Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.9
edited by Xiaoling
on 2022/06/07 11:38
Change comment: There is no comment for this version
To version 70.1
edited by Xiaoling
on 2022/07/09 08:42
Change comment: Uploaded new attachment "image-20220709084207-3.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,72 +1,88 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 13  
11 +**Table of Contents:**
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
17 +
18 +
19 += 1.  Introduction =
20 +
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
24 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
60 +== 1.3  Specification ==
62 62  
62 +
63 +(% style="color:#037691" %)**Common DC Characteristics:**
64 +
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
67 +
68 +(% style="color:#037691" %)**NB-IoT Spec:**
69 +
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
63 63  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
66 66  
67 67  
68 68  
69 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
70 70  
71 71  * Smart Agriculture
72 72  
... ... @@ -73,654 +73,623 @@
73 73  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 74  ​
75 75  
76 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
84 84  
85 -== 2.1 How it works ==
101 +== 2.1  How it works ==
86 86  
103 +
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 89  )))
90 90  
108 +
91 91  (((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
93 93  )))
94 94  
113 +[[image:image-20220708101605-2.png]]
95 95  
115 +(((
116 +
117 +)))
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 100  
121 +== 2.2 ​ Configure the NSE01 ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
124 +=== 2.2.1 Test Requirement ===
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
115 115  
116 -**Add APP EUI in the application**
117 117  
118 118  
119 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
120 120  
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
147 +Insert the NB-IoT Card get from your provider.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 -
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
170 170  )))
171 171  
172 172  
155 +[[image:1657249468462-536.png]]
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
159 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
192 192  )))
165 +)))
193 193  
194 194  
168 +**Connection:**
195 195  
196 -=== 2.3.3 Battery Info ===
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
197 197  
198 -Check the battery voltage for LSE01.
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
199 199  
200 -Ex1: 0x0B45 = 2885mV
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
201 201  
202 -Ex2: 0x0B49 = 2889mV
203 203  
177 +In the PC, use below serial tool settings:
204 204  
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
205 205  
206 -=== 2.3.4 Soil Moisture ===
207 -
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 -
210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
211 -
212 -
213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214 -
215 -
216 -
217 -=== 2.3.5 Soil Temperature ===
218 -
219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220 -
221 -**Example**:
222 -
223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224 -
225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 -
227 -
228 -
229 -=== 2.3.6 Soil Conductivity (EC) ===
230 -
231 231  (((
232 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
233 233  )))
234 234  
235 -(((
236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
237 -)))
189 +[[image:image-20220708110657-3.png]]
238 238  
239 239  (((
240 -Generally, the EC value of irrigation water is less than 800uS / cm.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
241 241  )))
242 242  
243 -(((
244 -
245 -)))
246 246  
247 -(((
248 -
249 -)))
250 250  
251 -=== 2.3.7 MOD ===
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
252 252  
253 -Firmware version at least v2.1 supports changing mode.
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
254 254  
255 -For example, bytes[10]=90
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
202 +**Use below commands:**
258 258  
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
259 259  
260 -**Downlink Command:**
208 +For parameter description, please refer to AT command set
261 261  
262 -If payload = 0x0A00, workmode=0
210 +[[image:1657249793983-486.png]]
263 263  
264 -If** **payload =** **0x0A01, workmode=1
265 265  
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
266 266  
215 +[[image:1657249831934-534.png]]
267 267  
268 -=== 2.3.8 ​Decode payload in The Things Network ===
269 269  
270 -While using TTN network, you can add the payload format to decode the payload.
271 271  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
272 272  
273 -[[image:1654505570700-128.png]]
221 +This feature is supported since firmware version v1.0.1
274 274  
275 -The payload decoder function for TTN is here:
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
278 278  
228 +[[image:1657249864775-321.png]]
279 279  
280 280  
281 -== 2.4 Uplink Interval ==
231 +[[image:1657249930215-289.png]]
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 284  
285 285  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
286 286  
287 -== 2.5 Downlink Payload ==
237 +This feature is supported since firmware version v110
288 288  
289 -By default, LSE50 prints the downlink payload to console port.
