Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 32 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,782 +1,728 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 66 66 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 75 75 76 -== 1.5 Firmware Change log == 77 77 78 +(% style="color:#037691" %)**Battery:** 78 78 79 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 80 80 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 103 103 104 104 105 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657246476176-652.png]] 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 - EachLSE01is shipped witha stickerwiththedefault deviceEUI as below:116 += 2. Use NSE01 to communicate with IoT Server = 111 111 112 - [[image:image-20220606163732-6.jpeg]]118 +== 2.1 How it works == 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 115 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 170 -))) 171 - 172 - 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NSE01: 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 130 +[[image:image-20220708101605-2.png]] 205 205 206 206 ((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 - 210 - 211 - 212 -=== 2.3.4 Soil Moisture === 213 - 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 - 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 221 - 222 -((( 223 223 224 224 ))) 225 225 226 -((( 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 -))) 229 229 230 230 138 +== 2.2 Configure the NSE01 == 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 141 +=== 2.2.1 Test Requirement === 237 237 238 -((( 239 -**Example**: 240 -))) 241 241 242 242 ((( 243 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C145 +To use NSE01 in your city, make sure meet below requirements: 244 244 ))) 245 245 246 - (((247 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C248 - )))148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 249 249 250 - 251 - 252 -=== 2.3.6 Soil Conductivity (EC) === 253 - 254 254 ((( 255 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 256 256 ))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 261 261 262 -((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 157 +[[image:1657249419225-449.png]] 265 265 266 -((( 267 - 268 -))) 269 269 270 -((( 271 - 272 -))) 273 273 274 -=== 2. 3.7MOD===161 +=== 2.2.2 Insert SIM card === 275 275 276 -Firmware version at least v2.1 supports changing mode. 277 - 278 -For example, bytes[10]=90 279 - 280 -mod=(bytes[10]>>7)&0x01=1. 281 - 282 - 283 -**Downlink Command:** 284 - 285 -If payload = 0x0A00, workmode=0 286 - 287 -If** **payload =** **0x0A01, workmode=1 288 - 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 - ThepayloaddecoderfunctionforTTNis here:164 +Insert the NB-IoT Card get from your provider. 300 300 ))) 301 301 302 302 ((( 303 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]168 +User need to take out the NB-IoT module and insert the SIM card like below: 304 304 ))) 305 305 306 306 172 +[[image:1657249468462-536.png]] 307 307 308 -== 2.4 Uplink Interval == 309 309 310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 311 311 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 312 312 313 - 314 -== 2.5 Downlink Payload == 315 - 316 -By default, LSE50 prints the downlink payload to console port. 317 - 318 -[[image:image-20220606165544-8.png]] 319 - 320 - 321 321 ((( 322 -**Examples:** 323 -))) 324 - 325 325 ((( 326 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 327 327 ))) 328 - 329 -* ((( 330 -**Set TDC** 331 331 ))) 332 332 333 -((( 334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 -))) 336 336 337 -((( 338 -Payload: 01 00 00 1E TDC=30S 339 -))) 185 +**Connection:** 340 340 341 -((( 342 -Payload: 01 00 00 3C TDC=60S 343 -))) 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 344 344 345 -((( 346 - 347 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 348 348 349 -* ((( 350 -**Reset** 351 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 352 352 353 -((( 354 -If payload = 0x04FF, it will reset the LSE01 355 -))) 356 356 194 +In the PC, use below serial tool settings: 357 357 358 -* **CFM** 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 359 359 360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 361 - 362 - 363 - 364 -== 2.6 Show Data in DataCake IoT Server == 365 - 366 366 ((( 367 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 368 368 ))) 369 369 370 -((( 371 - 372 -))) 206 +[[image:image-20220708110657-3.png]] 373 373 374 374 ((( 375 - **Step 1**:Besure that your deviceisprogrammed and properlyconnectedtothe networkat thistime.