Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.9
edited by Xiaoling
on 2022/06/07 11:38
Change comment: There is no comment for this version
To version 62.3
edited by Xiaoling
on 2022/07/08 14:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,715 +12,631 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
115 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
117 +(((
118 +
192 192  )))
193 193  
194 194  
195 195  
196 -=== 2.3.3 Battery Info ===
123 +== 2.2 Configure the NSE01 ==
197 197  
198 -Check the battery voltage for LSE01.
199 199  
200 -Ex1: 0x0B45 = 2885mV
126 +=== 2.2.1 Test Requirement ===
201 201  
202 -Ex2: 0x0B49 = 2889mV
203 203  
129 +To use NSE01 in your city, make sure meet below requirements:
204 204  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
205 205  
206 -=== 2.3.4 Soil Moisture ===
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
207 207  
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 209  
210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
140 +[[image:1657249419225-449.png]]
211 211  
212 212  
213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214 214  
144 +=== 2.2.2 Insert SIM card ===
215 215  
146 +Insert the NB-IoT Card get from your provider.
216 216  
217 -=== 2.3.5 Soil Temperature ===
148 +User need to take out the NB-IoT module and insert the SIM card like below:
218 218  
219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220 220  
221 -**Example**:
151 +[[image:1657249468462-536.png]]
222 222  
223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224 224  
225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 226  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
227 227  
228 -
229 -=== 2.3.6 Soil Conductivity (EC) ===
230 -
231 231  (((
232 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
233 -)))
234 -
235 235  (((
236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
237 237  )))
238 -
239 -(((
240 -Generally, the EC value of irrigation water is less than 800uS / cm.
241 241  )))
242 242  
243 -(((
244 -
245 -)))
246 246  
247 -(((
248 -
249 -)))
164 +**Connection:**
250 250  
251 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
252 252  
253 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
254 254  
255 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
258 258  
173 +In the PC, use below serial tool settings:
259 259  
260 -**Downlink Command:**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
261 261  
262 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
263 263  
264 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
265 265  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
266 266  
267 267  
268 -=== 2.3.8 ​Decode payload in The Things Network ===
269 269  
270 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
271 271  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
272 272  
273 -[[image:1654505570700-128.png]]
274 274  
275 -The payload decoder function for TTN is here:
196 +**Use below commands:**
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
278 278  
202 +For parameter description, please refer to AT command set
279 279  
204 +[[image:1657249793983-486.png]]
280 280  
281 -== 2.4 Uplink Interval ==
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
284 284  
209 +[[image:1657249831934-534.png]]
285 285  
286 286  
287 -== 2.5 Downlink Payload ==
288 288  
289 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
290 290  
291 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
292 292  
293 293  
294 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
295 295  
222 +[[image:1657249864775-321.png]]
296 296  
297 -* **Set TDC**
298 298  
299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
300 300  
301 -Payload:    01 00 00 1E    TDC=30S
302 302  
303 -Payload:    01 00 00 3C    TDC=60S
304 304  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
305 305  
306 -* **Reset**
231 +This feature is supported since firmware version v110
307 307  
308 -If payload = 0x04FF, it will reset the LSE01
309 309  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
310 310  
311 -* **CFM**
242 +[[image:1657249978444-674.png]]
312 312  
313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314 314  
245 +[[image:1657249990869-686.png]]
315 315  
316 316  
317 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
318 318  
319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
320 320  
321 321  
322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
323 323  
324 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
325 325  
326 326  
327 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
328 328  
262 +[[image:1657250217799-140.png]]
329 329  
330 -[[image:1654505874829-548.png]]
331 331  
332 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
335 335  
336 336  
337 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
338 338  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
339 339  
340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
341 341  
342 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
343 343  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
344 344  
345 345  
346 -== 2.7 Frequency Plans ==
347 347  
348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
349 349  
287 +In this mode, uplink payload includes in total 18 bytes
350 350  
351 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
352 352  
353 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
354 354  
355 -868.1 - SF7BW125 to SF12BW125
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
358 358  
359 -868.5 - SF7BW125 to SF12BW125
360 360  
361 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
362 362  
363 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
364 364  
365 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
366 366  
367 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
368 368  
369 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
370 370  
371 -868.8 - FSK
372 372  
318 +=== 2.4.1  Device ID ===
373 373  
374 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
375 375  
376 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
379 379  
326 +AT+DEUI=A84041F15612
380 380  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
381 381  
382 -=== 2.7.2 US902-928(US915) ===
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
385 385  
386 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
387 387  
388 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
389 389  
390 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
391 391  
392 -904.3 - SF7BW125 to SF10BW125
393 393  
394 -904.5 - SF7BW125 to SF10BW125
395 395  
396 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
397 397  
