Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1072 +12,805 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 61 62 62 63 -== 1.3 Specification == 64 64 65 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.64 +== 1.3 Specification == 66 66 67 -[[image:image-20220606162220-5.png]] 68 68 67 +(% style="color:#037691" %)**Common DC Characteristics:** 69 69 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 70 70 71 -== 1.4 Applications == 72 72 73 -* Smart Agriculture 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 74 +(% style="color:#037691" %)**NB-IoT Spec:** 77 77 78 -== 1.5 Firmware Change log == 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 79 79 80 80 81 -**LSE01 v1.0 :** Release 82 82 85 +Probe(% style="color:#037691" %)** Specification:** 83 83 87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 84 84 85 - = 2. ConfigureLSE01to connect to LoRaWAN network =89 +[[image:image-20220708101224-1.png]] 86 86 87 -== 2.1 How it works == 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 93 +== 1.4 Applications == 96 96 95 +* Smart Agriculture 97 97 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 98 98 99 -== 2.2Quickguideto connecttoLoRaWANserver(OTAA)==100 +== 1.5 Pin Definitions == 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 103 +[[image:1657246476176-652.png]] 103 103 104 -[[image:1654503992078-669.png]] 105 105 106 106 107 - TheLG308isalreadyset to connected to [[TTNnetwork>>url:https://console.cloud.thethings.network/]], so whatweneed to nows configuretheTTNserver.107 += 2. Use NSE01 to communicate with IoT Server = 108 108 109 +== 2.1 How it works == 109 109 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 111 111 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 113 113 114 -[[image:image-20220606163732-6.jpeg]] 115 115 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 117 117 118 - **Add APP EUIin theapplication**121 +[[image:image-20220708101605-2.png]] 119 119 123 +((( 124 + 125 +))) 120 120 121 -[[image:1654504596150-405.png]] 122 122 123 123 129 +== 2.2 Configure the NSE01 == 124 124 125 -**Add APP KEY and DEV EUI** 126 126 127 - [[image:1654504683289-357.png]]132 +=== 2.2.1 Test Requirement === 128 128 129 129 135 +To use NSE01 in your city, make sure meet below requirements: 130 130 131 -**Step 2**: Power on LSE01 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 132 132 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 -=== === 148 - 149 -=== 2.3.1 MOD~=0(Default Mode) === 150 - 151 -LSE01 will uplink payload via LoRaWAN with below payload format: 152 - 153 153 ((( 154 - Uplinkpayload includesintotal 11bytes.142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 155 155 ))) 156 156 157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 -|((( 159 -**Size** 160 160 161 -**(bytes)** 162 -)))|**2**|**2**|**2**|**2**|**2**|**1** 163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 164 -Temperature 146 +[[image:1657249419225-449.png]] 165 165 166 -(Reserve, Ignore now) 167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 168 -MOD & Digital Interrupt 169 169 170 -(Optional) 171 -))) 172 172 150 +=== 2.2.2 Insert SIM card === 173 173 174 - ===2.3.2MOD~=1(Originalvalue)===152 +Insert the NB-IoT Card get from your provider. 175 175 176 - Thismodecanget the original AD value ofmoisture andoriginal conductivity(withtemperaturedriftcompensation).154 +User need to take out the NB-IoT module and insert the SIM card like below: 177 177 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 181 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 157 +[[image:1657249468462-536.png]] 186 186 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 190 191 -(Optional) 192 -))) 193 193 161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 194 194 195 -=== 2.3.3 Battery Info === 196 - 197 197 ((( 198 -Check the battery voltage for LSE01. 199 -))) 200 - 201 201 ((( 202 -E x1: 0x0B45=2885mV165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 203 203 ))) 204 - 205 -((( 206 -Ex2: 0x0B49 = 2889mV 207 207 ))) 208 208 209 209 170 +**Connection:** 210 210 211 - ===2.3.4Soil Moisture===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 212 212 213 -((( 214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 215 -))) 174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 216 216 217 -((( 218 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 219 -))) 176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 220 220 221 -((( 222 - 223 -))) 224 224 225 -((( 226 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 227 -))) 179 +In the PC, use below serial tool settings: 228 228 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 