Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.8
edited by Xiaoling
on 2022/06/07 11:36
Change comment: There is no comment for this version
To version 65.3
edited by Xiaoling
on 2022/07/08 15:04
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1013 +12,797 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
23 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
28 +
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 +
38 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
66 +== 1.3  Specification ==
67 67  
68 68  
69 -== ​1.4 Applications ==
69 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -* Smart Agriculture
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 75  
76 -== 1.5 Firmware Change log ==
77 77  
76 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -**LSE01 v1.0 :**  Release
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
87 +Probe(% style="color:#037691" %)** Specification:**
84 84  
85 -== 2.1 How it works ==
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
91 +[[image:image-20220708101224-1.png]]
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
95 95  
95 +== ​1.4  Applications ==
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
97 +* Smart Agriculture
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
100 100  
102 +== 1.5  Pin Definitions ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
105 +[[image:1657246476176-652.png]]
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 += 2.  Use NSE01 to communicate with IoT Server =
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +== 2.1  How it works ==
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 +)))
115 115  
116 -**Add APP EUI in the application**
117 117  
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -Uplink payload includes in total 11 bytes.
150 -
151 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
152 -|(((
153 -**Size**
154 -
155 -**(bytes)**
156 -)))|**2**|**2**|**2**|**2**|**2**|**1**
157 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
158 -Temperature
159 -
160 -(Reserve, Ignore now)
161 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
162 -MOD & Digital Interrupt
163 -
164 -(Optional)
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
165 165  )))
166 166  
123 +[[image:image-20220708101605-2.png]]
167 167  
168 -
169 -=== 2.3.2 MOD~=1(Original value) ===
170 -
171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 -
173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 -|(((
175 -**Size**
176 -
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 -Temperature
181 -
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 -MOD & Digital Interrupt
185 -
186 -(Optional)
125 +(((
126 +
187 187  )))
188 188  
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
131 +== 2.2 Configure the NSE01 ==
192 192  
193 -Check the battery voltage for LSE01.
194 194  
195 -Ex1: 0x0B45 = 2885mV
134 +=== 2.2.1 Test Requirement ===
196 196  
197 -Ex2: 0x0B49 = 2889mV
198 198  
137 +To use NSE01 in your city, make sure meet below requirements:
199 199  
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
200 200  
201 -=== 2.3.4 Soil Moisture ===
143 +(((
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
145 +)))
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
148 +[[image:1657249419225-449.png]]
206 206  
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
152 +=== 2.2.2 Insert SIM card ===
210 210  
154 +Insert the NB-IoT Card get from your provider.
211 211  
212 -=== 2.3.5 Soil Temperature ===
156 +User need to take out the NB-IoT module and insert the SIM card like below:
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 215  
216 -**Example**:
159 +[[image:1657249468462-536.png]]
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 221  
163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
222 222  
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
228 -)))
229 -
230 230  (((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
232 232  )))
233 -
234 -(((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
172 +**Connection:**
245 245  
246 -=== 2.3.7 MOD ===
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
247 247  
248 -Firmware version at least v2.1 supports changing mode.
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
249 249  
250 -For example, bytes[10]=90
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
181 +In the PC, use below serial tool settings:
254 254  
255 -**Downlink Command:**
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
256 256  
257 -If payload = 0x0A00, workmode=0
189 +(((
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
191 +)))
258 258  
259 -If** **payload =** **0x0A01, workmode=1
193 +[[image:image-20220708110657-3.png]]
260 260  
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -[[image:1654505570700-128.png]]
269 269  
270 -The payload decoder function for TTN is here:
204 +**Use below commands:**
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
210 +For parameter description, please refer to AT command set
274 274  
212 +[[image:1657249793983-486.png]]
275 275  
276 -== 2.4 Uplink Interval ==
277 277  
278 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
279 279  
217 +[[image:1657249831934-534.png]]
280 280  
281 281  
282 -== 2.5 Downlink Payload ==
283 283  
284 -By default, LSE50 prints the downlink payload to console port.
