Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1013 +12,805 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 64 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 75 76 -== 1.5 Firmware Change log == 77 77 74 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 80 80 81 81 82 82 83 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 84 84 85 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 89 +[[image:image-20220708101224-1.png]] 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 95 93 +== 1.4 Applications == 96 96 97 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 100 100 100 +== 1.5 Pin Definitions == 101 101 102 -[[image:1654503992078-669.png]] 103 103 103 +[[image:1657246476176-652.png]] 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 109 109 110 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 115 115 116 -**Add APP EUI in the application** 117 117 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 -Uplink payload includes in total 11 bytes. 150 - 151 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 152 -|((( 153 -**Size** 154 - 155 -**(bytes)** 156 -)))|**2**|**2**|**2**|**2**|**2**|**1** 157 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 158 -Temperature 159 - 160 -(Reserve, Ignore now) 161 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 162 -MOD & Digital Interrupt 163 - 164 -(Optional) 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 165 165 ))) 166 166 121 +[[image:image-20220708101605-2.png]] 167 167 168 - 169 -=== 2.3.2 MOD~=1(Original value) === 170 - 171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 - 173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 -|((( 175 -**Size** 176 - 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 -Temperature 181 - 182 -(Reserve, Ignore now) 183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 -MOD & Digital Interrupt 185 - 186 -(Optional) 123 +((( 124 + 187 187 ))) 188 188 189 189 190 190 191 -== =2.3.3BatteryInfo===129 +== 2.2 Configure the NSE01 == 192 192 193 -Check the battery voltage for LSE01. 194 194 195 - Ex1:0x0B45=2885mV132 +=== 2.2.1 Test Requirement === 196 196 197 -Ex2: 0x0B49 = 2889mV 198 198 135 +To use NSE01 in your city, make sure meet below requirements: 199 199 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 200 200 201 -=== 2.3.4 Soil Moisture === 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 143 +))) 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - For example,if the data youget from the register is __0x050xDC__, the moisture content in the soil is146 +[[image:1657249419225-449.png]] 206 206 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 150 +=== 2.2.2 Insert SIM card === 210 210 152 +Insert the NB-IoT Card get from your provider. 211 211 212 - ===2.3.5SoilTemperature===154 +User need to take out the NB-IoT module and insert the SIM card like below: 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 - **Example**:157 +[[image:1657249468462-536.png]] 217 217 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 222 222 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 230 ((( 231 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 232 232 ))) 233 - 234 -((( 235 -Generally, the EC value of irrigation water is less than 800uS / cm. 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 170 +**Connection:** 245 245 246 -= ==2.3.7MOD===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 247 247 248 - Firmwareversionatst v2.1 supportschanging mode.174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 249 249 250 - Forexample,bytes[10]=90176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 179 +In the PC, use below serial tool settings: 254 254 255 -**Downlink Command:** 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 256 256 257 -If payload = 0x0A00, workmode=0 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 258 258 259 - If** **payload =** **0x0A01, workmode=1191 +[[image:image-20220708110657-3.png]] 260 260 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 261 261 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.197 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 267 267 268 -[[image:1654505570700-128.png]] 269 269 270 - Thepayloaddecoder function for TTN ishere:202 +**Use below commands:** 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 208 +For parameter description, please refer to AT command set 274 274 210 +[[image:1657249793983-486.png]] 275 275 276 -== 2.4 Uplink Interval == 277 277 278 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 279 279 215 +[[image:1657249831934-534.png]] 280 280 281 281 282 -== 2.5 Downlink Payload == 283 283 284 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 285 285 286 - [[image:image-20220606165544-8.png]]221 +This feature is supported since firmware version v1.0.1 287 287 288 288 289 -**Examples:** 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 290 290 228 +[[image:1657249864775-321.png]] 291 291 292 -* **Set TDC** 293 293 294 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.231 +[[image:1657249930215-289.png]] 295 295 296 -Payload: 01 00 00 1E TDC=30S 297 297 298 -Payload: 01 00 00 3C TDC=60S 299 299 235 +=== 2.2.6 Use MQTT protocol to uplink data === 300 300 301 - ***Reset**237 +This feature is supported since firmware version v110 302 302 303 -If payload = 0x04FF, it will reset the LSE01 304 304 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 305 305 306 - * **CFM**248 +[[image:1657249978444-674.png]] 307 307 308 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 309 309 251 +[[image:1657249990869-686.png]] 310 310 311 311 312 -== 2.6 Show Data in DataCake IoT Server == 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 313 313 314 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 315 315 316 316 317 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.260 +=== 2.2.7 Use TCP protocol to uplink data === 318 318 319 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:262 +This feature is supported since firmware version v110 320 320 321 321 322 -[[image:1654505857935-743.png]] 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 323 323 268 +[[image:1657250217799-140.png]] 324 324 325 -[[image:1654505874829-548.png]] 326 326 327 - Step 3: Create an account or login Datacake.271 +[[image:1657250255956-604.png]] 328 328 329 -Step 4: Search the LSE01 and add DevEUI. 330 330 331 331 332 - [[image:1654505905236-553.png]]275 +=== 2.2.8 Change Update Interval === 333 333 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 334 334 335 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 336 336 337 -[[image:1654505925508-181.png]] 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 338 338 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 339 339 340 340 341 -== 2.7 Frequency Plans == 342 342 343 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.291 +== 2.3 Uplink Payload == 344 344 293 +In this mode, uplink payload includes in total 18 bytes 345 345 346 -=== 2.7.1 EU863-870 (EU868) === 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 347 347 348 - (%style="color:#037691"%)** Uplink:**301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 349 349 350 -868.1 - SF7BW125 to SF12BW125 351 351 352 - 868.3-SF7BW125 to SF12BW125 and SF7BW250304 +[[image:image-20220708111918-4.png]] 353 353 354 -868.5 - SF7BW125 to SF12BW125 355 355 356 - 867.1-SF7BW125toSF12BW125307 +The payload is ASCII string, representative same HEX: 357 357 358 - 867.3- SF7BW125to SF12BW125309 +0x72403155615900640c7817075e0a8c02f900 where: 359 359 360 -867.5 - SF7BW125 to SF12BW125 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 361 361 362 -867.7 - SF7BW125 to SF12BW125 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 363 363 364 -867.9 - SF7BW125 to SF12BW125 365 365 366 -868.8 - FSK 367 367 368 368 369 - (%style="color:#037691"%)**Downlink:**324 +== 2.4 Payload Explanation and Sensor Interface == 370 370 371 -Uplink channels 1-9 (RX1) 372 372 373 - 869.525- SF9BW125 (RX2 downlinkonly)327 +=== 2.4.1 Device ID === 374 374 329 +By default, the Device ID equal to the last 6 bytes of IMEI. 375 375 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 376 376 377 - === 2.7.2 US902-928(US915) ===333 +**Example:** 378 378 379 - Used in USA, Canada and South America.Default use CHE=2335 +AT+DEUI=A84041F15612 380 380 381 - (%style="color:#037691"%)**Uplink:**337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 382 382 383 -903.9 - SF7BW125 to SF10BW125 384 384 385 -904.1 - SF7BW125 to SF10BW125 386 386 387 - 904.3 - SF7BW125toSF10BW125341 +=== 2.4.2 Version Info === 388 388 389 - 904.5-SF7BW125toSF10BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 390 390 391 - 904.7-SF7BW125toSF10BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 392 392 393 -904.9 - SF7BW125 to SF10BW125 394 394 395 -905.1 - SF7BW125 to SF10BW125 396 396 397 - 905.3- SF7BW125toSF10BW125349 +=== 2.4.3 Battery Info === 398 398 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 399 399 400 -(% style="color:#037691" %)**Downlink:** 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 401 401 402 -923.3 - SF7BW500 to SF12BW500 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 403 403 404 -923.9 - SF7BW500 to SF12BW500 405 405 406 -924.5 - SF7BW500 to SF12BW500 407 407 408 - 925.1-SF7BW500toSF12BW500365 +=== 2.4.4 Signal Strength === 409 409 410 - 925.7-SF7BW500to SF12BW500367 +NB-IoT Network signal Strength. 411 411 412 - 926.3- SF7BW500toSF12BW500369 +**Ex1: 0x1d = 29** 413 413 414 - 926.9-SF7BW500toSF12BW500371 +(% style="color:blue" %)**0**(%%) -113dBm or less 415 415 416 - 927.5- SF7BW500toSF12BW500373 +(% style="color:blue" %)**1**(%%) -111dBm 417 417 418 - 923.3 -SF12BW500(RX2downlinkonly)375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 419 377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 420 379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 421 421 422 -=== 2.7.3 CN470-510 (CN470) === 423 423 424 -Used in China, Default use CHE=1 425 425 426 - (% style="color:#037691"%)**Uplink:**383 +=== 2.4.5 Soil Moisture === 427 427 428 -486.3 - SF7BW125 to SF12BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 429 429 430 -486.5 - SF7BW125 to SF12BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 431 431 432 -486.7 - SF7BW125 to SF12BW125 393 +((( 394 + 395 +))) 433 433 434 -486.9 - SF7BW125 to SF12BW125 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 435 435 436 -487.1 - SF7BW125 to