229 229 230 - 231 -=== 2.3.5 Soil Temperature === 232 - 233 233 ((( 234 - Getthe temperatureinthe soil. Thevaluerangeoftheregisteris-4000 - +800(Decimal),dividethis valueby100 toget thetemperatureinthesoil.Forexample,ifthedatayougetfromtheregisteris 0x09 0xEC,the temperaturecontentinthesoilis188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 235 235 ))) 236 236 237 -((( 238 -**Example**: 239 -))) 191 +[[image:image-20220708110657-3.png]] 240 240 241 -((( 242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 -))) 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 244 244 245 -((( 246 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 247 -))) 248 248 249 249 197 +=== 2.2.4 Use CoAP protocol to uplink data === 250 250 251 -= ==2.3.6SoilConductivity (EC) ===199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 252 252 253 -((( 254 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 255 -))) 256 256 257 -((( 258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 259 -))) 202 +**Use below commands:** 260 260 261 -(( (262 - Generally, the ECvalueofirrigationwateris lessthan800uS / cm.263 -)) )204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 264 264 265 -((( 266 - 267 -))) 208 +For parameter description, please refer to AT command set 268 268 269 -((( 270 - 271 -))) 210 +[[image:1657249793983-486.png]] 272 272 273 -=== 2.3.7 MOD === 274 274 275 - Firmware versionatleast v2.1 supportschangingmode.213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 276 276 277 - For example, bytes[10]=90215 +[[image:1657249831934-534.png]] 278 278 279 -mod=(bytes[10]>>7)&0x01=1. 280 280 281 281 282 - **DownlinkCommand:**219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 283 283 284 - If payload=0x0A00, workmode=0221 +This feature is supported since firmware version v1.0.1 285 285 286 -If** **payload =** **0x0A01, workmode=1 287 287 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 288 288 228 +[[image:1657249864775-321.png]] 289 289 290 -=== 2.3.8 Decode payload in The Things Network === 291 291 292 - While using TTN network, you can add the payload format to decode the payload.231 +[[image:1657249930215-289.png]] 293 293 294 294 295 -[[image:1654505570700-128.png]] 296 296 297 -((( 298 -The payload decoder function for TTN is here: 299 -))) 235 +=== 2.2.6 Use MQTT protocol to uplink data === 300 300 301 -((( 302 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 303 -))) 237 +This feature is supported since firmware version v110 304 304 305 305 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - ==2.4Uplink Interval ==248 +[[image:1657249978444-674.png]] 308 308 309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 310 310 251 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.5 Downlink Payload == 314 - 315 -By default, LSE50 prints the downlink payload to console port. 316 - 317 -[[image:image-20220606165544-8.png]] 318 - 319 - 320 320 ((( 321 - **Examples:**255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 322 322 ))) 323 323 324 -((( 325 - 326 -))) 327 327 328 -* ((( 329 -**Set TDC** 330 -))) 331 331 332 -((( 333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 -))) 260 +=== 2.2.7 Use TCP protocol to uplink data === 335 335 336 -((( 337 -Payload: 01 00 00 1E TDC=30S 338 -))) 262 +This feature is supported since firmware version v110 339 339 340 -((( 341 -Payload: 01 00 00 3C TDC=60S 342 -))) 343 343 344 -((( 345 - 346 -))) 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 347 347 348 -* ((( 349 -**Reset** 350 -))) 268 +[[image:1657250217799-140.png]] 351 351 352 -((( 353 -If payload = 0x04FF, it will reset the LSE01 354 -))) 355 355 271 +[[image:1657250255956-604.png]] 356 356 357 -* **CFM** 358 358 359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 360 360 275 +=== 2.2.8 Change Update Interval === 361 361 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 362 362 363 - ==2.6ShowDatainDataCake IoT Server==279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 364 364 365 365 ((( 366 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:282 +(% style="color:red" %)**NOTE:** 367 367 ))) 368 368 369 369 ((( 370 - 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 371 371 ))) 372 372 373 -((( 374 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 375 -))) 376 376 377 -((( 378 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 379 -))) 380 380 291 +== 2.3 Uplink Payload == 381 381 382 - [[image:1654505857935-743.png]]293 +In this mode, uplink payload includes in total 18 bytes 383 383 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 384 384 385 - [[image:1654505874829-548.png]]301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 386 386 387 -Step 3: Create an account or log in Datacake. 