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
285 285  
286 -[[image:image-20220606165544-8.png]]
223 +This feature is supported since firmware version v1.0.1
287 287  
288 288  
289 -**Examples:**
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
290 290  
230 +[[image:1657249864775-321.png]]
291 291  
292 -* **Set TDC**
293 293  
294 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
233 +[[image:1657249930215-289.png]]
295 295  
296 -Payload:    01 00 00 1E    TDC=30S
297 297  
298 -Payload:    01 00 00 3C    TDC=60S
299 299  
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
300 300  
301 -* **Reset**
239 +This feature is supported since firmware version v110
302 302  
303 -If payload = 0x04FF, it will reset the LSE01
304 304  
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
305 305  
306 -* **CFM**
250 +[[image:1657249978444-674.png]]
307 307  
308 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
309 309  
253 +[[image:1657249990869-686.png]]
310 310  
311 311  
312 -== 2.6 ​Show Data in DataCake IoT Server ==
256 +(((
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 +)))
313 313  
314 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
315 315  
316 316  
317 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
262 +=== 2.2.7 Use TCP protocol to uplink data ===
318 318  
319 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
264 +This feature is supported since firmware version v110
320 320  
321 321  
322 -[[image:1654505857935-743.png]]
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
323 323  
270 +[[image:1657250217799-140.png]]
324 324  
325 -[[image:1654505874829-548.png]]
326 326  
327 -Step 3: Create an account or log in Datacake.
273 +[[image:1657250255956-604.png]]
328 328  
329 -Step 4: Search the LSE01 and add DevEUI.
330 330  
331 331  
332 -[[image:1654505905236-553.png]]
277 +=== 2.2.8 Change Update Interval ===
333 333  
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
334 334  
335 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
336 336  
337 -[[image:1654505925508-181.png]]
283 +(((
284 +(% style="color:red" %)**NOTE:**
285 +)))
338 338  
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 +)))
339 339  
340 340  
341 -== 2.7 Frequency Plans ==
342 342  
343 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
293 +== 2.3  Uplink Payload ==
344 344  
295 +In this mode, uplink payload includes in total 18 bytes
345 345  
346 -=== 2.7.1 EU863-870 (EU868) ===
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
347 347  
348 -(% style="color:#037691" %)** Uplink:**
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
349 349  
350 -868.1 - SF7BW125 to SF12BW125
351 351  
352 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
306 +[[image:image-20220708111918-4.png]]
353 353  
354 -868.5 - SF7BW125 to SF12BW125
355 355  
356 -867.1 - SF7BW125 to SF12BW125
309 +The payload is ASCII string, representative same HEX:
357 357  
358 -867.3 - SF7BW125 to SF12BW125
311 +0x72403155615900640c7817075e0a8c02f900 where:
359 359  
360 -867.5 - SF7BW125 to SF12BW125
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
361 361  
362 -867.7 - SF7BW125 to SF12BW125
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
363 363  
364 -867.9 - SF7BW125 to SF12BW125
365 365  
366 -868.8 - FSK
367 367  
368 368  
369 -(% style="color:#037691" %)** Downlink:**
326 +== 2.4  Payload Explanation and Sensor Interface ==
370 370  
371 -Uplink channels 1-9 (RX1)
372 372  
373 -869.525 - SF9BW125 (RX2 downlink only)
329 +=== 2.4.1  Device ID ===
374 374  
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
375 375  
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
376 376  
377 -=== 2.7.2 US902-928(US915) ===
335 +**Example:**
378 378  
379 -Used in USA, Canada and South America. Default use CHE=2
337 +AT+DEUI=A84041F15612
380 380  
381 -(% style="color:#037691" %)**Uplink:**
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
382 382  
383 -903.9 - SF7BW125 to SF10BW125
384 384  
385 -904.1 - SF7BW125 to SF10BW125
386 386  
387 -904.3 - SF7BW125 to SF10BW125
343 +=== 2.4.2  Version Info ===
388 388  
389 -904.5 - SF7BW125 to SF10BW125
345 +Specify the software version: 0x64=100, means firmware version 1.00.
390 390  
391 -904.7 - SF7BW125 to SF10BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
392 392  
393 -904.9 - SF7BW125 to SF10BW125
394 394  
395 -905.1 - SF7BW125 to SF10BW125
396 396  
397 -905.3 - SF7BW125 to SF10BW125
351 +=== 2.4.3  Battery Info ===
398 398  
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
399 399  
400 -(% style="color:#037691" %)**Downlink:**
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
401 401  
402 -923.3 - SF7BW500 to SF12BW500
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
403 403  
404 -923.9 - SF7BW500 to SF12BW500
405 405  
406 -924.5 - SF7BW500 to SF12BW500
407 407  
408 -925.1 - SF7BW500 to SF12BW500
367 +=== 2.4.4  Signal Strength ===
409 409  
410 -925.7 - SF7BW500 to SF12BW500
369 +NB-IoT Network signal Strength.
