Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.8
edited by Xiaoling
on 2022/06/07 11:36
Change comment: There is no comment for this version
To version 62.2
edited by Xiaoling
on 2022/07/08 14:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,732 +12,632 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -Uplink payload includes in total 11 bytes.
150 -
151 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
152 -|(((
153 -**Size**
154 -
155 -**(bytes)**
156 -)))|**2**|**2**|**2**|**2**|**2**|**1**
157 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
158 -Temperature
159 -
160 -(Reserve, Ignore now)
161 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
162 -MOD & Digital Interrupt
163 -
164 -(Optional)
165 -)))
166 -
167 -
168 -
169 -=== 2.3.2 MOD~=1(Original value) ===
170 -
171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 -
173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 -|(((
175 -**Size**
176 -
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 -Temperature
181 -
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 -MOD & Digital Interrupt
185 -
186 -(Optional)
187 -)))
188 -
189 -
190 -
191 -=== 2.3.3 Battery Info ===
192 -
193 -Check the battery voltage for LSE01.
194 -
195 -Ex1: 0x0B45 = 2885mV
196 -
197 -Ex2: 0x0B49 = 2889mV
198 -
199 -
200 -
201 -=== 2.3.4 Soil Moisture ===
202 -
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 -
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
206 -
207 -
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 -
210 -
211 -
212 -=== 2.3.5 Soil Temperature ===
213 -
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 -
216 -**Example**:
217 -
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
219 -
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 -
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
236 236  )))
237 237  
238 -(((
239 -
240 -)))
115 +[[image:image-20220708101605-2.png]]
241 241  
242 242  (((
243 243  
244 244  )))
245 245  
246 -=== 2.3.7 MOD ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
249 249  
250 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
126 +=== 2.2.1 Test Requirement ===
254 254  
255 -**Downlink Command:**
256 256  
257 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
258 258  
259 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
260 260  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
267 267  
268 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
269 269  
270 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
273 273  
274 274  
151 +[[image:1657249468462-536.png]]
275 275  
276 -== 2.4 Uplink Interval ==
277 277  
278 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
279 279  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
280 280  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
281 281  
282 -== 2.5 Downlink Payload ==
283 283  
284 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
285 285  
286 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
287 287  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
288 288  
289 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
290 290  
291 291  
292 -* **Set TDC**
173 +In the PC, use below serial tool settings:
293 293  
294 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
295 295  
296 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
297 297  
298 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
299 299  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
300 300  
301 -* **Reset**
302 302  
303 -If payload = 0x04FF, it will reset the LSE01
304 304  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
305 305  
306 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
307 307  
308 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
309 309  
196 +**Use below commands:**
310 310  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
311 311  
312 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
313 313  
314 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
315 315  
316 316  
317 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
318 318  
319 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
320 320  
321 321  
322 -[[image:1654505857935-743.png]]
323 323  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
324 324  
325 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
326 326  
327 -Step 3: Create an account or log in Datacake.
328 328  
329 -Step 4: Search the LSE01 and add DevEUI.
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
330 330  
222 +[[image:1657249864775-321.png]]
331 331  
332 -[[image:1654505905236-553.png]]
333 333  
225 +[[image:1657249930215-289.png]]
334 334  
335 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
336 336  
337 -[[image:1654505925508-181.png]]
338 338  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
339 339  
231 +This feature is supported since firmware version v110
340 340  
341 -== 2.7 Frequency Plans ==
342 342  
343 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
344 344  
242 +[[image:1657249978444-674.png]]
345 345  
346 -=== 2.7.1 EU863-870 (EU868) ===
347 347  
348 -(% style="color:#037691" %)** Uplink:**
245 +[[image:1657249990869-686.png]]
349 349  
350 -868.1 - SF7BW125 to SF12BW125
351 351  
352 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
353 353  
354 -868.5 - SF7BW125 to SF12BW125
355 355  
356 -867.1 - SF7BW125 to SF12BW125
357 357  
358 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
359 359  
360 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
361 361  
362 -867.7 - SF7BW125 to SF12BW125
363 363  
364 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
365 365  
366 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
367 367  
368 368  
369 -(% style="color:#037691" %)** Downlink:**
265 +[[image:1657250255956-604.png]]
370 370  
371 -Uplink channels 1-9 (RX1)
372 372  
373 -869.525 - SF9BW125 (RX2 downlink only)
374 374  
269 +=== 2.2.8 Change Update Interval ===
375 375  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
376 376  
377 -=== 2.7.2 US902-928(US915) ===
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
378 378  
379 -Used in USA, Canada and South America. Default use CHE=2
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
380 380  
381 -(% style="color:#037691" %)**Uplink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
382 382  
383 -903.9 - SF7BW125 to SF10BW125
384 384  
385 -904.1 - SF7BW125 to SF10BW125
386 386  
387 -904.3 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
388 388  
389 -904.5 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
390 390  
391 -904.7 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
392 392  
393 -904.9 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
394 394  
395 -905.1 - SF7BW125 to SF10BW125
396 396  
397 -905.3 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
398 398  
399 399  
400 -(% style="color:#037691" %)**Downlink:**
301 +The payload is ASCII string, representative same HEX:
401 401  
402 -923.3 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
403 403  
404 -923.9 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
405 405  
406 -924.5 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
407 407  
408 -925.1 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
409 409  
410 -925.7 - SF7BW500 to SF12BW500
411 411  