388 388 389 - Step 4:Search theLSE01and add DevEUI.304 +[[image:image-20220708111918-4.png]] 390 390 391 391 392 - [[image:1654505905236-553.png]]307 +The payload is ASCII string, representative same HEX: 393 393 309 +0x72403155615900640c7817075e0a8c02f900 where: 394 394 395 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 396 396 397 -[[image:1654505925508-181.png]] 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 398 398 399 399 400 400 401 -== 2.7 Frequency Plans == 402 402 403 - TheLSE01uses OTAA modeandbelow frequencyplans by default. If user want to useit with differentfrequency plan,pleaserefertheAT command sets.324 +== 2.4 Payload Explanation and Sensor Interface == 404 404 405 405 406 -=== 2. 7.1EU863-870(EU868)===327 +=== 2.4.1 Device ID === 407 407 408 - (% style="color:#037691"%)**Uplink:**329 +By default, the Device ID equal to the last 6 bytes of IMEI. 409 409 410 - 868.1-SF7BW125toSF12BW125331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 411 411 412 - 868.3 - SF7BW125 to SF12BW125and SF7BW250333 +**Example:** 413 413 414 -8 68.5 - SF7BW125to SF12BW125335 +AT+DEUI=A84041F15612 415 415 416 - 867.1-SF7BW125toSF12BW125337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 417 417 418 -867.3 - SF7BW125 to SF12BW125 419 419 420 -867.5 - SF7BW125 to SF12BW125 421 421 422 - 867.7- SF7BW125toSF12BW125341 +=== 2.4.2 Version Info === 423 423 424 - 867.9-SF7BW125toSF12BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 425 425 426 - 868.8 -FSK345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 427 427 428 428 429 -(% style="color:#037691" %)** Downlink:** 430 430 431 - Uplinkchannels1-9(RX1)349 +=== 2.4.3 Battery Info === 432 432 433 -869.525 - SF9BW125 (RX2 downlink only) 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 434 434 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 435 435 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 436 436 437 -=== 2.7.2 US902-928(US915) === 438 438 439 -Used in USA, Canada and South America. Default use CHE=2 440 440 441 - (% style="color:#037691"%)**Uplink:**365 +=== 2.4.4 Signal Strength === 442 442 443 - 903.9-SF7BW125to SF10BW125367 +NB-IoT Network signal Strength. 444 444 445 - 904.1- SF7BW125toSF10BW125369 +**Ex1: 0x1d = 29** 446 446 447 - 904.3-SF7BW125toSF10BW125371 +(% style="color:blue" %)**0**(%%) -113dBm or less 448 448 449 - 904.5-SF7BW125toSF10BW125373 +(% style="color:blue" %)**1**(%%) -111dBm 450 450 451 - 904.7- SF7BW125toSF10BW125375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 452 452 453 - 904.9-SF7BW125toSF10BW125377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 454 454 455 -9 05.1-SF7BW125toSF10BW125379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 456 456 457 -905.3 - SF7BW125 to SF10BW125 458 458 459 459 460 - (% style="color:#037691"%)**Downlink:**383 +=== 2.4.5 Soil Moisture === 461 461 462 -923.3 - SF7BW500 to SF12BW500 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 463 463 464 -923.9 - SF7BW500 to SF12BW500 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 465 465 466 -924.5 - SF7BW500 to SF12BW500 393 +((( 394 + 395 +))) 467 467 468 -925.1 - SF7BW500 to SF12BW500 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 469 469 470 -925.7 - SF7BW500 to SF12BW500 471 471 472 -926.3 - SF7BW500 to SF12BW500 473 473 474 - 926.9-SF7BW500toSF12BW500403 +=== 2.4.6 Soil Temperature === 475 475 476 -927.5 - SF7BW500 to SF12BW500 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 477 477 478 -923.3 - SF12BW500(RX2 downlink only) 409 +((( 410 +**Example**: 411 +))) 479 479 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 480 480 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 481 481 482 -=== 2.7.3 CN470-510 (CN470) === 483 483 484 -Used in China, Default use CHE=1 485 485 486 - (% style="color:#037691"%)**Uplink:**423 +=== 2.4.7 Soil Conductivity (EC) === 487 487 488 -486.3 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 489 489 490 -486.5 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 491 491 492 -486.7 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 493 493 494 -486.9 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 495 495 496 -487.1 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 497 497 498 -4 87.3-SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 499 499 500 - 487.5-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 501 502 - 487.7- SF7BW125 toSF12BW125449 +The command is: 503 503 451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 504 504 505 -(% style="color:#037691" %)**Downlink:** 506 506 507 - 506.7-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 508 508 509 -506.9 - SF7BW125 to SF12BW125 510 510 511 - 507.1 - SF7BW125 to SF12BW125457 +Example: 512 512 513 - 507.3-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 514 514 515 - 507.5 - SF7BW125toSF12BW125461 +0x(01): Interrupt Uplink Packet. 