Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 45 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,780 +1,735 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 58 +== 1.3 Specification == 61 61 62 62 63 - ==1.3Specification ==61 +(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 63 +* Supply Voltage: 2.1v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 66 66 67 - [[image:image-20220606162220-5.png]]66 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 68 +* - B1 @H-FDD: 2100MHz 69 +* - B3 @H-FDD: 1800MHz 70 +* - B8 @H-FDD: 900MHz 71 +* - B5 @H-FDD: 850MHz 72 +* - B20 @H-FDD: 800MHz 73 +* - B28 @H-FDD: 700MHz 69 69 75 +(% style="color:#037691" %)**Battery:** 70 70 71 -== 1.4 Applications == 77 +* Li/SOCI2 un-chargeable battery 78 +* Capacity: 8500mAh 79 +* Self Discharge: <1% / Year @ 25°C 80 +* Max continuously current: 130mA 81 +* Max boost current: 2A, 1 second 72 72 83 +(% style="color:#037691" %)**Power Consumption** 84 + 85 +* STOP Mode: 10uA @ 3.3v 86 +* Max transmit power: 350mA@3.3v 87 + 88 + 89 +== 1.4 Applications == 90 + 91 +* Smart Buildings & Home Automation 92 +* Logistics and Supply Chain Management 93 +* Smart Metering 73 73 * Smart Agriculture 95 +* Smart Cities 96 +* Smart Factory 74 74 75 75 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 76 77 77 78 -== 1.5 Firmware Change log == 79 79 80 80 81 - **LSE01v1.0 :**Release103 +== 1.5 Pin Definitions == 82 82 83 83 106 +[[image:1657328609906-564.png]] 84 84 85 -= 2. Configure LSE01 to connect to LoRaWAN network = 86 86 87 -== 2.1 How it works == 88 88 110 += 2. Use NDDS75 to communicate with IoT Server = 111 + 112 +== 2.1 How it works == 113 + 89 89 ((( 90 -The LSE01isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 91 91 ))) 92 92 118 + 93 93 ((( 94 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].120 +The diagram below shows the working flow in default firmware of NDDS75: 95 95 ))) 96 96 123 +((( 124 + 125 +))) 97 97 127 +[[image:1657328659945-416.png]] 98 98 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 129 +((( 130 + 131 +))) 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 134 +== 2.2 Configure the NDDS75 == 103 103 104 -[[image:1654503992078-669.png]] 105 105 137 +=== 2.2.1 Test Requirement === 106 106 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 139 +((( 140 +To use NDDS75 in your city, make sure meet below requirements: 141 +))) 108 108 143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 109 109 110 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 147 +((( 148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 +))) 111 111 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 113 114 -[[image: image-20220606163732-6.jpeg]]152 +[[image:1657328756309-230.png]] 115 115 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 117 118 -**Add APP EUI in the application** 119 119 156 +=== 2.2.2 Insert SIM card === 120 120 121 -[[image:1654504596150-405.png]] 158 +((( 159 +Insert the NB-IoT Card get from your provider. 160 +))) 122 122 162 +((( 163 +User need to take out the NB-IoT module and insert the SIM card like below: 164 +))) 123 123 124 124 125 - **Add APP KEYand DEV EUI**167 +[[image:1657328884227-504.png]] 126 126 127 -[[image:1654504683289-357.png]] 128 128 129 129 171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 130 130 131 -**Step 2**: Power on LSE01 173 +((( 174 +((( 175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 176 +))) 177 +))) 132 132 179 +[[image:image-20220709092052-2.png]] 133 133 134 - Put a JumperonJP2 to power onthedevice. ( The Jumper mustbein FLASH position).181 +**Connection:** 135 135 136 - [[image:image-20220606163915-7.png]]183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 137 137 185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 138 138 139 - **Step3:**The LSE01 will auto join to theTTN network. Afterjoin success, it will start toupload messages to TTNandyoucan see the messages in the panel.187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 140 140 141 -[[image:1654504778294-788.png]] 142 142 190 +In the PC, use below serial tool settings: 143 143 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 144 144 145 -== 2.3 Uplink Payload == 146 - 147 -=== === 148 - 149 -=== 2.3.1 MOD~=0(Default Mode) === 150 - 151 -LSE01 will uplink payload via LoRaWAN with below payload format: 152 - 153 153 ((( 154 - Uplinkpayloadincludes intotal11bytes.199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 155 155 ))) 156 156 157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 -|((( 159 -**Size** 202 +[[image:1657329814315-101.png]] 160 160 161 -**(bytes)** 162 -)))|**2**|**2**|**2**|**2**|**2**|**1** 163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 164 -Temperature 165 - 166 -(Reserve, Ignore now) 167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 168 -MOD & Digital Interrupt 169 - 170 -(Optional) 204 +((( 205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 171 171 ))) 172 172 173 173 174 -=== 2.3.2 MOD~=1(Original value) === 175 175 176 - ThismodecangettheoriginalADvalueof moisture andoriginalconductivity(withtemperature drift compensation).210 +=== 2.2.4 Use CoAP protocol to uplink data === 177 177 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 181 181 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 186 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 215 +**Use below commands:** 190 190 191 -(Optional) 192 -))) 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 193 193 221 +For parameter description, please refer to AT command set 194 194 195 - === 2.3.3 Battery Info ===223 +[[image:1657330452568-615.png]] 196 196 197 -((( 198 -Check the battery voltage for LSE01. 199 -))) 200 200 201 -((( 202 -Ex1: 0x0B45 = 2885mV 203 -))) 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 204 204 205 -((( 206 -Ex2: 0x0B49 = 2889mV 207 -))) 228 +[[image:1657330472797-498.png]] 208 208 209 209 210 210 211 -=== 2. 3.4SoilMoisture===232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 212 212 213 -((( 214 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 215 -))) 216 216 217 -(( (218 - Forexample,ifthedatayougetfromthe registeris __0x05 0xDC__,the moisturecontentinthe soil is219 -)) )235 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 220 220 221 -((( 222 - 223 -))) 239 +[[image:1657330501006-241.png]] 224 224 225 -((( 226 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 227 -))) 228 228 242 +[[image:1657330533775-472.png]] 229 229 230 230 231 -=== 2.3.5 Soil Temperature === 232 232 233 -((( 234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 235 -))) 246 +=== 2.2.6 Use MQTT protocol to uplink data === 236 236 237 -((( 238 -**Example**: 239 -))) 240 240 241 -((( 242 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 243 -))) 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 244 244 245 -((( 246 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 247 -))) 257 +[[image:1657249978444-674.png]] 248 248 249 249 260 +[[image:1657330723006-866.png]] 250 250 251 -=== 2.3.6 Soil Conductivity (EC) === 252 252 253 253 ((( 254 - Obtain(% style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)in soil or(% style="color:#4f81bd" %)**__solubleion concentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%).Thevaluerangeoftheregisters0-20000(Decimal)( Canbegreaterthan 20000).264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 255 ))) 256 256 257 -((( 258 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 259 -))) 260 260 261 -((( 262 -Generally, the EC value of irrigation water is less than 800uS / cm. 263 -))) 264 264 265 -((( 266 - 267 -))) 269 +=== 2.2.7 Use TCP protocol to uplink data === 268 268 269 -((( 270 - 271 -))) 272 272 273 -=== 2.3.7 MOD === 272 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 274 274 275 - Firmwareversionat least v2.1supports changing mode.275 +[[image:image-20220709093918-1.png]] 276 276 277 -For example, bytes[10]=90 278 278 279 -m od=(bytes[10]>>7)&0x01=1.278 +[[image:image-20220709093918-2.png]] 280 280 281 281 282 -**Downlink Command:** 283 283 284 - If payload=0x0A00,workmode=0282 +=== 2.2.8 Change Update Interval === 285 285 286 - If****payload=****0x0A01,workmode=1284 +User can use below command to change the (% style="color:green" %)**uplink interval**. 287 287 286 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 288 288 289 - 290 -=== 2.3.8 Decode payload in The Things Network === 291 - 292 -While using TTN network, you can add the payload format to decode the payload. 