Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.7
edited by Xiaoling
on 2022/06/07 11:35
Change comment: There is no comment for this version
To version 65.2
edited by Xiaoling
on 2022/07/08 15:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1018 +12,805 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
64 +== 1.3  Specification ==
67 67  
68 68  
69 -== ​1.4 Applications ==
67 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -* Smart Agriculture
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 75  
76 -== 1.5 Firmware Change log ==
77 77  
74 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -**LSE01 v1.0 :**  Release
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 +Probe(% style="color:#037691" %)** Specification:**
84 84  
85 -== 2.1 How it works ==
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
89 +[[image:image-20220708101224-1.png]]
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
95 95  
93 +== ​1.4  Applications ==
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
95 +* Smart Agriculture
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
100 100  
100 +== 1.5  Pin Definitions ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
103 +[[image:1657246476176-652.png]]
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 += 2.  Use NSE01 to communicate with IoT Server =
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 +== 2.1  How it works ==
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
115 115  
116 -**Add APP EUI in the application**
117 117  
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 -
153 -Uplink payload includes in total 11 bytes.
154 -
155 -
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 -
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
121 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
123 +(((
124 +
192 192  )))
193 193  
194 194  
195 195  
196 -=== 2.3.3 Battery Info ===
129 +== 2.2 Configure the NSE01 ==
197 197  
198 -Check the battery voltage for LSE01.
199 199  
200 -Ex1: 0x0B45 = 2885mV
132 +=== 2.2.1 Test Requirement ===
201 201  
202 -Ex2: 0x0B49 = 2889mV
203 203  
135 +To use NSE01 in your city, make sure meet below requirements:
204 204  
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
205 205  
206 -=== 2.3.4 Soil Moisture ===
141 +(((
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
143 +)))
207 207  
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 209  
210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
146 +[[image:1657249419225-449.png]]
211 211  
212 212  
213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214 214  
150 +=== 2.2.2 Insert SIM card ===
215 215  
152 +Insert the NB-IoT Card get from your provider.
216 216  
217 -=== 2.3.5 Soil Temperature ===
154 +User need to take out the NB-IoT module and insert the SIM card like below:
218 218  
219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220 220  
221 -**Example**:
157 +[[image:1657249468462-536.png]]
222 222  
223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224 224  
225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 226  
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
227 227  
228 -
229 -=== 2.3.6 Soil Conductivity (EC) ===
230 -
231 231  (((
232 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
233 -)))
234 -
235 235  (((
236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
237 237  )))
238 -
239 -(((
240 -Generally, the EC value of irrigation water is less than 800uS / cm.
241 241  )))
242 242  
243 -(((
244 -
245 -)))
246 246  
247 -(((
248 -
249 -)))
170 +**Connection:**
250 250  
251 -=== 2.3.7 MOD ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
252 252  
253 -Firmware version at least v2.1 supports changing mode.
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
254 254  
255 -For example, bytes[10]=90
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
258 258  
179 +In the PC, use below serial tool settings:
259 259  
260 -**Downlink Command:**
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
261 261  
262 -If payload = 0x0A00, workmode=0
187 +(((
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
189 +)))
263 263  
264 -If** **payload =** **0x0A01, workmode=1
191 +[[image:image-20220708110657-3.png]]
265 265  
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
266 266  
267 267  
268 -=== 2.3.8 ​Decode payload in The Things Network ===
269 269  
270 -While using TTN network, you can add the payload format to decode the payload.
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
271 271  
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
272 272  
273 -[[image:1654505570700-128.png]]
274 274  
275 -The payload decoder function for TTN is here:
202 +**Use below commands:**
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
278 278  
208 +For parameter description, please refer to AT command set
279 279  
210 +[[image:1657249793983-486.png]]
280 280  
281 -== 2.4 Uplink Interval ==
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
284 284  
215 +[[image:1657249831934-534.png]]
285 285  
286 286  
287 -== 2.5 Downlink Payload ==
288 288  
289 -By default, LSE50 prints the downlink payload to console port.