516 516 517 -507.7 - SF7BW125 to SF12BW125 518 518 519 -507.9 - SF7BW125 to SF12BW125 520 520 521 - 508.1- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 522 522 523 - 505.3-SF12BW125(RX2downlinkonly)467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 524 525 525 470 +The 5V output time can be controlled by AT Command. 526 526 527 -= ==2.7.4AU915-928(AU915)===472 +(% style="color:blue" %)**AT+5VT=1000** 528 528 529 - Default useCHE=2474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 530 530 531 -(% style="color:#037691" %)**Uplink:** 532 532 533 -916.8 - SF7BW125 to SF12BW125 534 534 535 - 917.0- SF7BW125toSF12BW125478 +== 2.5 Downlink Payload == 536 536 537 - 917.2-SF7BW125toSF12BW125480 +By default, NSE01 prints the downlink payload to console port. 538 538 539 - 917.4-SF7BW125 to SF12BW125482 +[[image:image-20220708133731-5.png]] 540 540 541 -917.6 - SF7BW125 to SF12BW125 542 542 543 -917.8 - SF7BW125 to SF12BW125 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 544 544 545 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 + 491 +))) 546 546 547 -918.2 - SF7BW125 to SF12BW125 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 548 548 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 549 549 550 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 551 551 552 -923.3 - SF7BW500 to SF12BW500 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 553 553 554 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 + 511 +))) 555 555 556 -924.5 - SF7BW500 to SF12BW500 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 557 557 558 -925.1 - SF7BW500 to SF12BW500 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 559 559 560 -925.7 - SF7BW500 to SF12BW500 561 561 562 - 926.3-SF7BW500toSF12BW500522 +* (% style="color:blue" %)**INTMOD** 563 563 564 - 926.9-SF7BW500 toSF12BW500524 +Downlink Payload: 06000003, Set AT+INTMOD=3 565 565 566 -927.5 - SF7BW500 to SF12BW500 567 567 568 -923.3 - SF12BW500(RX2 downlink only) 569 569 528 +== 2.6 LED Indicator == 570 570 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 571 571 572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 573 573 574 -(% style="color:#037691" %)**Default Uplink channel:** 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 575 575 576 -923.2 - SF7BW125 to SF10BW125 577 577 578 -923.4 - SF7BW125 to SF10BW125 579 579 580 580 581 - (%style="color:#037691" %)**AdditionalUplinkChannel**:543 +== 2.7 Installation in Soil == 582 582 583 - (OTAAmode,channeladded by JoinAcceptmessage)545 +__**Measurement the soil surface**__ 584 584 585 - (%style="color:#037691"%)**AS920~~AS923forJapan,Malaysia,Singapore**:547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 586 586 587 - 922.2 - SF7BW125to SF10BW125549 +[[image:1657259653666-883.png]] 588 588 589 -922.4 - SF7BW125 to SF10BW125 590 590 591 -922.6 - SF7BW125 to SF10BW125 552 +((( 553 + 592 592 593 -922.8 - SF7BW125 to SF10BW125 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 594 594 595 -923.0 - SF7BW125 to SF10BW125 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 596 596 597 -9 22.0SF7BW125 to SF10BW125564 +[[image:1654506665940-119.png]] 598 598 566 +((( 567 + 568 +))) 599 599 600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 601 601 602 - 923.6- SF7BW125toSF10BW125571 +== 2.8 Firmware Change Log == 603 603 604 -923.8 - SF7BW125 to SF10BW125 605 605 606 - 924.0-SF7BW125toSF10BW125574 +Download URL & Firmware Change log 607 607 608 - 924.2-F7BW125toSF10BW125576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 609 609 610 -924.4 - SF7BW125 to SF10BW125 611 611 612 - 924.6- SF7BW125toSF10BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 613 613 614 614 615 -(% style="color:#037691" %)** Downlink:** 616 616 617 - Uplinkchannels1-8 (RX1)583 +== 2.9 Battery Analysis == 618 618 619 - 923.2 - SF10BW125(RX2)585 +=== 2.9.1 Battery Type === 620 620 621 621 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 622 622 623 -=== 2.7.6 KR920-923 (KR920) === 624 624 625 - Default channel:591 +The battery is designed to last for several years depends on the actually use environment and update interval. 