293 - 294 - 295 -[[image:1654505570700-128.png]] 296 - 297 297 ((( 298 - Thepayload decoder function forTTN is here:289 +(% style="color:red" %)**NOTE:** 299 299 ))) 300 300 301 301 ((( 302 - LSE01TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 303 303 ))) 304 304 305 305 306 306 307 -== 2. 4UplinkInterval ==298 +== 2.3 Uplink Payload == 308 308 309 - The LSE01 by default uplinkthe sensor data every 20 minutes.User can change this interval by AT Commandor LoRaWAN Downlink Command. Seethis link: [[Change UplinkInterval>>doc:Main.EndDevice AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]300 +In this mode, uplink payload includes in total 14 bytes 310 310 311 311 303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 +|=(% style="width: 60px;" %)((( 305 +**Size(bytes)** 306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 312 312 313 -== 2.5 Downlink Payload == 309 +((( 310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 +))) 314 314 315 -By default, LSE50 prints the downlink payload to console port. 316 316 317 -[[image: image-20220606165544-8.png]]314 +[[image:1657331036973-987.png]] 318 318 319 - 320 320 ((( 321 - **Examples:**317 +The payload is ASCII string, representative same HEX: 322 322 ))) 323 323 324 324 ((( 325 - 321 +0x72403155615900640c6c19029200 where: 326 326 ))) 327 327 328 328 * ((( 329 - **SetTDC**325 +Device ID: 0x724031556159 = 724031556159 330 330 ))) 331 - 332 -((( 333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +* ((( 328 +Version: 0x0064=100=1.0.0 334 334 ))) 335 335 336 -((( 337 - Payload:100001ETDC=30S331 +* ((( 332 +BAT: 0x0c6c = 3180 mV = 3.180V 338 338 ))) 339 - 340 -((( 341 -Payload: 01 00 00 3C TDC=60S 334 +* ((( 335 +Signal: 0x19 = 25 342 342 ))) 343 - 344 -((( 345 - 337 +* ((( 338 +Distance: 0x0292= 658 mm 346 346 ))) 347 - 348 348 * ((( 349 - **Reset**341 +Interrupt: 0x00 = 0 350 350 ))) 351 351 352 -((( 353 -If payload = 0x04FF, it will reset the LSE01 354 -))) 355 355 356 356 357 -* **CFM** 358 358 359 - DownlinkPayload:05000001, SetAT+CFM=1or05000000 , setAT+CFM=0347 +== 2.4 Payload Explanation and Sensor Interface == 360 360 361 361 350 +=== 2.4.1 Device ID === 362 362 363 -== 2.6 Show Data in DataCake IoT Server == 352 +((( 353 +By default, the Device ID equal to the last 6 bytes of IMEI. 354 +))) 364 364 365 365 ((( 366 - [[DATACAKE>>url:https://datacake.co/]] providesahumanfriendlyinterfacetoshowthesensor data,once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnect to TTN andseethedata inDATACAKE. Below arethe steps:357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 367 367 ))) 368 368 369 369 ((( 370 - 361 +**Example:** 371 371 ))) 372 372 373 373 ((( 374 - **Step1**: Be sure that your device is programmed and properly connected to the network at this time.365 +AT+DEUI=A84041F15612 375 375 ))) 376 376 377 377 ((( 378 - **Step2**: To configuretheApplicationtoforwarddatatoDATACAKE you willneedtoaddintegration.Toaddthe DATACAKEintegration, performthefollowing steps:369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 379 379 ))) 380 380 381 381 382 -[[image:1654505857935-743.png]] 383 383 374 +=== 2.4.2 Version Info === 384 384 385 -[[image:1654505874829-548.png]] 376 +((( 377 +Specify the software version: 0x64=100, means firmware version 1.00. 378 +))) 386 386 387 -Step 3: Create an account or log in Datacake. 380 +((( 381 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 382 +))) 388 388 389 -Step 4: Search the LSE01 and add DevEUI. 390 390 391 391 392 - [[image:1654505905236-553.png]]386 +=== 2.4.3 Battery Info === 393 393 388 +((( 389 +Check the battery voltage for LSE01. 390 +))) 394 394 395 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 392 +((( 393 +Ex1: 0x0B45 = 2885mV 394 +))) 396 396 397 -[[image:1654505925508-181.png]] 396 +((( 397 +Ex2: 0x0B49 = 2889mV 398 +))) 398 398 399 399 400 400 401 -== 2. 7FrequencyPlans==402 +=== 2.4.4 Signal Strength === 402 402 403 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 404 +((( 405 +NB-IoT Network signal Strength. 