SF12BW125 437 437 438 -487.3 - SF7BW125 to SF12BW125 439 439 440 -4 87.5-SF7BW125toSF12BW125403 +=== 2.4.6 Soil Temperature === 441 441 442 -487.7 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 443 443 409 +((( 410 +**Example**: 411 +))) 444 444 445 -(% style="color:#037691" %)**Downlink:** 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 446 446 447 -506.7 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 448 448 449 -506.9 - SF7BW125 to SF12BW125 450 450 451 -507.1 - SF7BW125 to SF12BW125 452 452 453 - 507.3-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 454 454 455 -507.5 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 456 456 457 -507.7 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 458 458 459 -507.9 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 460 460 461 -508.1 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 462 462 463 -505.3 - SF12BW125 (RX2 downlink only) 441 +((( 442 + 443 +))) 464 464 445 +=== 2.4.8 Digital Interrupt === 465 465 447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 466 466 467 - ===2.7.4AU915-928(AU915) ===449 +The command is: 468 468 469 -Defau ltuse CHE=2451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 470 470 471 -(% style="color:#037691" %)**Uplink:** 472 472 473 - 916.8-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 474 474 475 -917.0 - SF7BW125 to SF12BW125 476 476 477 - 917.2 - SF7BW125 to SF12BW125457 +Example: 478 478 479 - 917.4-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 480 480 481 - 917.6-SF7BW125to SF12BW125461 +0x(01): Interrupt Uplink Packet. 482 482 483 -917.8 - SF7BW125 to SF12BW125 484 484 485 -918.0 - SF7BW125 to SF12BW125 486 486 487 - 918.2- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 488 488 467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 489 489 490 -(% style="color:#037691" %)**Downlink:** 491 491 492 - 923.3- SF7BW500toSF12BW500470 +The 5V output time can be controlled by AT Command. 493 493 494 - 923.9- SF7BW500toSF12BW500472 +(% style="color:blue" %)**AT+5VT=1000** 495 495 496 - 924.5-SF7BW500 toSF12BW500474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 497 497 498 -925.1 - SF7BW500 to SF12BW500 499 499 500 -925.7 - SF7BW500 to SF12BW500 501 501 502 - 926.3 - SF7BW500toSF12BW500478 +== 2.5 Downlink Payload == 503 503 504 - 926.9-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 505 505 506 - 927.5-SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 507 507 508 -923.3 - SF12BW500(RX2 downlink only) 509 509 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 510 510 489 +((( 490 + 491 +))) 511 511 512 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 513 513 514 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 515 515 516 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 517 517 518 -923.4 - SF7BW125 to SF10BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 519 519 509 +((( 510 + 511 +))) 520 520 521 -(% style="color:#037691" %)**Additional Uplink Channel**: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 522 522 523 -(OTAA mode, channel added by JoinAccept message) 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 524 524 525 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 526 526 527 - 922.2-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 528 528 529 - 922.4-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 530 530 531 -922.6 - SF7BW125 to SF10BW125 532 532 533 -922.8 - SF7BW125 to SF10BW125 534 534 535 - 923.0-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 536 536 537 -922.0 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 538 538 539 539 540 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 541 541 542 -923.6 - SF7BW125 to SF10BW125 543 543 544 -923.8 - SF7BW125 to SF10BW125 545 545 546 -924.0 - SF7BW125 to SF10BW125 547 547 548 - 924.2 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 549 549 550 - 924.4- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 551 551 552 - 924.6-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 553 553 549 +[[image:1657259653666-883.png]] 554 554 555 -(% style="color:#037691" %)** Downlink:** 556 556 557 -Uplink channels 1-8 (RX1) 552 +((( 553 + 558 558 559 -923.2 - SF10BW125 (RX2) 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 560 560 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 561 561 564 +[[image:1654506665940-119.png]] 562 562 563 -=== 2.7.6 KR920-923 (KR920) === 566 +((( 567 + 568 +))) 564 564 565 -Default channel: 566 566 567 - 922.1- SF7BW125toSF12BW125571 +== 2.8 Firmware Change Log == 568 568 569 -922.3 - SF7BW125 to SF12BW125 570 570 571 - 922.5-SF7BW125toSF12BW125574 +Download URL & Firmware Change log 572 572 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 573 573 574 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 575 576 - 922.1- SF7BW125toSF12BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 577 577 578 -922.3 - SF7BW125 to SF12BW125 579 579 580 -922.5 - SF7BW125 to SF12BW125 581 581 582 - 922.7- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 583 583 584 - 922.9- SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 585 585 586 -923.1 - SF7BW125 to SF12BW125 587 587 588 - 923.3-SF7BW125to SF12BW125588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 589 589 590 590 591 - (%style="color:#037691"%)**Downlink:**591 +The battery is designed to last for several years depends on the actually use environment and update interval. 