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 376 376 ))) 377 377 378 -((( 379 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 380 -))) 381 381 382 382 383 - [[image:1654505857935-743.png]]214 +=== 2.2.4 Use CoAP protocol to uplink data === 384 384 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 385 385 386 -[[image:1654505874829-548.png]] 387 387 388 - Step3: Create an account orlogin Datacake.219 +**Use below commands:** 389 389 390 -Step 4: Search the LSE01 and add DevEUI. 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 391 391 225 +For parameter description, please refer to AT command set 392 392 393 -[[image:1654 505905236-553.png]]227 +[[image:1657249793983-486.png]] 394 394 395 395 396 -After added,the sensordataarrive TTN,itwill alsoarriveandshowin Mydevices.230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 397 397 398 -[[image:1654 505925508-181.png]]232 +[[image:1657249831934-534.png]] 399 399 400 400 401 401 402 -== 2. 7FrequencyPlans==236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 403 403 404 -Th e LSE01 usesOTAA modend below frequencyplansby default. If userwantto use it with differentfrequency plan, pleaserefertheAT commandsets.238 +This feature is supported since firmware version v1.0.1 405 405 406 406 407 -=== 2.7.1 EU863-870 (EU868) === 241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 408 408 409 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249864775-321.png]] 410 410 411 -868.1 - SF7BW125 to SF12BW125 412 412 413 - 868.3 - SF7BW125 to SF12BW125and SF7BW250248 +[[image:1657249930215-289.png]] 414 414 415 -868.5 - SF7BW125 to SF12BW125 416 416 417 -867.1 - SF7BW125 to SF12BW125 418 418 419 - 867.3-SF7BW125toSF12BW125252 +=== 2.2.6 Use MQTT protocol to uplink data === 420 420 421 - 867.5-SF7BW125toSF12BW125254 +This feature is supported since firmware version v110 422 422 423 -867.7 - SF7BW125 to SF12BW125 424 424 425 -867.9 - SF7BW125 to SF12BW125 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 426 426 427 - 868.8-FSK265 +[[image:1657249978444-674.png]] 428 428 429 429 430 - (% style="color:#037691" %)** Downlink:**268 +[[image:1657249990869-686.png]] 431 431 432 -Uplink channels 1-9 (RX1) 433 433 434 -869.525 - SF9BW125 (RX2 downlink only) 271 +((( 272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 +))) 435 435 436 436 437 437 438 -=== 2. 7.2 US902-928(US915)===277 +=== 2.2.7 Use TCP protocol to uplink data === 439 439 440 - UsedinUSA, Canada and South America. DefaultuseCHE=2279 +This feature is supported since firmware version v110 441 441 442 -(% style="color:#037691" %)**Uplink:** 443 443 444 -903.9 - SF7BW125 to SF10BW125 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 445 445 446 - 904.1- SF7BW125to SF10BW125285 +[[image:1657250217799-140.png]] 447 447 448 -904.3 - SF7BW125 to SF10BW125 449 449 450 - 904.5- SF7BW125to SF10BW125288 +[[image:1657250255956-604.png]] 451 451 452 -904.7 - SF7BW125 to SF10BW125 453 453 454 -904.9 - SF7BW125 to SF10BW125 455 455 456 - 905.1-SF7BW125toSF10BW125292 +=== 2.2.8 Change Update Interval === 457 457 458 - 905.3-SF7BW125toSF10BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 459 459 296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 460 460 461 -(% style="color:#037691" %)**Downlink:** 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 462 462 463 -923.3 - SF7BW500 to SF12BW500 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 464 464 465 -923.9 - SF7BW500 to SF12BW500 466 466 467 -924.5 - SF7BW500 to SF12BW500 468 468 469 - 925.1-SF7BW500 toSF12BW500308 +== 2.3 Uplink Payload == 470 470 471 - 925.7-SF7BW500toSF12BW500310 +In this mode, uplink payload includes in total 18 bytes 472 472 473 -926.3 - SF7BW500 to SF12BW500 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 474 474 475 -926.9 - SF7BW500 to SF12BW500 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 476 476 477 -927.5 - SF7BW500 to SF12BW500 478 478 479 - 923.3-SF12BW500(RX2downlink only)323 +[[image:image-20220708111918-4.png]] 480 480 481 481 326 +The payload is ASCII string, representative same HEX: 482 482 483 - === 2.7.3 CN470-510(CN470)===328 +0x72403155615900640c7817075e0a8c02f900 where: 484 484 485 -Used in China, Default use CHE=1 