406 +))) 404 404 408 +((( 409 +**Ex1: 0x1d = 29** 410 +))) 405 405 406 -=== 2.7.1 EU863-870 (EU868) === 412 +((( 413 +(% style="color:blue" %)**0**(%%) -113dBm or less 414 +))) 407 407 408 -(% style="color:#037691" %)** Uplink:** 416 +((( 417 +(% style="color:blue" %)**1**(%%) -111dBm 418 +))) 409 409 410 -868.1 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 +))) 411 411 412 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 424 +((( 425 +(% style="color:blue" %)**31** (%%) -51dBm or greater 426 +))) 413 413 414 -868.5 - SF7BW125 to SF12BW125 428 +((( 429 +(% style="color:blue" %)**99** (%%) Not known or not detectable 430 +))) 415 415 416 -867.1 - SF7BW125 to SF12BW125 417 417 418 -867.3 - SF7BW125 to SF12BW125 419 419 420 - 867.5-SF7BW125toSF12BW125434 +=== 2.4.5 Soil Moisture === 421 421 422 -867.7 - SF7BW125 to SF12BW125 436 +((( 437 +((( 438 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 439 +))) 440 +))) 423 423 424 -867.9 - SF7BW125 to SF12BW125 442 +((( 443 +((( 444 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 445 +))) 446 +))) 425 425 426 -868.8 - FSK 448 +((( 449 + 450 +))) 427 427 452 +((( 453 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 454 +))) 428 428 429 -(% style="color:#037691" %)** Downlink:** 430 430 431 -Uplink channels 1-9 (RX1) 432 432 433 - 869.525- SF9BW125(RX2 downlink only)458 +=== 2.4.6 Soil Temperature === 434 434 460 +((( 461 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 462 +))) 435 435 464 +((( 465 +**Example**: 466 +))) 436 436 437 -=== 2.7.2 US902-928(US915) === 468 +((( 469 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 470 +))) 438 438 439 -Used in USA, Canada and South America. Default use CHE=2 472 +((( 473 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 474 +))) 440 440 441 -(% style="color:#037691" %)**Uplink:** 442 442 443 -903.9 - SF7BW125 to SF10BW125 444 444 445 - 904.1-SF7BW125toSF10BW125478 +=== 2.4.7 Soil Conductivity (EC) === 446 446 447 -904.3 - SF7BW125 to SF10BW125 480 +((( 481 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 482 +))) 448 448 449 -904.5 - SF7BW125 to SF10BW125 484 +((( 485 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 486 +))) 450 450 451 -904.7 - SF7BW125 to SF10BW125 488 +((( 489 +Generally, the EC value of irrigation water is less than 800uS / cm. 490 +))) 452 452 453 -904.9 - SF7BW125 to SF10BW125 492 +((( 493 + 494 +))) 454 454 455 -905.1 - SF7BW125 to SF10BW125 496 +((( 497 + 498 +))) 456 456 457 - 905.3- SF7BW125toSF10BW125500 +=== 2.4.8 Digital Interrupt === 458 458 502 +((( 503 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 504 +))) 459 459 460 -(% style="color:#037691" %)**Downlink:** 506 +((( 507 +The command is: 508 +))) 461 461 462 -923.3 - SF7BW500 to SF12BW500 510 +((( 511 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 +))) 463 463 464 -923.9 - SF7BW500 to SF12BW500 465 465 466 -924.5 - SF7BW500 to SF12BW500 515 +((( 516 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 517 +))) 467 467 468 -925.1 - SF7BW500 to SF12BW500 469 469 470 -925.7 - SF7BW500 to SF12BW500 520 +((( 521 +Example: 522 +))) 471 471 472 -926.3 - SF7BW500 to SF12BW500 524 +((( 525 +0x(00): Normal uplink packet. 526 +))) 473 473 474 -926.9 - SF7BW500 to SF12BW500 528 +((( 529 +0x(01): Interrupt Uplink Packet. 530 +))) 475 475 476 -927.5 - SF7BW500 to SF12BW500 477 477 478 -923.3 - SF12BW500(RX2 downlink only) 479 479 534 +=== 2.4.9 +5V Output === 480 480 536 +((( 537 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 538 +))) 481 481 482 -=== 2.7.3 CN470-510 (CN470) === 483 483 484 -Used in China, Default use CHE=1 541 +((( 542 +The 5V output time can be controlled by AT Command. 543 +))) 485 485 486 -(% style="color:#037691" %)**Uplink:** 545 +((( 546 +(% style="color:blue" %)**AT+5VT=1000** 547 +))) 487 487 488 -486.3 - SF7BW125 to SF12BW125 549 +((( 550 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 551 +))) 489 489 490 -486.5 - SF7BW125 to SF12BW125 491 491 492 -486.7 - SF7BW125 to SF12BW125 493 493 494 - 486.9- SF7BW125toSF12BW125555 +== 2.5 Downlink Payload == 495 495 496 - 487.1-SF7BW125toSF12BW125557 +By default, NSE01 prints the downlink payload to console port. 497 497 498 - 487.3- SF7BW125to SF12BW125559 +[[image:image-20220708133731-5.png]] 499 499 500 -487.5 - SF7BW125 to SF12BW125 501 501 502 -487.7 - SF7BW125 to SF12BW125 562 +((( 563 +(% style="color:blue" %)**Examples:** 564 +))) 503 503 566 +((( 567 + 568 +))) 504 504 505 -(% style="color:#037691" %)**Downlink:** 570 +* ((( 571 +(% style="color:blue" %)**Set TDC** 572 +))) 506 506 507 -506.7 - SF7BW125 