592 592 593 -Uplink channels 1-7(RX1) 594 594 595 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 mightbechangedtoSF9BW125)594 +The battery related documents as below: 596 596 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 597 598 - 599 -=== 2.7.7 IN865-867 (IN865) === 600 - 601 -(% style="color:#037691" %)** Uplink:** 602 - 603 -865.0625 - SF7BW125 to SF12BW125 604 - 605 -865.4025 - SF7BW125 to SF12BW125 606 - 607 -865.9850 - SF7BW125 to SF12BW125 608 - 609 - 610 -(% style="color:#037691" %) **Downlink:** 611 - 612 -Uplink channels 1-3 (RX1) 613 - 614 -866.550 - SF10BW125 (RX2) 615 - 616 - 617 - 618 - 619 -== 2.8 LED Indicator == 620 - 621 -The LSE01 has an internal LED which is to show the status of different state. 622 - 623 -* Blink once when device power on. 624 -* Solid ON for 5 seconds once device successful Join the network. 625 -* Blink once when device transmit a packet. 626 - 627 - 628 - 629 -== 2.9 Installation in Soil == 630 - 631 -**Measurement the soil surface** 632 - 633 - 634 -[[image:1654506634463-199.png]] 635 - 636 636 ((( 637 -((( 638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 639 639 ))) 640 -))) 641 641 642 642 643 -[[image:1654506665940-119.png]] 644 644 645 -((( 646 -Dig a hole with diameter > 20CM. 647 -))) 606 +=== 2.9.2 Power consumption Analyze === 648 648 649 649 ((( 650 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 651 651 ))) 652 652 653 653 654 -== 2.10 Firmware Change Log == 655 - 656 656 ((( 657 - **Firmware downloadlink:**614 +Instruction to use as below: 658 658 ))) 659 659 660 660 ((( 661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 662 662 ))) 663 663 664 -((( 665 - 666 -))) 667 667 668 668 ((( 669 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 670 670 ))) 671 671 672 -((( 673 - 626 +* ((( 627 +Product Model 674 674 ))) 675 - 676 -((( 677 -**V1.0.** 629 +* ((( 630 +Uplink Interval 678 678 ))) 632 +* ((( 633 +Working Mode 634 +))) 679 679 680 680 ((( 681 - Release637 +And the Life expectation in difference case will be shown on the right. 682 682 ))) 683 683 640 +[[image:image-20220708141352-7.jpeg]] 684 684 685 -== 2.11 Battery Analysis == 686 686 687 -=== 2.11.1 Battery Type === 688 688 689 -((( 690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 -))) 644 +=== 2.9.3 Battery Note === 692 692 693 693 ((( 694 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 695 695 ))) 696 696 697 -((( 698 -((( 699 -The battery-related documents are as below: 700 -))) 701 -))) 702 702 703 -* ((( 704 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 705 -))) 706 -* ((( 707 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 708 -))) 709 -* ((( 710 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 711 -))) 712 712 713 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 714 714 715 - 716 - 717 -=== 2.11.2 Battery Note === 718 - 719 719 ((( 720 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 721 721 ))) 722 722 723 723 724 724 725 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 726 726 727 727 ((( 728 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 729 729 ))) 730 730 731 731 ((( 732 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 733 733 ))) 734 734 735 -((( 736 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 737 -))) 670 +[[image:1657261278785-153.png]] 738 738 739 739 740 740 741 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 742 742 743 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 744 744 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 745 745 746 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 747 747 748 - [[image:1654501986557-872.png||height="391"width="800"]]681 +AT+<CMD>? : Help on <CMD> 749 749 683 +AT+<CMD> : Run <CMD> 750 750 751 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 752 752 687 +AT+<CMD>=? : Get the value 753 753 754 -[[image:1654502005655-729.png||height="503" width="801"]] 755 755 756 - 757 - 758 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 759 - 760 - 761 - [[image:1654502050864-459.png||height="564" width="806"]] 762 - 763 - 764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 765 - 766 - 767 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 768 - 769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 770 - 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 774 - 775 - 776 776 (% style="color:#037691" %)**General Commands**(%%) 777 777 778 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 779 779 780 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 781 781 782 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 785 785 700 +AT+CFG : Print all configurations 786 786 787 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 804 804 805 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 806 806 807 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 820 820 733 +AT+CLIENT : Get or Set MQTT client 821 821 822 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 829 829 830 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 831 831 832 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 839 839 840 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 841 841 842 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 843 843 844 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 849 - 850 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 853 - 854 - 855 -(% style="color:#037691" %)**Information** 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 868 - 869 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 870 - 871 - 872 -= 4. FAQ = 873 - 874 -== 4.1 How to change the LoRa Frequency Bands/Region? == 875 - 876 876 ((( 877 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 878 -When downloading the images, choose the required image file for download. 