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 486 486 487 -(% style="color:#037691" %)**Uplink:** 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 488 488 489 - 486.3- SF7BW125to SF12BW125340 +== 2.4 Payload Explanation and Sensor Interface == 490 490 491 -486.5 - SF7BW125 to SF12BW125 492 492 493 -4 86.7 - SF7BW125toSF12BW125343 +=== 2.4.1 Device ID === 494 494 495 -486.9 - SF7BW125 to SF12BW125 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 496 496 497 -487.1 - SF7BW125 to SF12BW125 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 498 498 499 -487.3 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 500 500 501 -487.5 - SF7BW125 to SF12BW125 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 502 502 503 -487.7 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 504 504 505 505 506 -(% style="color:#037691" %)**Downlink:** 507 507 508 - 506.7- SF7BW125toSF12BW125367 +=== 2.4.2 Version Info === 509 509 510 -506.9 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 511 511 512 -507.1 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 513 513 514 -507.3 - SF7BW125 to SF12BW125 515 515 516 -507.5 - SF7BW125 to SF12BW125 517 517 518 - 507.7- SF7BW125toSF12BW125379 +=== 2.4.3 Battery Info === 519 519 520 -507.9 - SF7BW125 to SF12BW125 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 521 521 522 -508.1 - SF7BW125 to SF12BW125 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 523 523 524 -505.3 - SF12BW125 (RX2 downlink only) 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 525 525 526 526 527 527 528 -=== 2. 7.4AU915-928(AU915)===395 +=== 2.4.4 Signal Strength === 529 529 530 -Default use CHE=2 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 531 531 532 -(% style="color:#037691" %)**Uplink:** 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 533 533 534 -916.8 - SF7BW125 to SF12BW125 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 535 535 536 -917.0 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 537 537 538 -917.2 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 539 539 540 -917.4 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 541 541 542 -917.6 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 543 543 544 -917.8 - SF7BW125 to SF12BW125 545 545 546 -918.0 - SF7BW125 to SF12BW125 547 547 548 - 918.2- SF7BW125toSF12BW125427 +=== 2.4.5 Soil Moisture === 549 549 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 550 550 551 -(% style="color:#037691" %)**Downlink:** 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 552 552 553 -923.3 - SF7BW500 to SF12BW500 441 +((( 442 + 443 +))) 554 554 555 -923.9 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 556 556 557 -924.5 - SF7BW500 to SF12BW500 558 558 559 -925.1 - SF7BW500 to SF12BW500 560 560 561 - 925.7-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 562 562 563 -926.3 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 564 564 565 -926.9 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 566 566 567 -927.5 - SF7BW500 to SF12BW500 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 568 568 569 -923.3 - SF12BW500(RX2 downlink only) 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 570 570 571 571 572 572 573 -=== 2. 7.5AS920-923&AS923-925(AS923) ===471 +=== 2.4.7 Soil Conductivity (EC) === 574 574 575 -(% style="color:#037691" %)**Default Uplink channel:** 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 576 576 577 -923.2 - SF7BW125 to SF10BW125 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 578 578 579 -923.4 - SF7BW125 to SF10BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 580 580 485 +((( 486 + 487 +))) 581 581 582 -(% style="color:#037691" %)**Additional Uplink Channel**: 489 +((( 490 + 491 +))) 583 583 584 - (OTAAmode,channeladded by JoinAcceptmessage)493 +=== 2.4.8 Digital Interrupt === 585 585 586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 587 587 588 -922.2 - SF7BW125 to SF10BW125 499 +((( 500 +The command is: 501 +))) 589 589 590 -922.4 - SF7BW125 to SF10BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 591 591 592 -922.6 - SF7BW125 to SF10BW125 593 593 594 -922.8 - SF7BW125 to SF10BW125 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 595 595 596 -923.0 - SF7BW125 to SF10BW125 597 597 598 -922.0 - SF7BW125 to SF10BW125 513 +((( 514 +Example: 515 +))) 599 599 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 600 600 601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 