to SF12BW125 574 +((( 575 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 576 +))) 508 508 509 -506.9 - SF7BW125 to SF12BW125 578 +((( 579 +Payload: 01 00 00 1E TDC=30S 580 +))) 510 510 511 -507.1 - SF7BW125 to SF12BW125 582 +((( 583 +Payload: 01 00 00 3C TDC=60S 584 +))) 512 512 513 -507.3 - SF7BW125 to SF12BW125 586 +((( 587 + 588 +))) 514 514 515 -507.5 - SF7BW125 to SF12BW125 590 +* ((( 591 +(% style="color:blue" %)**Reset** 592 +))) 516 516 517 -507.7 - SF7BW125 to SF12BW125 594 +((( 595 +If payload = 0x04FF, it will reset the NSE01 596 +))) 518 518 519 -507.9 - SF7BW125 to SF12BW125 520 520 521 - 508.1-SF7BW125toSF12BW125599 +* (% style="color:blue" %)**INTMOD** 522 522 523 -505.3 - SF12BW125 (RX2 downlink only) 601 +((( 602 +Downlink Payload: 06000003, Set AT+INTMOD=3 603 +))) 524 524 525 525 526 526 527 -== =2.7.4AU915-928(AU915)===607 +== 2.6 LED Indicator == 528 528 529 -Default use CHE=2 609 +((( 610 +The NSE01 has an internal LED which is to show the status of different state. 530 530 531 -(% style="color:#037691" %)**Uplink:** 532 532 533 -916.8 - SF7BW125 to SF12BW125 613 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 614 +* Then the LED will be on for 1 second means device is boot normally. 615 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 616 +* For each uplink probe, LED will be on for 500ms. 617 +))) 534 534 535 -917.0 - SF7BW125 to SF12BW125 536 536 537 -917.2 - SF7BW125 to SF12BW125 538 538 539 -917.4 - SF7BW125 to SF12BW125 540 540 541 - 917.6- SF7BW125to SF12BW125622 +== 2.7 Installation in Soil == 542 542 543 - 917.8- SF7BW125toSF12BW125624 +__**Measurement the soil surface**__ 544 544 545 -918.0 - SF7BW125 to SF12BW125 626 +((( 627 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 628 +))) 546 546 547 - 918.2 - SF7BW125to SF12BW125630 +[[image:1657259653666-883.png]] 548 548 549 549 550 -(% style="color:#037691" %)**Downlink:** 633 +((( 634 + 551 551 552 -923.3 - SF7BW500 to SF12BW500 636 +((( 637 +Dig a hole with diameter > 20CM. 638 +))) 553 553 554 -923.9 - SF7BW500 to SF12BW500 640 +((( 641 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 642 +))) 643 +))) 555 555 556 - 924.5- SF7BW500 to SF12BW500645 +[[image:1654506665940-119.png]] 557 557 558 -925.1 - SF7BW500 to SF12BW500 647 +((( 648 + 649 +))) 559 559 560 -925.7 - SF7BW500 to SF12BW500 561 561 562 - 926.3- SF7BW500toSF12BW500652 +== 2.8 Firmware Change Log == 563 563 564 -926.9 - SF7BW500 to SF12BW500 565 565 566 - 927.5-SF7BW500toSF12BW500655 +Download URL & Firmware Change log 567 567 568 - 923.3-F12BW500(RX2downlinkonly)657 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 569 569 570 570 660 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 571 571 572 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 573 573 574 -(% style="color:#037691" %)**Default Uplink channel:** 575 575 576 - 923.2- SF7BW125toSF10BW125664 +== 2.9 Battery Analysis == 577 577 578 - 923.4 - SF7BW125toSF10BW125666 +=== 2.9.1 Battery Type === 579 579 580 580 581 -(% style="color:#037691" %)**Additional Uplink Channel**: 582 - 583 -(OTAA mode, channel added by JoinAccept message) 584 - 585 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 586 - 587 -922.2 - SF7BW125 to SF10BW125 588 - 589 -922.4 - SF7BW125 to SF10BW125 590 - 591 -922.6 - SF7BW125 to SF10BW125 592 - 593 -922.8 - SF7BW125 to SF10BW125 594 - 595 -923.0 - SF7BW125 to SF10BW125 596 - 597 -922.0 - SF7BW125 to SF10BW125 598 - 599 - 600 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 601 - 602 -923.6 - SF7BW125 to SF10BW125 603 - 604 -923.8 - SF7BW125 to SF10BW125 605 - 606 -924.0 - SF7BW125 to SF10BW125 607 - 608 -924.2 - SF7BW125 to SF10BW125 609 - 610 -924.4 - SF7BW125 to SF10BW125 611 - 612 -924.6 - SF7BW125 to SF10BW125 613 - 614 - 615 -(% style="color:#037691" %)** Downlink:** 616 - 617 -Uplink channels 1-8 (RX1) 618 - 619 -923.2 - SF10BW125 (RX2) 620 - 621 - 622 - 623 -=== 2.7.6 KR920-923 (KR920) === 624 - 625 -Default channel: 626 - 627 -922.1 - SF7BW125 to SF12BW125 628 - 629 -922.3 - SF7BW125 to SF12BW125 630 - 631 -922.5 - SF7BW125 to SF12BW125 632 - 633 - 634 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 635 - 636 -922.1 - SF7BW125 to SF12BW125 637 - 638 -922.3 - SF7BW125 to SF12BW125 639 - 640 -922.5 - SF7BW125 to SF12BW125 641 - 