411 411  
412 -926.3 - SF7BW500 to SF12BW500
371 +**Ex1: 0x1d = 29**
413 413  
414 -926.9 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
415 415  
416 -927.5 - SF7BW500 to SF12BW500
375 +(% style="color:blue" %)**1**(%%)  -111dBm
417 417  
418 -923.3 - SF12BW500(RX2 downlink only)
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
419 419  
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 420  
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 421  
422 -=== 2.7.3 CN470-510 (CN470) ===
423 423  
424 -Used in China, Default use CHE=1
425 425  
426 -(% style="color:#037691" %)**Uplink:**
385 +=== 2.4.5  Soil Moisture ===
427 427  
428 -486.3 - SF7BW125 to SF12BW125
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
429 429  
430 -486.5 - SF7BW125 to SF12BW125
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
431 431  
432 -486.7 - SF7BW125 to SF12BW125
395 +(((
396 +
397 +)))
433 433  
434 -486.9 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
435 435  
436 -487.1 - SF7BW125 to SF12BW125
437 437  
438 -487.3 - SF7BW125 to SF12BW125
439 439  
440 -487.5 - SF7BW125 to SF12BW125
405 +=== 2.4. Soil Temperature ===
441 441  
442 -487.7 - SF7BW125 to SF12BW125
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
443 443  
411 +(((
412 +**Example**:
413 +)))
444 444  
445 -(% style="color:#037691" %)**Downlink:**
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
446 446  
447 -506.7 - SF7BW125 to SF12BW125
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
448 448  
449 -506.9 - SF7BW125 to SF12BW125
450 450  
451 -507.1 - SF7BW125 to SF12BW125
452 452  
453 -507.3 - SF7BW125 to SF12BW125
425 +=== 2.4.7  Soil Conductivity (EC) ===
454 454  
455 -507.5 - SF7BW125 to SF12BW125
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
456 456  
457 -507.7 - SF7BW125 to SF12BW125
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
458 458  
459 -507.9 - SF7BW125 to SF12BW125
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
460 460  
461 -508.1 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
462 462  
463 -505.3 - SF12BW125 (RX2 downlink only)
443 +(((
444 +
445 +)))
464 464  
447 +=== 2.4.8  Digital Interrupt ===
465 465  
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
466 466  
467 -=== 2.7.4 AU915-928(AU915) ===
451 +The command is:
468 468  
469 -Default use CHE=2
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
470 470  
471 -(% style="color:#037691" %)**Uplink:**
472 472  
473 -916.8 - SF7BW125 to SF12BW125
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
474 474  
475 -917.0 - SF7BW125 to SF12BW125
476 476  
477 -917.2 - SF7BW125 to SF12BW125
459 +Example:
478 478  
479 -917.4 - SF7BW125 to SF12BW125
461 +0x(00): Normal uplink packet.
480 480  
481 -917.6 - SF7BW125 to SF12BW125
463 +0x(01): Interrupt Uplink Packet.
482 482  
483 -917.8 - SF7BW125 to SF12BW125
484 484  
485 -918.0 - SF7BW125 to SF12BW125
486 486  
487 -918.2 - SF7BW125 to SF12BW125
467 +=== 2.4.9  ​+5V Output ===
488 488  
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
489 489  
490 -(% style="color:#037691" %)**Downlink:**
491 491  
492 -923.3 - SF7BW500 to SF12BW500
472 +The 5V output time can be controlled by AT Command.
493 493  
494 -923.9 - SF7BW500 to SF12BW500
474 +(% style="color:blue" %)**AT+5VT=1000**
495 495  
496 -924.5 - SF7BW500 to SF12BW500
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
497 497  
498 -925.1 - SF7BW500 to SF12BW500
499 499  
500 -925.7 - SF7BW500 to SF12BW500
501 501  
502 -926.3 - SF7BW500 to SF12BW500
480 +== 2.5  Downlink Payload ==
503 503  
504 -926.9 - SF7BW500 to SF12BW500
482 +By default, NSE01 prints the downlink payload to console port.