412 -926.3 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
413 413  
414 -926.9 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
415 415  
416 -927.5 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
417 417  
418 -923.3 - SF12BW500(RX2 downlink only)
324 +**Example:**
419 419  
326 +AT+DEUI=A84041F15612
420 420  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
421 421  
422 -=== 2.7.3 CN470-510 (CN470) ===
423 423  
424 -Used in China, Default use CHE=1
425 425  
426 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
427 427  
428 -486.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
429 429  
430 -486.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
431 431  
432 -486.7 - SF7BW125 to SF12BW125
433 433  
434 -486.9 - SF7BW125 to SF12BW125
435 435  
436 -487.1 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
437 437  
438 -487.3 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
439 439  
440 -487.5 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
441 441  
442 -487.7 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
443 443  
444 444  
445 -(% style="color:#037691" %)**Downlink:**
446 446  
447 -506.7 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
448 448  
449 -506.9 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
450 450  
451 -507.1 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
452 452  
453 -507.3 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
454 454  
455 -507.5 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
456 456  
457 -507.7 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
458 458  
459 -507.9 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
460 460  
461 -508.1 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
462 462  
463 -505.3 - SF12BW125 (RX2 downlink only)
464 464  
465 465  
374 +=== 2.4.5  Soil Moisture ===
466 466  
467 -=== 2.7.4 AU915-928(AU915) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
468 468  
469 -Default use CHE=2
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
470 470  
471 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
472 472  
473 -916.8 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
474 474  
475 -917.0 - SF7BW125 to SF12BW125
476 476  
477 -917.2 - SF7BW125 to SF12BW125
478 478  
479 -917.4 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
480 480  
481 -917.6 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
482 482  
483 -917.8 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
484 484  
485 -918.0 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
486 486  
487 -918.2 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
488 488  
489 489  
490 -(% style="color:#037691" %)**Downlink:**
491 491  
492 -923.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
493 493  
494 -923.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
495 495  
496 -924.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
497 497  
498 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
499 499  
500 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
501 501  
502 -926.3 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
503 503  
504 -926.9 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
505 505  
506 -927.5 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
507 507  
508 -923.3 - SF12BW500(RX2 downlink only)
440 +The command is:
509 509  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
510 510  
511 511  
512 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
513 513  
514 -(% style="color:#037691" %)**Default Uplink channel:**
515 515  
516 -923.2 - SF7BW125 to SF10BW125
448 +Example:
517 517  
518 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
519 519  
452 +0x(01): Interrupt Uplink Packet.
520 520  
521 -(% style="color:#037691" %)**Additional Uplink Channel**:
522 522  
523 -(OTAA mode, channel added by JoinAccept message)
524 524  
525 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
526 526  
527 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 528  
529 -922.4 - SF7BW125 to SF10BW125
530 530  
531 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
532 532  
533 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
534 534  
535 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
536 536  
537 -922.0 - SF7BW125 to SF10BW125
538 538  
539 539  
540 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
541 541  
542 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
543 543  
544 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
545 545  
546 -924.0 - SF7BW125 to SF10BW125
547 547  
548 -924.2 - SF7BW125 to SF10BW125
549 549  
550 -924.4 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
551 551  
552 -924.6 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
553 553  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
554 554  
555 -(% style="color:#037691" %)** Downlink:**
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
556 556  
557 -Uplink channels 1-8 (RX1)
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
558 558  
559 -923.2 - SF10BW125 (RX2)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
560 560  
501 +(((
502 +
503 +)))
561 561  
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
562 562  
563 -=== 2.7.6 KR920-923 (KR920) ===
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
564 564  
565 -Default channel:
566 566  
567 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
568 568  
569 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
570 570  
571 -922.5 - SF7BW125 to SF12BW125
572 572  
573 573  
574 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
520 +== 2.6  ​LED Indicator ==
575 575  
576 -922.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
577 577  
578 -922.3 - SF7BW125 to SF12BW125
579 579  
580 -922.5 - SF7BW125 to SF12BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
581 581  
582 -922.7 - SF7BW125 to SF12BW125
583 583  
584 -922.9 - SF7BW125 to SF12BW125
585 585  
586 -923.1 - SF7BW125 to SF12BW125
587 587  
588 -923.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
589 589  
537 +__**Measurement the soil surface**__
590 590  
591 -(% style="color:#037691" %)**Downlink:**
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
592 592  
593 -Uplink channels 1-7(RX1)
541 +[[image:1657259653666-883.png]] ​
594 594  
595 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
596 596  
544 +(((
545 +
597 597  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
598 598  
599 -=== 2.7.7 IN865-867 (IN865) ===
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
600 600  
601 -(% style="color:#037691" %)** Uplink:**
556 +[[image:1654506665940-119.png]]
602 602  
603 -865.0625 - SF7BW125 to SF12BW125
558 +(((
559 +
560 +)))
604 604  
605 -865.4025 - SF7BW125 to SF12BW125
606 606  
607 -865.9850 - SF7BW125 to SF12BW125
563 +== 2.8  Firmware Change Log ==
608 608  
609 609  
610 -(% style="color:#037691" %) **Downlink:**
566 +Download URL & Firmware Change log
611 611  
612 -Uplink channels 1-3 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
613 613  
614 -866.550 - SF10BW125 (RX2)
615 615  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
616 616  
617 617  
618 618  
619 -== 2.8 LED Indicator ==
575 +== 2. ​Battery Analysis ==
620 620  
621 -The LSE01 has an internal LED which is to show the status of different state.