290 290  
291 -[[image:image-20220606165544-8.png]]
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
292 292  
248 +[[image:1657249978444-674.png]]
293 293  
294 -**Examples:**
295 295  
251 +[[image:1657249990869-686.png]]
296 296  
297 -* **Set TDC**
298 298  
299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
300 300  
301 -Payload:    01 00 00 1E    TDC=30S
302 302  
303 -Payload:    01 00 00 3C    TDC=60S
304 304  
260 +=== 2.2.7 Use TCP protocol to uplink data ===
305 305  
306 -* **Reset**
262 +This feature is supported since firmware version v110
307 307  
308 -If payload = 0x04FF, it will reset the LSE01
309 309  
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
310 310  
311 -* **CFM**
268 +[[image:1657250217799-140.png]]
312 312  
313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314 314  
271 +[[image:1657250255956-604.png]]
315 315  
316 316  
317 -== 2.6 ​Show Data in DataCake IoT Server ==
318 318  
319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
275 +=== 2.2.8 Change Update Interval ===
320 320  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
321 321  
322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
323 323  
324 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
325 325  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
326 326  
327 -[[image:1654505857935-743.png]]
328 328  
329 329  
330 -[[image:1654505874829-548.png]]
291 +== 2.3  Uplink Payload ==
331 331  
332 -Step 3: Create an account or log in Datacake.
293 +In this mode, uplink payload includes in total 18 bytes
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
335 335  
301 +(((
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
303 +)))
336 336  
337 -[[image:1654505905236-553.png]]
338 338  
306 +[[image:image-20220708111918-4.png]]
339 339  
340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
341 341  
342 -[[image:1654505925508-181.png]]
309 +The payload is ASCII string, representative same HEX:
343 343  
311 +0x72403155615900640c7817075e0a8c02f900 where:
344 344  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
345 345  
346 -== 2.7 Frequency Plans ==
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
347 347  
348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
323 +== 2.4  Payload Explanation and Sensor Interface ==
349 349  
350 350  
351 -=== 2.7.1 EU863-870 (EU868) ===
326 +=== 2.4.1  Device ID ===
352 352  
353 -(% style="color:#037691" %)** Uplink:**
328 +(((
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
330 +)))
354 354  
355 -868.1 - SF7BW125 to SF12BW125
332 +(((
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
334 +)))
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
336 +(((
337 +**Example:**
338 +)))
358 358  
359 -868.5 - SF7BW125 to SF12BW125
340 +(((
341 +AT+DEUI=A84041F15612
342 +)))
360 360  
361 -867.1 - SF7BW125 to SF12BW125
344 +(((
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 +)))
362 362  
363 -867.3 - SF7BW125 to SF12BW125
364 364  
365 -867.5 - SF7BW125 to SF12BW125
366 366  
367 -867.7 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
368 368  
369 -867.9 - SF7BW125 to SF12BW125
352 +(((
353 +Specify the software version: 0x64=100, means firmware version 1.00.
354 +)))
370 370  
371 -868.8 - FSK
356 +(((
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
358 +)))
372 372  
373 373  
374 -(% style="color:#037691" %)** Downlink:**
375 375  
376 -Uplink channels 1-9 (RX1)
362 +=== 2.4.3  Battery Info ===
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
364 +(((
365 +Check the battery voltage for LSE01.