642 -922.7 - SF7BW125 to SF12BW125 643 - 644 -922.9 - SF7BW125 to SF12BW125 645 - 646 -923.1 - SF7BW125 to SF12BW125 647 - 648 -923.3 - SF7BW125 to SF12BW125 649 - 650 - 651 -(% style="color:#037691" %)**Downlink:** 652 - 653 -Uplink channels 1-7(RX1) 654 - 655 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 656 - 657 - 658 - 659 -=== 2.7.7 IN865-867 (IN865) === 660 - 661 -(% style="color:#037691" %)** Uplink:** 662 - 663 -865.0625 - SF7BW125 to SF12BW125 664 - 665 -865.4025 - SF7BW125 to SF12BW125 666 - 667 -865.9850 - SF7BW125 to SF12BW125 668 - 669 - 670 -(% style="color:#037691" %) **Downlink:** 671 - 672 -Uplink channels 1-3 (RX1) 673 - 674 -866.550 - SF10BW125 (RX2) 675 - 676 - 677 - 678 - 679 -== 2.8 LED Indicator == 680 - 681 -The LSE01 has an internal LED which is to show the status of different state. 682 - 683 -* Blink once when device power on. 684 -* Solid ON for 5 seconds once device successful Join the network. 685 -* Blink once when device transmit a packet. 686 - 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 670 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 - 704 704 ((( 705 - Dig aholewithdiameter>20CM.675 +The battery is designed to last for several years depends on the actually use environment and update interval. 706 706 ))) 707 707 708 -((( 709 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 -))) 711 711 712 - 713 -== 2.10 Firmware Change Log == 714 - 715 715 ((( 716 - **Firmware downloadlink:**680 +The battery related documents as below: 717 717 ))) 718 718 719 - (((720 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]721 - )))683 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 684 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 685 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 722 722 723 723 ((( 724 - 688 +[[image:image-20220708140453-6.png]] 725 725 ))) 726 726 727 -((( 728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 -))) 730 730 731 -((( 732 - 733 -))) 734 734 735 -((( 736 -**V1.0.** 737 -))) 693 +=== 2.9.2 Power consumption Analyze === 738 738 739 739 ((( 740 - Release696 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 741 741 ))) 742 742 743 743 744 -== 2.11 Battery Analysis == 745 - 746 -=== 2.11.1 Battery Type === 747 - 748 748 ((( 749 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.701 +Instruction to use as below: 750 750 ))) 751 751 752 752 ((( 753 - Thebatterys designedlastforrethan5 years fortheSN50.705 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 754 754 ))) 755 755 708 + 756 756 ((( 757 -((( 758 -The battery-related documents are as below: 710 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 759 759 ))) 760 -))) 761 761 762 762 * ((( 763 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],714 +Product Model 764 764 ))) 765 765 * ((( 766 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],717 +Uplink Interval 767 767 ))) 768 768 * ((( 769 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]720 +Working Mode 770 770 ))) 771 771 772 - [[image:image-20220606171726-9.png]] 723 +((( 724 +And the Life expectation in difference case will be shown on the right. 725 +))) 773 773 727 +[[image:image-20220708141352-7.jpeg]] 774 774 775 775 776 -=== 2.11.2 Battery Note === 777 777 731 +=== 2.9.3 Battery Note === 732 + 778 778 ((( 779 779 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 780 780 ))) ... ... @@ -781,303 +781,176 @@ 781 781 782 782 783 783 784 -=== 2. 11.3Replace the battery ===739 +=== 2.9.4 Replace the battery === 785 785 786 786 ((( 787 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.742 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 788 788 ))) 789 789 745 + 746 + 747 += 3. Access NB-IoT Module = 748 + 790 790 ((( 791 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.750 +Users can directly access the AT command set of the NB-IoT module. 