577 +=== 2.9.1  ​Battery Type ===
622 622  
623 -* Blink once when device power on.
624 -* Solid ON for 5 seconds once device successful Join the network.
625 -* Blink once when device transmit a packet.
626 626  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
627 627  
628 628  
629 -== 2.9 Installation in Soil ==
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
630 630  
631 -**Measurement the soil surface**
632 632  
586 +The battery related documents as below:
633 633  
634 -[[image:1654506634463-199.png]] ​
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
635 635  
636 636  (((
637 -(((
638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
639 639  )))
640 -)))
641 641  
642 642  
643 -[[image:1654506665940-119.png]]
644 644  
645 -(((
646 -Dig a hole with diameter > 20CM.
647 -)))
598 +=== 2.9.2  Power consumption Analyze ===
648 648  
649 -(((
650 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
651 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
652 652  
653 653  
654 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
655 655  
656 -(((
657 -**Firmware download link:**
658 -)))
659 659  
660 -(((
661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
662 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
663 663  
664 -(((
665 -
666 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  
668 -(((
669 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
670 -)))
671 671  
672 -(((
673 -
674 -)))
611 +Step 2: Open it and choose
675 675  
676 -(((
677 -**V1.0.**
678 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
679 679  
680 -(((
681 -Release
682 -)))
617 +And the Life expectation in difference case will be shown on the right.
683 683  
619 +[[image:image-20220708141352-7.jpeg]]
684 684  
685 -== 2.11 ​Battery Analysis ==
686 686  
687 -=== 2.11.1 ​Battery Type ===
688 688  
689 -(((
690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 -)))
623 +=== 2.9.3  ​Battery Note ===
692 692  
693 693  (((
694 -The battery is designed to last for more than 5 years for the LSN50.
695 -)))
696 -
697 -(((
698 -(((
699 -The battery-related documents are as below:
700 -)))
701 -)))
702 -
703 -* (((
704 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
705 -)))
706 -* (((
707 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
708 -)))
709 -* (((
710 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 -)))
712 -
713 - [[image:image-20220606171726-9.png]]
714 -
715 -
716 -
717 -=== 2.11.2 ​Battery Note ===
718 -
719 -(((
720 720  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
721 721  )))
722 722  
723 723  
724 724  
725 -=== 2.11.3 Replace the battery ===
631 +=== 2.9. Replace the battery ===
726 726  
727 727  (((
728 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
729 729  )))
730 730  
731 -(((
732 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
733 -)))
734 734  
735 -(((
736 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
737 -)))
738 738  
739 -
740 -
741 741  = 3. ​Using the AT Commands =
742 742  
743 743  == 3.1 Access AT Commands ==
... ... @@ -761,7 +761,7 @@
761 761   [[image:1654502050864-459.png||height="564" width="806"]]
762 762  
763 763  
764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
765 765  
766 766  
767 767  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -919,19 +919,14 @@
919 919  
920 920  (((
921 921  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
922 -)))
923 923  
924 -(% class="box infomessage" %)
925 -(((
926 -**AT+CHE=2**
821 +* (% style="color:#037691" %)**AT+CHE=2**
822 +* (% style="color:#037691" %)**ATZ**
927 927  )))
928 928  
929 -(% class="box infomessage" %)
930 930  (((
931 -**ATZ**
932 -)))
826 +
933 933  
934 -(((
935 935  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
936 936  )))
937 937  
... ... @@ -946,18 +946,22 @@
946 946  [[image:image-20220606154825-4.png]]
947 947  
948 948  
842 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
949 949  
844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
845 +
846 +
950 950  = 5. Trouble Shooting =
951 951  
952 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
849 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
953 953  
954 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
955 955  
956 956  
957 -== 5.2 AT Command input doesnt work ==
854 +== 5.2 AT Command input doesn't work ==
958 958  
959 959  (((
960 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
961 961  )))
962 962  
963 963  
... ... @@ -1039,7 +1039,6 @@
1039 1039  * (((
1040 1040  Weight / pcs : g
1041 1041  
1042 -
1043 1043  
1044 1044  )))
1045 1045  
... ... @@ -1047,8 +1047,3 @@
1047 1047  
1048 1048  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1049 1049  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1050 -
1051 -
1052 -~)~)~)
1053 -~)~)~)
1054 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content