366 +)))
379 379  
368 +(((
369 +Ex1: 0x0B45 = 2885mV
370 +)))
380 380  
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
381 381  
382 -=== 2.7.2 US902-928(US915) ===
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
385 385  
386 -(% style="color:#037691" %)**Uplink:**
378 +=== 2.4.4  Signal Strength ===
387 387  
388 -903.9 - SF7BW125 to SF10BW125
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
389 389  
390 -904.1 - SF7BW125 to SF10BW125
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
391 391  
392 -904.3 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +)))
393 393  
394 -904.5 - SF7BW125 to SF10BW125
392 +(((
393 +(% style="color:blue" %)**1**(%%)  -111dBm
394 +)))
395 395  
396 -904.7 - SF7BW125 to SF10BW125
396 +(((
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 +)))
397 397  
398 -904.9 - SF7BW125 to SF10BW125
400 +(((
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 +)))
399 399  
400 -905.1 - SF7BW125 to SF10BW125
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
401 401  
402 -905.3 - SF7BW125 to SF10BW125
403 403  
404 404  
405 -(% style="color:#037691" %)**Downlink:**
410 +=== 2.4.5  Soil Moisture ===
406 406  
407 -923.3 - SF7BW500 to SF12BW500
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
408 408  
409 -923.9 - SF7BW500 to SF12BW500
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
410 410  
411 -924.5 - SF7BW500 to SF12BW500
424 +(((
425 +
426 +)))
412 412  
413 -925.1 - SF7BW500 to SF12BW500
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
414 414  
415 -925.7 - SF7BW500 to SF12BW500
416 416  
417 -926.3 - SF7BW500 to SF12BW500
418 418  
419 -926.9 - SF7BW500 to SF12BW500
434 +=== 2.4.6  Soil Temperature ===
420 420  
421 -927.5 - SF7BW500 to SF12BW500
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
440 +(((
441 +**Example**:
442 +)))
424 424  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
425 425  
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
426 426  
427 -=== 2.7.3 CN470-510 (CN470) ===
428 428  
429 -Used in China, Default use CHE=1
430 430  
431 -(% style="color:#037691" %)**Uplink:**
454 +=== 2.4.7  Soil Conductivity (EC) ===
432 432  
433 -486.3 - SF7BW125 to SF12BW125
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
434 434  
435 -486.5 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
436 436  
437 -486.7 - SF7BW125 to SF12BW125
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
438 438  
439 -486.9 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
440 440  
441 -487.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
442 442  
443 -487.3 - SF7BW125 to SF12BW125
476 +=== 2.4. Digital Interrupt ===
444 444  
445 -487.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
446 446  
447 -487.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
448 448  
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
449 449  
450 -(% style="color:#037691" %)**Downlink:**
451 451  
452 -506.7 - SF7BW125 to SF12BW125
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
453 453  
454 -506.9 - SF7BW125 to SF12BW125
455 455  
456 -507.1 - SF7BW125 to SF12BW125
496 +(((
497 +Example:
498 +)))
457 457  
458 -507.3 - SF7BW125 to SF12BW125
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
459 459  
460 -507.5 - SF7BW125 to SF12BW125
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
461 461  
462 -507.7 - SF7BW125 to SF12BW125
463 463  
464 -507.9 - SF7BW125 to SF12BW125
465 465  
466 -508.1 - SF7BW125 to SF12BW125
510 +=== 2.4.9  ​+5V Output ===
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
469 469  
470 470  
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
471 471  
472 -=== 2.7.4 AU915-928(AU915) ===
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
473 473  
474 -Default use CHE=2
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
475 475  
476 -(% style="color:#037691" %)**Uplink:**
477 477  
478 -916.8 - SF7BW125 to SF12BW125
479 479  
480 -917.0 - SF7BW125 to SF12BW125
531 +== 2.5  Downlink Payload ==
481 481  
482 -917.2 - SF7BW125 to SF12BW125
533 +By default, NSE01 prints the downlink payload to console port.