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 879 879 ))) 880 880 881 881 ((( 882 - 762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 883 883 ))) 884 884 885 885 ((( 886 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 887 887 ))) 888 888 889 -((( 890 - 891 -))) 892 892 893 -((( 894 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 895 -))) 896 896 897 -((( 898 - 899 -))) 771 += 6. Trouble Shooting = 900 900 901 -((( 902 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 903 -))) 773 +== 6.1 Connection problem when uploading firmware == 904 904 905 -[[image:image-20220606154726-3.png]] 906 906 907 - 908 -When you use the TTN network, the US915 frequency bands use are: 909 - 910 -* 903.9 - SF7BW125 to SF10BW125 911 -* 904.1 - SF7BW125 to SF10BW125 912 -* 904.3 - SF7BW125 to SF10BW125 913 -* 904.5 - SF7BW125 to SF10BW125 914 -* 904.7 - SF7BW125 to SF10BW125 915 -* 904.9 - SF7BW125 to SF10BW125 916 -* 905.1 - SF7BW125 to SF10BW125 917 -* 905.3 - SF7BW125 to SF10BW125 918 -* 904.6 - SF8BW500 919 - 776 +(% class="wikigeneratedid" %) 920 920 ((( 921 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 922 922 ))) 923 923 924 -(% class="box infomessage" %) 925 -((( 926 -**AT+CHE=2** 927 -))) 928 928 929 -(% class="box infomessage" %) 930 -((( 931 -**ATZ** 932 -))) 933 933 934 -((( 935 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 936 -))) 783 +== 6.2 AT Command input doesn't work == 937 937 938 938 ((( 939 - 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 940 940 ))) 941 941 942 -((( 943 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 944 -))) 945 945 946 -[[image:image-20220606154825-4.png]] 947 947 791 += 7. Order Info = 948 948 949 949 950 - = 5. TroubleShooting=794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 951 951 952 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 953 953 954 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 955 - 956 - 957 -== 5.2 AT Command input doesn’t work == 958 - 959 -((( 960 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 961 -))) 962 - 963 - 964 -== 5.3 Device rejoin in at the second uplink packet == 965 - 966 -(% style="color:#4f81bd" %)**Issue describe as below:** 967 - 968 -[[image:1654500909990-784.png]] 969 - 970 - 971 -(% style="color:#4f81bd" %)**Cause for this issue:** 972 - 973 -((( 974 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 975 -))) 976 - 977 - 978 -(% style="color:#4f81bd" %)**Solution: ** 979 - 980 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 981 - 982 -[[image:1654500929571-736.png||height="458" width="832"]] 983 - 984 - 985 -= 6. Order Info = 986 - 987 - 988 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 989 - 990 - 991 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 992 - 993 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 994 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 995 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 996 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 997 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 998 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 999 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1000 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1001 - 1002 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1003 - 1004 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1005 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1006 - 1007 1007 (% class="wikigeneratedid" %) 1008 1008 ((( 1009 1009 1010 1010 ))) 1011 1011 1012 -= 7. Packing Info =802 += 8. Packing Info = 1013 1013 1014 1014 ((( 1015 1015 1016 1016 1017 1017 (% style="color:#037691" %)**Package Includes**: 1018 -))) 1019 1019 1020 -* ((( 1021 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 1022 1022 ))) 1023 1023 1024 1024 ((( ... ... @@ -1025,30 +1025,20 @@ 1025 1025 1026 1026 1027 1027 (% style="color:#037691" %)**Dimension and weight**: 1028 -))) 1029 1029 1030 -* ((( 1031 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1032 1032 ))) 1033 -* ((( 1034 -Device Weight: g 1035 -))) 1036 -* ((( 1037 -Package Size / pcs : cm 1038 -))) 1039 -* ((( 1040 -Weight / pcs : g 1041 1041 824 +((( 825 + 1042 1042 827 + 1043 1043 1044 1044 ))) 1045 1045 1046 -= 8. Support =831 += 9. Support = 1047 1047 1048 1048 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1049 1049 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1050 - 1051 - 1052 -~)~)~) 1053 -~)~)~) 1054 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content