505 505  
506 -927.5 - SF7BW500 to SF12BW500
484 +[[image:image-20220708133731-5.png]]
507 507  
508 -923.3 - SF12BW500(RX2 downlink only)
509 509  
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
510 510  
491 +(((
492 +
493 +)))
511 511  
512 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
513 513  
514 -(% style="color:#037691" %)**Default Uplink channel:**
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
515 515  
516 -923.2 - SF7BW125 to SF10BW125
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
517 517  
518 -923.4 - SF7BW125 to SF10BW125
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
519 519  
511 +(((
512 +
513 +)))
520 520  
521 -(% style="color:#037691" %)**Additional Uplink Channel**:
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
522 522  
523 -(OTAA mode, channel added by JoinAccept message)
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
524 524  
525 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
526 526  
527 -922.2 - SF7BW125 to SF10BW125
524 +* (% style="color:blue" %)**INTMOD**
528 528  
529 -922.4 - SF7BW125 to SF10BW125
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
530 530  
531 -922.6 - SF7BW125 to SF10BW125
532 532  
533 -922.8 - SF7BW125 to SF10BW125
534 534  
535 -923.0 - SF7BW125 to SF10BW125
530 +== 2. ​LED Indicator ==
536 536  
537 -922.0 - SF7BW125 to SF10BW125
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
538 538  
539 539  
540 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
541 541  
542 -923.6 - SF7BW125 to SF10BW125
543 543  
544 -923.8 - SF7BW125 to SF10BW125
545 545  
546 -924.0 - SF7BW125 to SF10BW125
547 547  
548 -924.2 - SF7BW125 to SF10BW125
545 +== 2.7  Installation in Soil ==
549 549  
550 -924.4 - SF7BW125 to SF10BW125
547 +__**Measurement the soil surface**__
551 551  
552 -924.6 - SF7BW125 to SF10BW125
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
553 553  
551 +[[image:1657259653666-883.png]] ​
554 554  
555 -(% style="color:#037691" %)** Downlink:**
556 556  
557 -Uplink channels 1-8 (RX1)
554 +(((
555 +
558 558  
559 -923.2 - SF10BW125 (RX2)
557 +(((
558 +Dig a hole with diameter > 20CM.
559 +)))
560 560  
561 +(((
562 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
561 561  
566 +[[image:1654506665940-119.png]]
562 562  
563 -=== 2.7.6 KR920-923 (KR920) ===
568 +(((
569 +
570 +)))
564 564  
565 -Default channel:
566 566  
567 -922.1 - SF7BW125 to SF12BW125
573 +== 2. Firmware Change Log ==
568 568  
569 -922.3 - SF7BW125 to SF12BW125
570 570  
571 -922.5 - SF7BW125 to SF12BW125
576 +Download URL & Firmware Change log
572 572  
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
573 573  
574 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
575 575  
576 -922.1 - SF7BW125 to SF12BW125
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
577 577  
578 -922.3 - SF7BW125 to SF12BW125
579 579  
580 -922.5 - SF7BW125 to SF12BW125
581 581  
582 -922.7 - SF7BW125 to SF12BW125
585 +== 2. Battery Analysis ==
583 583  
584 -922.9 - SF7BW125 to SF12BW125
587 +=== 2.9.1  ​Battery Type ===
585 585  
586 -923.1 - SF7BW125 to SF12BW125
587 587  
588 -923.3 - SF7BW125 to SF12BW125
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
589 589  
590 590  
591 -(% style="color:#037691" %)**Downlink:**
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
592 592  
593 -Uplink channels 1-7(RX1)
594 594  
595 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
596 +The battery related documents as below:
596 596  
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 597  
598 -
599 -=== 2.7.7 IN865-867 (IN865) ===
600 -
601 -(% style="color:#037691" %)** Uplink:**
602 -
603 -865.0625 - SF7BW125 to SF12BW125
604 -
605 -865.4025 - SF7BW125 to SF12BW125
606 -
607 -865.9850 - SF7BW125 to SF12BW125
608 -
609 -
610 -(% style="color:#037691" %) **Downlink:**
611 -
612 -Uplink channels 1-3 (RX1)
613 -
614 -866.550 - SF10BW125 (RX2)
615 -
616 -
617 -
618 -
619 -== 2.8 LED Indicator ==
620 -
621 -The LSE01 has an internal LED which is to show the status of different state.
