1108 - 1109 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content