398 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
399 399  
400 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
401 401  
402 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
403 403  
404 404  
405 -(% style="color:#037691" %)**Downlink:**
406 406  
407 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
408 408  
409 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
410 410  
411 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
412 412  
413 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 414  
415 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
416 416  
417 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 418  
419 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 420  
421 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
424 424  
425 425  
374 +=== 2.4.5  Soil Moisture ===
426 426  
427 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
428 428  
429 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
430 430  
431 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
432 432  
433 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
434 434  
435 -486.5 - SF7BW125 to SF12BW125
436 436  
437 -486.7 - SF7BW125 to SF12BW125
438 438  
439 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
440 440  
441 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
442 442  
443 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
444 444  
445 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
446 446  
447 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
448 448  
449 449  
450 -(% style="color:#037691" %)**Downlink:**
451 451  
452 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
453 453  
454 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
455 455  
456 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
457 457  
458 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
459 459  
460 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
461 461  
462 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
463 463  
464 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
465 465  
466 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
469 469  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
470 470  
471 471  
472 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
473 473  
474 -Default use CHE=2
475 475  
476 -(% style="color:#037691" %)**Uplink:**
448 +Example:
477 477  
478 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
479 479  
480 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
481 481  
482 -917.2 - SF7BW125 to SF12BW125
483 483  
484 -917.4 - SF7BW125 to SF12BW125
485 485  
486 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
487 487  
488 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
489 489  
490 -918.0 - SF7BW125 to SF12BW125
491 491  
492 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
493 493  
463 +(% style="color:blue" %)**AT+5VT=1000**
494 494  
495 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
496 496  
497 -923.3 - SF7BW500 to SF12BW500
498 498  
499 -923.9 - SF7BW500 to SF12BW500
500 500  
501 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
502 502  
503 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
504 504  
505 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
506 506  
507 -926.3 - SF7BW500 to SF12BW500
508 508  
509 -926.9 - SF7BW500 to SF12BW500
510 510  
511 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
512 512  
513 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
514 514  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
515 515  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
516 516  
517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
518 518  
519 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
520 520  
521 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
522 522  
523 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
524 524  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
525 525  
526 -(% style="color:#037691" %)**Additional Uplink Channel**:
527 527  
528 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
529 529  
530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
531 531  
532 -922.2 - SF7BW125 to SF10BW125
533 533  
534 -922.4 - SF7BW125 to SF10BW125
535 535  
536 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
537 537  
538 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
539 539  
540 -923.0 - SF7BW125 to SF10BW125
541 541  
542 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
543 543  
544 544  
545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
546 546  
547 -923.6 - SF7BW125 to SF10BW125
548 548  
549 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
550 550  
551 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
552 552  
553 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
554 554  
555 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
556 556  
557 -924.6 - SF7BW125 to SF10BW125
558 558  
544 +(((
545 +
559 559  
560 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
561 561  
562 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
563 563  
564 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
565 565  
558 +(((
559 +
560 +)))
566 566  
567 567  
568 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
569 569  
570 -Default channel:
571 571  
572 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
573 573  
574 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
575 575  
576 -922.5 - SF7BW125 to SF12BW125
577 577  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
578 578  
579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
580 580  
581 -922.1 - SF7BW125 to SF12BW125
582 582  
583 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
584 584  
585 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
586 586  
587 -922.7 - SF7BW125 to SF12BW125
588 588  
589 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
590 590  
591 -923.1 - SF7BW125 to SF12BW125
592 592  
593 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
594 594  
595 595  
596 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
597 597  
598 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 599  
600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
601 -
602 -
603 -
604 -=== 2.7.7 IN865-867 (IN865) ===
605 -
606 -(% style="color:#037691" %)** Uplink:**
607 -
608 -865.0625 - SF7BW125 to SF12BW125
609 -
610 -865.4025 - SF7BW125 to SF12BW125
611 -
612 -865.9850 - SF7BW125 to SF12BW125
613 -
614 -
615 -(% style="color:#037691" %) **Downlink:**
616 -
617 -Uplink channels 1-3 (RX1)
618 -
619 -866.550 - SF10BW125 (RX2)
620 -
621 -
622 -
623 -
624 -== 2.8 LED Indicator ==
625 -
626 -The LSE01 has an internal LED which is to show the status of different state.