622 -
623 -* Blink once when device power on.
624 -* Solid ON for 5 seconds once device successful Join the network.
625 -* Blink once when device transmit a packet.
626 -
627 -
628 -
629 -== 2.9 Installation in Soil ==
630 -
631 -**Measurement the soil surface**
632 -
633 -
634 -[[image:1654506634463-199.png]] ​
635 -
636 636  (((
637 -(((
638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
603 +[[image:image-20220708140453-6.png]]
639 639  )))
640 -)))
641 641  
642 642  
643 -[[image:1654506665940-119.png]]
644 644  
645 -(((
646 -Dig a hole with diameter > 20CM.
647 -)))
608 +=== 2.9.2  Power consumption Analyze ===
648 648  
649 649  (((
650 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
651 651  )))
652 652  
653 653  
654 -== 2.10 ​Firmware Change Log ==
655 -
656 656  (((
657 -**Firmware download link:**
616 +Instruction to use as below:
658 658  )))
659 659  
660 660  (((
661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
662 662  )))
663 663  
664 -(((
665 -
666 -)))
667 667  
668 668  (((
669 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
670 670  )))
671 671  
672 -(((
673 -
628 +* (((
629 +Product Model
674 674  )))
675 -
676 -(((
677 -**V1.0.**
631 +* (((
632 +Uplink Interval
678 678  )))
634 +* (((
635 +Working Mode
636 +)))
679 679  
680 680  (((
681 -Release
639 +And the Life expectation in difference case will be shown on the right.
682 682  )))
683 683  
642 +[[image:image-20220708141352-7.jpeg]]
684 684  
685 -== 2.11 ​Battery Analysis ==
686 686  
687 -=== 2.11.1 ​Battery Type ===
688 688  
689 -(((
690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 -)))
646 +=== 2.9.3  ​Battery Note ===
692 692  
693 693  (((
694 -The battery is designed to last for more than 5 years for the LSN50.
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
695 695  )))
696 696  
697 -(((
698 -(((
699 -The battery-related documents are as below:
700 -)))
701 -)))
702 702  
703 -* (((
704 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
705 -)))
706 -* (((
707 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
708 -)))
709 -* (((
710 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 -)))
712 712  
713 - [[image:image-20220606171726-9.png]]
654 +=== 2.9.4  Replace the battery ===
714 714  
715 -
716 -
717 -=== 2.11.2 ​Battery Note ===
718 -
719 719  (((
720 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
721 721  )))
722 722  
723 723  
724 724  
725 -=== 2.11.3 Replace the battery ===
662 += 3. ​ Access NB-IoT Module =
726 726  
727 727  (((
728 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
665 +Users can directly access the AT command set of the NB-IoT module.
729 729  )))
730 730  
731 731  (((
732 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
733 733  )))
734 734  
735 -(((
736 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
737 -)))
672 +[[image:1657261278785-153.png]]
738 738  
739 739  
740 740  
741 -= 3. Using the AT Commands =
676 += 4.  Using the AT Commands =
742 742  
743 -== 3.1 Access AT Commands ==
678 +== 4.1  Access AT Commands ==
744 744  
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
745 745  
746 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
747 747  
748 -[[image:1654501986557-872.png||height="391" width="800"]]
683 +AT+<CMD>?  : Help on <CMD>
749 749  
685 +AT+<CMD>         : Run <CMD>
750 750  
751 -Or if you have below board, use below connection:
687 +AT+<CMD>=<value> : Set the value
752 752  
689 +AT+<CMD>=?  : Get the value
753 753  
754 -[[image:1654502005655-729.png||height="503" width="801"]]
755 755  
756 -
757 -
758 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
759 -
760 -
761 - [[image:1654502050864-459.png||height="564" width="806"]]
762 -
763 -
764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
765 -
766 -
767 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
768 -
769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
770 -
771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
772 -
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
774 -
775 -
776 776  (% style="color:#037691" %)**General Commands**(%%)      
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
781 781  
782 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
785 785  
702 +AT+CFG  : Print all configurations
786 786  
787 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
820 820  
735 +AT+CLIENT               : Get or Set MQTT client
821 821  
822 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
849 -
850 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
851 -
852 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
853 -
854 -
855 -(% style="color:#037691" %)**Information** 
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
868 -
869 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
870 -
871 -
872 -= ​4. FAQ =
873 -