483 483  
484 -917.4 - SF7BW125 to SF12BW125
535 +[[image:image-20220708133731-5.png]]
485 485  
486 -917.6 - SF7BW125 to SF12BW125
487 487  
488 -917.8 - SF7BW125 to SF12BW125
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
489 489  
490 -918.0 - SF7BW125 to SF12BW125
542 +(((
543 +
544 +)))
491 491  
492 -918.2 - SF7BW125 to SF12BW125
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
493 493  
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
494 494  
495 -(% style="color:#037691" %)**Downlink:**
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
496 496  
497 -923.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
498 498  
499 -923.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
500 500  
501 -924.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
502 502  
503 -925.1 - SF7BW500 to SF12BW500
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
504 504  
505 -925.7 - SF7BW500 to SF12BW500
506 506  
507 -926.3 - SF7BW500 to SF12BW500
575 +* (% style="color:blue" %)**INTMOD**
508 508  
509 -926.9 - SF7BW500 to SF12BW500
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
510 510  
511 -927.5 - SF7BW500 to SF12BW500
512 512  
513 -923.3 - SF12BW500(RX2 downlink only)
514 514  
583 +== 2.6  ​LED Indicator ==
515 515  
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
516 516  
517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
518 518  
519 -(% style="color:#037691" %)**Default Uplink channel:**
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
520 520  
521 -923.2 - SF7BW125 to SF10BW125
522 522  
523 -923.4 - SF7BW125 to SF10BW125
524 524  
525 525  
526 -(% style="color:#037691" %)**Additional Uplink Channel**:
598 +== 2.7  Installation in Soil ==
527 527  
528 -(OTAA mode, channel added by JoinAccept message)
600 +__**Measurement the soil surface**__
529 529  
530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
531 531  
532 -922.2 - SF7BW125 to SF10BW125
606 +[[image:1657259653666-883.png]] ​
533 533  
534 -922.4 - SF7BW125 to SF10BW125
535 535  
536 -922.6 - SF7BW125 to SF10BW125
609 +(((
610 +
537 537  
538 -922.8 - SF7BW125 to SF10BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
539 539  
540 -923.0 - SF7BW125 to SF10BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
541 541  
542 -922.0 - SF7BW125 to SF10BW125
621 +[[image:1654506665940-119.png]]
543 543  
623 +(((
624 +
625 +)))
544 544  
545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
546 546  
547 -923.6 - SF7BW125 to SF10BW125
628 +== 2. Firmware Change Log ==
548 548  
549 -923.8 - SF7BW125 to SF10BW125
550 550  
551 -924.0 - SF7BW125 to SF10BW125
631 +Download URL & Firmware Change log
552 552  
553 -924.2 - SF7BW125 to SF10BW125
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
554 554  
555 -924.4 - SF7BW125 to SF10BW125
556 556  
557 -924.6 - SF7BW125 to SF10BW125
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
558 558  
559 559  
560 -(% style="color:#037691" %)** Downlink:**
561 561  
562 -Uplink channels 1-8 (RX1)
640 +== 2.9  ​Battery Analysis ==
563 563  
564 -923.2 - SF10BW125 (RX2)
642 +=== 2.9.1  ​Battery Type ===
565 565  
566 566  
567 -
568 -=== 2.7.6 KR920-923 (KR920) ===
569 -
570 -Default channel:
571 -
572 -922.1 - SF7BW125 to SF12BW125
573 -
574 -922.3 - SF7BW125 to SF12BW125
575 -
576 -922.5 - SF7BW125 to SF12BW125
577 -
578 -
579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
580 -
581 -922.1 - SF7BW125 to SF12BW125
582 -
583 -922.3 - SF7BW125 to SF12BW125
584 -
585 -922.5 - SF7BW125 to SF12BW125
586 -
587 -922.7 - SF7BW125 to SF12BW125
588 -
589 -922.9 - SF7BW125 to SF12BW125
590 -
591 -923.1 - SF7BW125 to SF12BW125
592 -
593 -923.3 - SF7BW125 to SF12BW125
594 -
595 -
596 -(% style="color:#037691" %)**Downlink:**
597 -
598 -Uplink channels 1-7(RX1)
599 -
600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
601 -
602 -
603 -
604 -=== 2.7.7 IN865-867 (IN865) ===
605 -
606 -(% style="color:#037691" %)** Uplink:**
607 -
608 -865.0625 - SF7BW125 to SF12BW125
609 -
610 -865.4025 - SF7BW125 to SF12BW125
611 -
612 -865.9850 - SF7BW125 to SF12BW125
613 -
614 -
615 -(% style="color:#037691" %) **Downlink:**
616 -
617 -Uplink channels 1-3 (RX1)
618 -
619 -866.550 - SF10BW125 (RX2)
620 -
621 -
622 -
623 -
624 -== 2.8 LED Indicator ==
625 -
626 -The LSE01 has an internal LED which is to show the status of different state.