626 626 627 -922.1 - SF7BW125 to SF12BW125 628 628 629 - 922.3-SF7BW125toSF12BW125594 +The battery related documents as below: 630 630 631 -922.5 - SF7BW125 to SF12BW125 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 632 632 633 - 634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 635 - 636 -922.1 - SF7BW125 to SF12BW125 637 - 638 -922.3 - SF7BW125 to SF12BW125 639 - 640 -922.5 - SF7BW125 to SF12BW125 641 - 642 -922.7 - SF7BW125 to SF12BW125 643 - 644 -922.9 - SF7BW125 to SF12BW125 645 - 646 -923.1 - SF7BW125 to SF12BW125 647 - 648 -923.3 - SF7BW125 to SF12BW125 649 - 650 - 651 -(% style="color:#037691" %)**Downlink:** 652 - 653 -Uplink channels 1-7(RX1) 654 - 655 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 656 - 657 - 658 - 659 -=== 2.7.7 IN865-867 (IN865) === 660 - 661 -(% style="color:#037691" %)** Uplink:** 662 - 663 -865.0625 - SF7BW125 to SF12BW125 664 - 665 -865.4025 - SF7BW125 to SF12BW125 666 - 667 -865.9850 - SF7BW125 to SF12BW125 668 - 669 - 670 -(% style="color:#037691" %) **Downlink:** 671 - 672 -Uplink channels 1-3 (RX1) 673 - 674 -866.550 - SF10BW125 (RX2) 675 - 676 - 677 - 678 - 679 -== 2.8 LED Indicator == 680 - 681 -The LSE01 has an internal LED which is to show the status of different state. 682 - 683 -* Blink once when device power on. 684 -* Solid ON for 5 seconds once device successful Join the network. 685 -* Blink once when device transmit a packet. 686 - 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 703 704 -((( 705 -Dig a hole with diameter > 20CM. 706 -))) 606 +=== 2.9.2 Power consumption Analyze === 707 707 708 708 ((( 709 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 710 710 ))) 711 711 712 712 713 -== 2.10 Firmware Change Log == 714 - 715 715 ((( 716 - **Firmware downloadlink:**614 +Instruction to use as below: 717 717 ))) 718 718 719 719 ((( 720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 721 721 ))) 722 722 723 -((( 724 - 725 -))) 726 726 727 727 ((( 728 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 729 729 ))) 730 730 731 -((( 732 - 626 +* ((( 627 +Product Model 733 733 ))) 734 - 735 -((( 736 -**V1.0.** 629 +* ((( 630 +Uplink Interval 737 737 ))) 632 +* ((( 633 +Working Mode 634 +))) 738 738 739 739 ((( 740 - Release637 +And the Life expectation in difference case will be shown on the right. 741 741 ))) 742 742 640 +[[image:image-20220708141352-7.jpeg]] 743 743 744 -== 2.11 Battery Analysis == 745 745 746 -=== 2.11.1 Battery Type === 747 747 748 -((( 749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 750 -))) 644 +=== 2.9.3 Battery Note === 751 751 752 752 ((( 753 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 754 754 ))) 755 755 756 -((( 757 -((( 758 -The battery-related documents are as below: 759 -))) 760 -))) 761 761 762 -* ((( 763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 764 -))) 765 -* ((( 766 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 767 -))) 768 -* ((( 769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 770 -))) 771 771 772 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 773 773 774 - 775 - 776 -=== 2.11.2 Battery Note === 777 - 778 778 ((( 779 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 780 780 ))) 781 781 782 782 783 783 784 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 785 785 786 786 ((( 787 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 788 788 ))) 789 789 790 790 ((( 791 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 792 792 ))) 793 793 794 -((( 795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 796 -))) 670 +[[image:1657261278785-153.png]] 797 797 798 798 799 799 800 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 801 801 802 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 803 803 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 804 804 805 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 806 806 807 - [[image:1654501986557-872.png||height="391"width="800"]]681 +AT+<CMD>? : Help on <CMD> 808 808 683 +AT+<CMD> : Run <CMD> 809 809 810 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 811 811 687 +AT+<CMD>=? : Get the value 812 812 813 -[[image:1654502005655-729.png||height="503" width="801"]] 814 814 815 - 816 - 817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 - 819 - 820 - [[image:1654502050864-459.png||height="564" width="806"]] 821 - 822 - 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 - 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 - 834 - 835 835 (% style="color:#037691" %)**General Commands**(%%) 836 836 837 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 838 838 839 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 840 840 841 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 844 844 700 +AT+CFG : Print all configurations 845 845 846 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 865 865 866 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 879 879 733 +AT+CLIENT : Get or Set MQTT client 880 880 881 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 