874 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
875 -
876 876  (((
877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 -When downloading the images, choose the required image file for download. ​
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
879 879  )))
880 880  
881 881  (((
882 -
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
883 883  )))
884 884  
885 885  (((
886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
887 887  )))
888 888  
889 -(((
890 -
891 -)))
892 892  
893 -(((
894 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
895 -)))
896 896  
897 -(((
898 -
899 -)))
773 += 6.  Trouble Shooting =
900 900  
901 -(((
902 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
903 -)))
775 +== 6.1  ​Connection problem when uploading firmware ==
904 904  
905 -[[image:image-20220606154726-3.png]]
906 906  
907 -
908 -When you use the TTN network, the US915 frequency bands use are:
909 -
910 -* 903.9 - SF7BW125 to SF10BW125
911 -* 904.1 - SF7BW125 to SF10BW125
912 -* 904.3 - SF7BW125 to SF10BW125
913 -* 904.5 - SF7BW125 to SF10BW125
914 -* 904.7 - SF7BW125 to SF10BW125
915 -* 904.9 - SF7BW125 to SF10BW125
916 -* 905.1 - SF7BW125 to SF10BW125
917 -* 905.3 - SF7BW125 to SF10BW125
918 -* 904.6 - SF8BW500
919 -
778 +(% class="wikigeneratedid" %)
920 920  (((
921 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
922 922  )))
923 923  
924 -(% class="box infomessage" %)
925 -(((
926 -**AT+CHE=2**
927 -)))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**ATZ**
932 -)))
933 933  
934 -(((
935 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
936 -)))
785 +== 6.2  AT Command input doesn't work ==
937 937  
938 938  (((
939 -
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 940  )))
941 941  
942 -(((
943 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
944 -)))
945 945  
946 -[[image:image-20220606154825-4.png]]
947 947  
793 += 7. ​ Order Info =
948 948  
949 949  
950 -= 5. Trouble Shooting =
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
951 951  
952 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
953 953  
954 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
955 -
956 -
957 -== 5.2 AT Command input doesn’t work ==
958 -
959 -(((
960 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
961 -)))
962 -
963 -
964 -== 5.3 Device rejoin in at the second uplink packet ==
965 -
966 -(% style="color:#4f81bd" %)**Issue describe as below:**
967 -
968 -[[image:1654500909990-784.png]]
969 -
970 -
971 -(% style="color:#4f81bd" %)**Cause for this issue:**
972 -
973 -(((
974 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
975 -)))
976 -
977 -
978 -(% style="color:#4f81bd" %)**Solution: **
979 -
980 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
981 -
982 -[[image:1654500929571-736.png||height="458" width="832"]]
983 -
984 -
985 -= 6. ​Order Info =
986 -
987 -
988 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
989 -
990 -
991 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
992 -
993 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
994 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
995 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
996 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
997 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
998 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
999 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1000 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1001 -
1002 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1003 -
1004 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1005 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1006 -
1007 1007  (% class="wikigeneratedid" %)
1008 1008  (((
1009 1009  
1010 1010  )))
1011 1011  
1012 -= 7. Packing Info =
804 += 8.  Packing Info =
1013 1013  
1014 1014  (((
1015 1015  
1016 1016  
1017 1017  (% style="color:#037691" %)**Package Includes**:
1018 -)))
1019 1019  
1020 -* (((
1021 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
811 +
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
1022 1022  )))
1023 1023  
1024 1024  (((
... ... @@ -1025,30 +1025,20 @@
1025 1025  
1026 1026  
1027 1027  (% style="color:#037691" %)**Dimension and weight**:
1028 -)))
1029 1029  
1030 -* (((
1031 -Device Size: cm
821 +
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
1032 1032  )))
1033 -* (((
1034 -Device Weight: g
1035 -)))
1036 -* (((
1037 -Package Size / pcs : cm
1038 -)))
1039 -* (((
1040 -Weight / pcs : g
1041 1041  
826 +(((
827 +
1042 1042  
829 +
1043 1043  
1044 1044  )))
1045 1045  
1046 -= 8. Support =
833 += 9.  Support =
1047 1047  
1048 1048  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1049 1049  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1050 -
1051 -
1052 -~)~)~)
1053 -~)~)~)
1054 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content