792 792 ))) 793 793 794 794 ((( 795 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)754 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 796 796 ))) 797 797 757 +[[image:1657261278785-153.png]] 798 798 799 799 800 -= 3. Using the AT Commands = 801 801 802 -= =3.1AccessAT Commands ==761 += 4. Using the AT Commands = 803 803 763 +== 4.1 Access AT Commands == 804 804 805 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.765 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 806 806 807 -[[image:1654501986557-872.png||height="391" width="800"]] 808 808 768 +AT+<CMD>? : Help on <CMD> 809 809 810 - Orifyouhavebelowboard,usebelowconnection:770 +AT+<CMD> : Run <CMD> 811 811 772 +AT+<CMD>=<value> : Set the value 812 812 813 - [[image:1654502005655-729.png||height="503"width="801"]]774 +AT+<CMD>=? : Get the value 814 814 815 815 816 - 817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 - 819 - 820 - [[image:1654502050864-459.png||height="564" width="806"]] 821 - 822 - 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 - 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 - 834 - 835 835 (% style="color:#037691" %)**General Commands**(%%) 836 836 837 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention779 +AT : Attention 838 838 839 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help781 +AT? : Short Help 840 840 841 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset783 +ATZ : MCU Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval785 +AT+TDC : Application Data Transmission Interval 844 844 787 +AT+CFG : Print all configurations 845 845 846 - (%style="color:#037691"%)**Keys,IDsand EUIs management**789 +AT+CFGMOD : Working mode selection 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI791 +AT+INTMOD : Set the trigger interrupt mode 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey793 +AT+5VT : Set extend the time of 5V power 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key795 +AT+PRO : Choose agreement 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress797 +AT+WEIGRE : Get weight or set weight to 0 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI799 +AT+WEIGAP : Get or Set the GapValue of weight 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)801 +AT+RXDL : Extend the sending and receiving time 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network803 +AT+CNTFAC : Get or set counting parameters 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode805 +AT+SERVADDR : Server Address 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 865 865 866 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network808 +(% style="color:#037691" %)**COAP Management** 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode810 +AT+URI : Resource parameters 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format813 +(% style="color:#037691" %)**UDP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat815 +AT+CFM : Upload confirmation mode (only valid for UDP) 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data818 +(% style="color:#037691" %)**MQTT Management** 879 879 820 +AT+CLIENT : Get or Set MQTT client 880 880 881 - (%style="color:#037691"%)**LoRaNetworkManagement**822 +AT+UNAME : Get or Set MQTT Username 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate824 +AT+PWD : Get or Set MQTT password 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA826 +AT+PUBTOPIC : Get or Set MQTT publish topic 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting828 +AT+SUBTOPIC : Get or Set MQTT subscription topic 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink831 +(% style="color:#037691" %)**Information** 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink833 +AT+FDR : Factory Data Reset 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1835 +AT+PWORD : Serial Access Password 896 896 897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 900 900 901 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1839 += 5. FAQ = 902 902 903 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2841 +== 5.1 How to Upgrade Firmware == 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 - 909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 - 911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 - 913 - 914 -(% style="color:#037691" %)**Information** 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 - 928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 - 930 - 931 -= 4. FAQ = 932 - 933 -== 4.1 How to change the LoRa Frequency Bands/Region? == 934 - 935 935 ((( 936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 -When downloading the images, choose the required image file for download. 