602 602 603 -923.6 - SF7BW125 to SF10BW125 604 604 605 -923.8 - SF7BW125 to SF10BW125 606 606 607 - 924.0- SF7BW125 toSF10BW125527 +=== 2.4.9 +5V Output === 608 608 609 -924.2 - SF7BW125 to SF10BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 610 610 611 -924.4 - SF7BW125 to SF10BW125 612 612 613 -924.6 - SF7BW125 to SF10BW125 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 614 614 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 615 615 616 -(% style="color:#037691" %)** Downlink:** 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 617 617 618 -Uplink channels 1-8 (RX1) 619 619 620 -923.2 - SF10BW125 (RX2) 621 621 548 +== 2.5 Downlink Payload == 622 622 550 +By default, NSE01 prints the downlink payload to console port. 623 623 624 - ===2.7.6 KR920-923 (KR920) ===552 +[[image:image-20220708133731-5.png]] 625 625 626 -Default channel: 627 627 628 -922.1 - SF7BW125 to SF12BW125 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 629 629 630 -922.3 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 631 631 632 -922.5 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 633 633 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 634 634 635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 636 636 637 -922.1 - SF7BW125 to SF12BW125 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 638 638 639 -922.3 - SF7BW125 to SF12BW125 579 +((( 580 + 581 +))) 640 640 641 -922.5 - SF7BW125 to SF12BW125 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 642 642 643 -922.7 - SF7BW125 to SF12BW125 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 644 644 645 -922.9 - SF7BW125 to SF12BW125 646 646 647 - 923.1-SF7BW125toSF12BW125592 +* (% style="color:blue" %)**INTMOD** 648 648 649 -923.3 - SF7BW125 to SF12BW125 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 650 650 651 651 652 -(% style="color:#037691" %)**Downlink:** 653 653 654 - Uplinkchannels1-7(RX1)600 +== 2.6 LED Indicator == 655 655 656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 657 657 658 658 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 659 659 660 -=== 2.7.7 IN865-867 (IN865) === 661 661 662 -(% style="color:#037691" %)** Uplink:** 663 663 664 -865.0625 - SF7BW125 to SF12BW125 665 665 666 - 865.4025- SF7BW125to SF12BW125615 +== 2.7 Installation in Soil == 667 667 668 - 865.9850- SF7BW125toSF12BW125617 +__**Measurement the soil surface**__ 669 669 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 670 670 671 - (% style="color:#037691" %) **Downlink:**623 +[[image:1657259653666-883.png]] 672 672 673 -Uplink channels 1-3 (RX1) 674 674 675 -866.550 - SF10BW125 (RX2) 626 +((( 627 + 676 676 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 677 677 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 678 678 638 +[[image:1654506665940-119.png]] 679 679 680 -== 2.8 LED Indicator == 640 +((( 641 + 642 +))) 681 681 682 -The LSE01 has an internal LED which is to show the status of different state. 683 683 684 -* Blink once when device power on. 685 -* Solid ON for 5 seconds once device successful Join the network. 686 -* Blink once when device transmit a packet. 645 +== 2.8 Firmware Change Log == 687 687 688 688 648 +Download URL & Firmware Change log 689 689 690 - == 2.9 InstallationSoil==650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 691 691 692 -**Measurement the soil surface** 693 693 653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 694 694 695 -[[image:1654506634463-199.png]] 696 696 697 -((( 698 -((( 699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 700 -))) 701 -))) 702 702 657 +== 2.9 Battery Analysis == 703 703 704 - [[image:1654506665940-119.png]]659 +=== 2.9.1 Battery Type === 705 705 706 -((( 707 -Dig a hole with diameter > 20CM. 708 -))) 709 709 710 710 ((( 711 - Horizontalinserttheprobe tothesoilandfilltheholeforlongtermmeasurement.663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 712 712 ))) 713 713 714 714 715 -== 2.10 Firmware Change Log == 716 - 717 717 ((( 718 - **Firmware downloadlink:**668 +The battery is designed to last for several years depends on the actually use environment and update interval. 719 719 ))) 720 720 721 -((( 722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 723 -))) 724 724 725 725 ((( 726 - 673 +The battery related documents as below: 727 727 ))) 728 728 729 - (((730 -* *FirmwareUpgrade Method: **[[FirmwareUpgradeInstruction>>doc:Main.Firmware Upgrade Instructionfor STM32 baseoducts.WebHome]]731 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 732 732 733 733 ((( 734 - 681 +[[image:image-20220708140453-6.png]] 735 735 ))) 736 736 737 -((( 738 -**V1.0.