627 -
628 -* Blink once when device power on.
629 -* Solid ON for 5 seconds once device successful Join the network.
630 -* Blink once when device transmit a packet.
631 -
632 -
633 -
634 -== 2.9 Installation in Soil ==
635 -
636 -**Measurement the soil surface**
637 -
638 -
639 -[[image:1654506634463-199.png]] ​
640 -
641 641  (((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
644 644  )))
645 -)))
646 646  
647 647  
648 -[[image:1654506665940-119.png]]
649 -
650 650  (((
651 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
652 652  )))
653 653  
654 -(((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
656 -)))
657 657  
658 -
659 -== 2.10 ​Firmware Change Log ==
660 -
661 661  (((
662 -**Firmware download link:**
656 +The battery related documents as below:
663 663  )))
664 664  
665 -(((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
667 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
668 668  
669 669  (((
670 -
664 +[[image:image-20220708140453-6.png]]
671 671  )))
672 672  
673 -(((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
675 -)))
676 676  
677 -(((
678 -
679 -)))
680 680  
681 -(((
682 -**V1.0.**
683 -)))
669 +=== 2.9.2  Power consumption Analyze ===
684 684  
685 685  (((
686 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
687 687  )))
688 688  
689 689  
690 -== 2.11 ​Battery Analysis ==
691 -
692 -=== 2.11.1 ​Battery Type ===
693 -
694 694  (((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
696 696  )))
697 697  
698 698  (((
699 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
700 700  )))
701 701  
684 +
702 702  (((
703 -(((
704 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
705 705  )))
706 -)))
707 707  
708 708  * (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
710 710  )))
711 711  * (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
713 713  )))
714 714  * (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
716 716  )))
717 717  
718 - [[image:image-20220606171726-9.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
719 719  
703 +[[image:image-20220708141352-7.jpeg]]
720 720  
721 721  
722 -=== 2.11.2 ​Battery Note ===
723 723  
707 +=== 2.9.3  ​Battery Note ===
708 +
724 724  (((
725 725  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 726  )))
... ... @@ -727,303 +727,176 @@
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
731 731  
732 732  (((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
734 734  )))
735 735  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
736 736  (((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
738 738  )))
739 739  
740 740  (((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
742 742  )))
743 743  
733 +[[image:1657261278785-153.png]]
744 744  
745 745  
746 -= 3. ​Using the AT Commands =
747 747  
748 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
749 749  
739 +== 4.1  Access AT Commands ==
750 750  
751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
752 752  
753 -[[image:1654501986557-872.png||height="391" width="800"]]
754 754  
744 +AT+<CMD>?  : Help on <CMD>
755 755  
756 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
757 757  
748 +AT+<CMD>=<value> : Set the value
758 758  
759 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
760 760  
761 761  
762 -
763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 -
765 -
766 - [[image:1654502050864-459.png||height="564" width="806"]]
767 -
768 -
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 -
771 -
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 -
780 -
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
786 786  
787 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
790 790  
763 +AT+CFG  : Print all configurations
791 791  
792 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
825 825  
796 +AT+CLIENT               : Get or Set MQTT client
826 826  
827 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 -
859 -
860 -(% style="color:#037691" %)**Information** 
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 -