845 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 938 938 ))) 939 939 940 940 ((( 941 - 849 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 942 942 ))) 943 943 944 944 ((( 945 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.853 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 946 946 ))) 947 947 948 -((( 949 - 950 -))) 951 951 952 -((( 953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 -))) 955 955 956 -((( 957 - 958 -))) 858 +== 5.2 Can I calibrate NSE01 to different soil types? == 959 959 960 960 ((( 961 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.861 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 962 962 ))) 963 963 964 -[[image:image-20220606154726-3.png]] 965 965 865 += 6. Trouble Shooting = 966 966 967 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:867 +== 6.1 Connection problem when uploading firmware == 968 968 969 -* 903.9 - SF7BW125 to SF10BW125 970 -* 904.1 - SF7BW125 to SF10BW125 971 -* 904.3 - SF7BW125 to SF10BW125 972 -* 904.5 - SF7BW125 to SF10BW125 973 -* 904.7 - SF7BW125 to SF10BW125 974 -* 904.9 - SF7BW125 to SF10BW125 975 -* 905.1 - SF7BW125 to SF10BW125 976 -* 905.3 - SF7BW125 to SF10BW125 977 -* 904.6 - SF8BW500 978 978 979 979 ((( 980 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:871 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 981 981 ))) 982 982 983 -(% class=" boxinfomessage" %)874 +(% class="wikigeneratedid" %) 984 984 ((( 985 -**AT+CHE=2** 986 -))) 987 - 988 -(% class="box infomessage" %) 989 -((( 990 -**ATZ** 991 -))) 992 - 993 -((( 994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 -))) 996 - 997 -((( 998 998 999 999 ))) 1000 1000 1001 -((( 1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 -))) 1004 1004 1005 - [[image:image-20220606154825-4.png]]880 +== 6.2 AT Command input doesn't work == 1006 1006 1007 - 1008 - 1009 -= 5. Trouble Shooting = 1010 - 1011 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1012 - 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 - 1015 - 1016 -== 5.2 AT Command input doesn’t work == 1017 - 1018 1018 ((( 1019 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 -))) 883 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1021 1021 1022 - 1023 -== 5.3 Device rejoin in at the second uplink packet == 1024 - 1025 -(% style="color:#4f81bd" %)**Issue describe as below:** 1026 - 1027 -[[image:1654500909990-784.png]] 1028 - 1029 - 1030 -(% style="color:#4f81bd" %)**Cause for this issue:** 1031 - 1032 -((( 1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 885 + 1034 1034 ))) 1035 1035 1036 1036 1037 - (% style="color:#4f81bd"%)**Solution:**889 += 7. Order Info = 1038 1038 1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1040 1040 1041 - [[image:1654500929571-736.png||height="458" width="832"]]892 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1042 1042 1043 1043 1044 -= 6. Order Info = 1045 - 1046 - 1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 - 1049 - 1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 - 1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 - 1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 - 1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 - 1066 1066 (% class="wikigeneratedid" %) 1067 1067 ((( 1068 1068 1069 1069 ))) 1070 1070 1071 -= 7. Packing Info =900 += 8. Packing Info = 1072 1072 1073 1073 ((( 1074 1074 1075 1075 1076 1076 (% style="color:#037691" %)**Package Includes**: 1077 -))) 1078 1078 1079 -* (((1080 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1907 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 908 +* External antenna x 1 1081 1081 ))) 1082 1082 1083 1083 ((( ... ... @@ -1084,26 +1084,19 @@ 1084 1084 1085 1085 1086 1086 (% style="color:#037691" %)**Dimension and weight**: 1087 -))) 1088 1088 1089 -* (((1090 - DeviceSize:cm916 +* Size: 195 x 125 x 55 mm 917 +* Weight: 420g 1091 1091 ))) 1092 -* ((( 1093 -Device Weight: g 1094 -))) 1095 -* ((( 1096 -Package Size / pcs : cm 1097 -))) 1098 -* ((( 1099 -Weight / pcs : g 1100 1100 920 +((( 1101 1101 922 + 923 + 924 + 1102 1102 ))) 1103 1103 1104 -= 8. Support =927 += 9. Support = 1105 1105 1106 1106 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1107 1107 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1108 - 1109 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content