** 739 -))) 740 740 685 + 686 +=== 2.9.2 Power consumption Analyze === 687 + 741 741 ((( 742 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 743 743 ))) 744 744 745 745 746 -== 2.11 Battery Analysis == 747 - 748 -=== 2.11.1 Battery Type === 749 - 750 750 ((( 751 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 752 752 ))) 753 753 754 754 ((( 755 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 756 756 ))) 757 757 701 + 758 758 ((( 759 -((( 760 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 761 761 ))) 762 -))) 763 763 764 764 * ((( 765 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],707 +Product Model 766 766 ))) 767 767 * ((( 768 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],710 +Uplink Interval 769 769 ))) 770 770 * ((( 771 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]713 +Working Mode 772 772 ))) 773 773 774 - [[image:image-20220606171726-9.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 775 775 720 +[[image:image-20220708141352-7.jpeg]] 776 776 777 777 778 -=== 2.11.2 Battery Note === 779 779 724 +=== 2.9.3 Battery Note === 725 + 780 780 ((( 781 781 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 782 782 ))) ... ... @@ -783,303 +783,176 @@ 783 783 784 784 785 785 786 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 787 787 788 788 ((( 789 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 790 790 ))) 791 791 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 792 792 ((( 793 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 794 794 ))) 795 795 796 796 ((( 797 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 798 798 ))) 799 799 750 +[[image:1657261278785-153.png]] 800 800 801 801 802 -= 3. Using the AT Commands = 803 803 804 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 805 805 756 +== 4.1 Access AT Commands == 806 806 807 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 808 808 809 -[[image:1654501986557-872.png||height="391" width="800"]] 810 810 761 +AT+<CMD>? : Help on <CMD> 811 811 812 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 813 813 765 +AT+<CMD>=<value> : Set the value 814 814 815 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 816 816 817 817 818 - 819 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 820 - 821 - 822 - [[image:1654502050864-459.png||height="564" width="806"]] 823 - 824 - 825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 826 - 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 835 - 836 - 837 837 (% style="color:#037691" %)**General Commands**(%%) 838 838 839 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 840 840 841 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 842 842 843 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 846 846 780 +AT+CFG : Print all configurations 847 847 848 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 867 867 868 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 873 873 874 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 875 875 876 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 877 877 878 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 879 879 880 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 881 881 813 +AT+CLIENT : Get or Set MQTT client 882 882 883 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 890 890 891 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 892 892 893 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 896 896 897 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 902 902 903 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 904 904 905 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 908 908 909 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 910 - 911 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 912 - 913 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 914 - 915 - 916 -(% style="color:#037691" %)**Information** 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 927 - 928 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 929 - 930 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 931 - 932 - 933 -= 4. FAQ = 934 - 935 -== 4.1 How to change the LoRa Frequency Bands/Region? == 936 - 937 937 ((( 938 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 939 