874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 -
876 -
877 -= ​4. FAQ =
878 -
879 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 -
881 881  (((
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
884 884  )))
885 885  
886 886  (((
887 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
888 888  )))
889 889  
890 890  (((
891 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
892 892  )))
893 893  
894 -(((
895 -
896 -)))
897 897  
898 -(((
899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 -)))
901 901  
902 -(((
903 -
904 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
905 905  
906 906  (((
907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
908 908  )))
909 909  
910 -[[image:image-20220606154726-3.png]]
911 911  
841 += 6.  Trouble Shooting =
912 912  
913 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
914 914  
915 -* 903.9 - SF7BW125 to SF10BW125
916 -* 904.1 - SF7BW125 to SF10BW125
917 -* 904.3 - SF7BW125 to SF10BW125
918 -* 904.5 - SF7BW125 to SF10BW125
919 -* 904.7 - SF7BW125 to SF10BW125
920 -* 904.9 - SF7BW125 to SF10BW125
921 -* 905.1 - SF7BW125 to SF10BW125
922 -* 905.3 - SF7BW125 to SF10BW125
923 -* 904.6 - SF8BW500
924 924  
925 925  (((
926 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
927 927  )))
928 928  
929 -(% class="box infomessage" %)
850 +(% class="wikigeneratedid" %)
930 930  (((
931 -**AT+CHE=2**
932 -)))
933 -
934 -(% class="box infomessage" %)
935 -(((
936 -**ATZ**
937 -)))
938 -
939 -(((
940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 -)))
942 -
943 -(((
944 944  
945 945  )))
946 946  
947 -(((
948 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 -)))
950 950  
951 -[[image:image-20220606154825-4.png]]
856 +== 6.2  AT Command input doesn't work ==
952 952  
953 -
954 -
955 -= 5. Trouble Shooting =
956 -
957 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
958 -
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 -
961 -
962 -== 5.2 AT Command input doesn’t work ==
963 -
964 964  (((
965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 -)))
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
967 967  
968 -
969 -== 5.3 Device rejoin in at the second uplink packet ==
970 -
971 -(% style="color:#4f81bd" %)**Issue describe as below:**
972 -
973 -[[image:1654500909990-784.png]]
974 -
975 -
976 -(% style="color:#4f81bd" %)**Cause for this issue:**
977 -
978 -(((
979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
980 980  )))
981 981  
982 982  
983 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
984 984  
985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
986 986  
987 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
988 988  
989 989  
990 -= 6. ​Order Info =
991 -
992 -
993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 -
995 -
996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 -
998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 -
1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 -
1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 -
1012 1012  (% class="wikigeneratedid" %)
1013 1013  (((
1014 1014  
1015 1015  )))
1016 1016  
1017 -= 7. Packing Info =
876 += 8.  Packing Info =
1018 1018  
1019 1019  (((
1020 1020  
1021 1021  
1022 1022  (% style="color:#037691" %)**Package Includes**:
1023 -)))
1024 1024  
1025 -* (((
1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1027 1027  )))
1028 1028  
1029 1029  (((
... ... @@ -1030,30 +1030,19 @@
1030 1030  
1031 1031  
1032 1032  (% style="color:#037691" %)**Dimension and weight**:
1033 -)))
1034 1034  
1035 -* (((
1036 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1037 1037  )))
1038 -* (((
1039 -Device Weight: g
1040 -)))
1041 -* (((
1042 -Package Size / pcs : cm
1043 -)))
1044 -* (((
1045 -Weight / pcs : g
1046 1046  
896 +(((
897 +
1047 1047  
899 +
1048 1048  
1049 1049  )))
1050 1050  
1051 -= 8. Support =
903 += 9.  Support =
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1057 -~)~)~)
1058 -~)~)~)
1059 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content