627 -
628 -* Blink once when device power on.
629 -* Solid ON for 5 seconds once device successful Join the network.
630 -* Blink once when device transmit a packet.
631 -
632 -
633 -
634 -== 2.9 Installation in Soil ==
635 -
636 -**Measurement the soil surface**
637 -
638 -
639 -[[image:1654506634463-199.png]] ​
640 -
641 641  (((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
644 644  )))
645 -)))
646 646  
647 647  
648 -[[image:1654506665940-119.png]]
649 649  
650 -(((
651 -Dig a hole with diameter > 20CM.
652 -)))
598 +=== 2.9.2  Power consumption Analyze ===
653 653  
654 654  (((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
656 656  )))
657 657  
658 658  
659 -== 2.10 ​Firmware Change Log ==
660 -
661 661  (((
662 -**Firmware download link:**
606 +Instruction to use as below:
663 663  )))
664 664  
665 665  (((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  )))
668 668  
669 -(((
670 -
671 -)))
672 672  
673 673  (((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
675 675  )))
676 676  
677 -(((
678 -
679 -)))
680 -
681 -(((
682 -**V1.0.**
683 -)))
684 -
685 -(((
686 -Release
687 -)))
688 -
689 -
690 -== 2.11 ​Battery Analysis ==
691 -
692 -=== 2.11.1 ​Battery Type ===
693 -
694 -(((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -)))
697 -
698 -(((
699 -The battery is designed to last for more than 5 years for the LSN50.
700 -)))
701 -
702 -(((
703 -(((
704 -The battery-related documents are as below:
705 -)))
706 -)))
707 -
708 708  * (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
619 +Product Model
710 710  )))
711 711  * (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
622 +Uplink Interval
713 713  )))
714 714  * (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
625 +Working Mode
716 716  )))
717 717  
718 - [[image:image-20220606171726-9.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
719 719  
632 +[[image:image-20220708141352-7.jpeg]]
720 720  
721 721  
722 -=== 2.11.2 ​Battery Note ===
723 723  
636 +=== 2.9.3  ​Battery Note ===
637 +
724 724  (((
725 725  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 726  )))
... ... @@ -727,22 +727,14 @@
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
731 731  
732 732  (((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
734 734  )))
735 735  
736 -(((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
738 -)))
739 739  
740 -(((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 -)))
743 743  
744 -
745 -
746 746  = 3. ​Using the AT Commands =
747 747  
748 748  == 3.1 Access AT Commands ==
... ... @@ -766,7 +766,7 @@
766 766   [[image:1654502050864-459.png||height="564" width="806"]]
767 767  
768 768  
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
770 770  
771 771  
772 772  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -924,19 +924,14 @@
924 924  
925 925  (((
926 926  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
927 -)))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**AT+CHE=2**
834 +* (% style="color:#037691" %)**AT+CHE=2**
835 +* (% style="color:#037691" %)**ATZ**
932 932  )))
933 933  
934 -(% class="box infomessage" %)
935 935  (((
936 -**ATZ**
937 -)))
839 +
938 938  
939 -(((
940 940  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 941  )))
942 942  
... ... @@ -951,18 +951,22 @@
951 951  [[image:image-20220606154825-4.png]]
952 952  
953 953  
855 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
954 954  
857 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
858 +
859 +
955 955  = 5. Trouble Shooting =
956 956  
957 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
862 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
958 958  
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
864 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
960 960  
961 961  
962 -== 5.2 AT Command input doesnt work ==
867 +== 5.2 AT Command input doesn't work ==
963 963  
964 964  (((
965 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 966  )))
967 967  
968 968  
... ... @@ -1044,7 +1044,6 @@
1044 1044  * (((
1045 1045  Weight / pcs : g
1046 1046  
1047 -
1048 1048  
1049 1049  )))
1050 1050  
... ... @@ -1052,8 +1052,3 @@
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1057 -~)~)~)
1058 -~)~)~)
1059 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content