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 940 940 ))) 941 941 942 942 ((( 943 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 944 944 ))) 945 945 946 946 ((( 947 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 948 948 ))) 949 949 950 -((( 951 - 952 -))) 953 953 954 -((( 955 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 956 -))) 957 957 958 -((( 959 - 960 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 961 961 962 962 ((( 963 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 964 964 ))) 965 965 966 -[[image:image-20220606154726-3.png]] 967 967 858 += 6. Trouble Shooting = 968 968 969 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 970 970 971 -* 903.9 - SF7BW125 to SF10BW125 972 -* 904.1 - SF7BW125 to SF10BW125 973 -* 904.3 - SF7BW125 to SF10BW125 974 -* 904.5 - SF7BW125 to SF10BW125 975 -* 904.7 - SF7BW125 to SF10BW125 976 -* 904.9 - SF7BW125 to SF10BW125 977 -* 905.1 - SF7BW125 to SF10BW125 978 -* 905.3 - SF7BW125 to SF10BW125 979 -* 904.6 - SF8BW500 980 980 981 981 ((( 982 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 983 983 ))) 984 984 985 -(% class=" boxinfomessage" %)867 +(% class="wikigeneratedid" %) 986 986 ((( 987 -**AT+CHE=2** 988 -))) 989 - 990 -(% class="box infomessage" %) 991 -((( 992 -**ATZ** 993 -))) 994 - 995 -((( 996 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 997 -))) 998 - 999 -((( 1000 1000 1001 1001 ))) 1002 1002 1003 -((( 1004 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1005 -))) 1006 1006 1007 - [[image:image-20220606154825-4.png]]873 +== 6.2 AT Command input doesn't work == 1008 1008 1009 - 1010 - 1011 -= 5. Trouble Shooting = 1012 - 1013 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1014 - 1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1016 - 1017 - 1018 -== 5.2 AT Command input doesn’t work == 1019 - 1020 1020 ((( 1021 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1022 -))) 876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1023 1023 1024 - 1025 -== 5.3 Device rejoin in at the second uplink packet == 1026 - 1027 -(% style="color:#4f81bd" %)**Issue describe as below:** 1028 - 1029 -[[image:1654500909990-784.png]] 1030 - 1031 - 1032 -(% style="color:#4f81bd" %)**Cause for this issue:** 1033 - 1034 -((( 1035 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1036 1036 ))) 1037 1037 1038 1038 1039 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1040 1040 1041 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1042 1042 1043 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1044 1044 1045 1045 1046 -= 6. Order Info = 1047 - 1048 - 1049 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1050 - 1051 - 1052 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1053 - 1054 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1055 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1056 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1057 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1058 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1059 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1060 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1061 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1062 - 1063 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1064 - 1065 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1066 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1067 - 1068 1068 (% class="wikigeneratedid" %) 1069 1069 ((( 1070 1070 1071 1071 ))) 1072 1072 1073 -= 7. Packing Info =893 += 8. Packing Info = 1074 1074 1075 1075 ((( 1076 1076 1077 1077 1078 1078 (% style="color:#037691" %)**Package Includes**: 1079 -))) 1080 1080 1081 -* (((1082 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1083 1083 ))) 1084 1084 1085 1085 ((( ... ... @@ -1086,26 +1086,19 @@ 1086 1086 1087 1087 1088 1088 (% style="color:#037691" %)**Dimension and weight**: 1089 -))) 1090 1090 1091 -* (((1092 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1093 1093 ))) 1094 -* ((( 1095 -Device Weight: g 1096 -))) 1097 -* ((( 1098 -Package Size / pcs : cm 1099 -))) 1100 -* ((( 1101 -Weight / pcs : g 1102 1102 913 +((( 1103 1103 915 + 916 + 917 + 1104 1104 ))) 1105 1105 1106 -= 8. Support =920 += 9. Support = 1107 1107 1108 1108 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1109 1109 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1110 - 1111 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content