896 896 897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 900 900 901 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 902 902 903 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 - 909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 - 911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 - 913 - 914 -(% style="color:#037691" %)**Information** 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 - 928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 - 930 - 931 -= 4. FAQ = 932 - 933 -== 4.1 How to change the LoRa Frequency Bands/Region? == 934 - 935 935 ((( 936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 -When downloading the images, choose the required image file for download. 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 938 938 ))) 939 939 940 940 ((( 941 - 762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 942 942 ))) 943 943 944 944 ((( 945 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 946 946 ))) 947 947 948 -((( 949 - 950 -))) 951 951 952 -((( 953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 -))) 955 955 956 -((( 957 - 958 -))) 771 += 6. Trouble Shooting = 959 959 960 -((( 961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 962 -))) 773 +== 6.1 Connection problem when uploading firmware == 963 963 964 -[[image:image-20220606154726-3.png]] 965 965 966 - 967 -When you use the TTN network, the US915 frequency bands use are: 968 - 969 -* 903.9 - SF7BW125 to SF10BW125 970 -* 904.1 - SF7BW125 to SF10BW125 971 -* 904.3 - SF7BW125 to SF10BW125 972 -* 904.5 - SF7BW125 to SF10BW125 973 -* 904.7 - SF7BW125 to SF10BW125 974 -* 904.9 - SF7BW125 to SF10BW125 975 -* 905.1 - SF7BW125 to SF10BW125 976 -* 905.3 - SF7BW125 to SF10BW125 977 -* 904.6 - SF8BW500 978 - 776 +(% class="wikigeneratedid" %) 979 979 ((( 980 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 981 981 ))) 982 982 983 -(% class="box infomessage" %) 984 -((( 985 -**AT+CHE=2** 986 -))) 987 987 988 -(% class="box infomessage" %) 989 -((( 990 -**ATZ** 991 -))) 992 992 993 -((( 994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 -))) 783 +== 6.2 AT Command input doesn't work == 996 996 997 997 ((( 998 - 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 999 999 ))) 1000 1000 1001 -((( 1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 -))) 1004 1004 1005 -[[image:image-20220606154825-4.png]] 1006 1006 791 += 7. Order Info = 1007 1007 1008 1008 1009 - = 5. TroubleShooting=794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1010 1010 1011 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1012 1012 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 - 1015 - 1016 -== 5.2 AT Command input doesn’t work == 1017 - 1018 -((( 1019 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 -))) 1021 - 1022 - 1023 -== 5.3 Device rejoin in at the second uplink packet == 1024 - 1025 -(% style="color:#4f81bd" %)**Issue describe as below:** 1026 - 1027 -[[image:1654500909990-784.png]] 1028 - 1029 - 1030 -(% style="color:#4f81bd" %)**Cause for this issue:** 1031 - 1032 -((( 1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1034 -))) 1035 - 1036 - 1037 -(% style="color:#4f81bd" %)**Solution: ** 1038 - 1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1040 - 1041 -[[image:1654500929571-736.png||height="458" width="832"]] 1042 - 1043 - 1044 -= 6. Order Info = 1045 - 1046 - 1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 - 1049 - 1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 - 1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 - 1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 - 1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 - 1066 1066 (% class="wikigeneratedid" %) 1067 1067 ((( 1068 1068 1069 1069 ))) 1070 1070 1071 -= 7. Packing Info =802 += 8. Packing Info = 1072 1072 1073 1073 ((( 1074 1074 1075 1075 1076 1076 (% style="color:#037691" %)**Package Includes**: 1077 -))) 1078 1078 1079 -* ((( 1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 1081 1081 ))) 1082 1082 1083 1083 ((( ... ... @@ -1084,26 +1084,20 @@ 1084 1084 1085 1085 1086 1086 (% style="color:#037691" %)**Dimension and weight**: 1087 -))) 1088 1088 1089 -* ((( 1090 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1091 1091 ))) 1092 -* ((( 1093 -Device Weight: g 1094 -))) 1095 -* ((( 1096 -Package Size / pcs : cm 1097 -))) 1098 -* ((( 1099 -Weight / pcs : g 1100 1100 824 +((( 1101 1101 826 + 827 + 828 + 1102 1102 ))) 1103 1103 1104 -= 8. Support =831 += 9. Support = 1105 1105 1106 1106 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1107 1107 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1108 - 1109 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content