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
290 290  
291 -[[image:image-20220606165544-8.png]]
221 +This feature is supported since firmware version v1.0.1
292 292  
293 293  
294 -**Examples:**
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
295 295  
228 +[[image:1657249864775-321.png]]
296 296  
297 -* **Set TDC**
298 298  
299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 +[[image:1657249930215-289.png]]
300 300  
301 -Payload:    01 00 00 1E    TDC=30S
302 302  
303 -Payload:    01 00 00 3C    TDC=60S
304 304  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
305 305  
306 -* **Reset**
237 +This feature is supported since firmware version v110
307 307  
308 -If payload = 0x04FF, it will reset the LSE01
309 309  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
310 310  
311 -* **CFM**
248 +[[image:1657249978444-674.png]]
312 312  
313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314 314  
251 +[[image:1657249990869-686.png]]
315 315  
316 316  
317 -== 2.6 ​Show Data in DataCake IoT Server ==
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
318 318  
319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
320 320  
321 321  
322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
260 +=== 2.2.7 Use TCP protocol to uplink data ===
323 323  
324 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 +This feature is supported since firmware version v110
325 325  
326 326  
327 -[[image:1654505857935-743.png]]
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
328 328  
268 +[[image:1657250217799-140.png]]
329 329  
330 -[[image:1654505874829-548.png]]
331 331  
332 -Step 3: Create an account or log in Datacake.
271 +[[image:1657250255956-604.png]]
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
335 335  
336 336  
337 -[[image:1654505905236-553.png]]
275 +=== 2.2.8 Change Update Interval ===
338 338  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
339 339  
340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
341 341  
342 -[[image:1654505925508-181.png]]
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
343 343  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
344 344  
345 345  
346 -== 2.7 Frequency Plans ==
347 347  
348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 +== 2.3  Uplink Payload ==
349 349  
293 +In this mode, uplink payload includes in total 18 bytes
350 350  
351 -=== 2.7.1 EU863-870 (EU868) ===
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
352 352  
353 -(% style="color:#037691" %)** Uplink:**
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
354 354  
355 -868.1 - SF7BW125 to SF12BW125
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
304 +[[image:image-20220708111918-4.png]]
358 358  
359 -868.5 - SF7BW125 to SF12BW125
360 360  
361 -867.1 - SF7BW125 to SF12BW125
307 +The payload is ASCII string, representative same HEX:
362 362  
363 -867.3 - SF7BW125 to SF12BW125
309 +0x72403155615900640c7817075e0a8c02f900 where:
364 364  
365 -867.5 - SF7BW125 to SF12BW125
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
366 366  
367 -867.7 - SF7BW125 to SF12BW125
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
368 368  
369 -867.9 - SF7BW125 to SF12BW125
370 370  
371 -868.8 - FSK
372 372  
373 373  
374 -(% style="color:#037691" %)** Downlink:**
324 +== 2.4  Payload Explanation and Sensor Interface ==
375 375  
376 -Uplink channels 1-9 (RX1)
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
327 +=== 2.4.1  Device ID ===
379 379  
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
380 380  
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
381 381  
382 -=== 2.7.2 US902-928(US915) ===
333 +**Example:**
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
335 +AT+DEUI=A84041F15612
385 385  
386 -(% style="color:#037691" %)**Uplink:**
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
387 387  
388 -903.9 - SF7BW125 to SF10BW125
389 389  
390 -904.1 - SF7BW125 to SF10BW125
391 391  
392 -904.3 - SF7BW125 to SF10BW125
341 +=== 2.4.2  Version Info ===
393 393  
394 -904.5 - SF7BW125 to SF10BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
395 395  
396 -904.7 - SF7BW125 to SF10BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
397 397  
398 -904.9 - SF7BW125 to SF10BW125
399 399  
400 -905.1 - SF7BW125 to SF10BW125
401 401  
402 -905.3 - SF7BW125 to SF10BW125
349 +=== 2.4.3  Battery Info ===
403 403  
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
404 404  
405 -(% style="color:#037691" %)**Downlink:**
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
406 406  
407 -923.3 - SF7BW500 to SF12BW500
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
408 408  
409 -923.9 - SF7BW500 to SF12BW500
410 410  
411 -924.5 - SF7BW500 to SF12BW500
412 412  
413 -925.1 - SF7BW500 to SF12BW500
365 +=== 2.4.4  Signal Strength ===
414 414  
415 -925.7 - SF7BW500 to SF12BW500
367 +NB-IoT Network signal Strength.
416 416  
417 -926.3 - SF7BW500 to SF12BW500
369 +**Ex1: 0x1d = 29**
418 418  
419 -926.9 - SF7BW500 to SF12BW500
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
420 420  
421 -927.5 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**1**(%%)  -111dBm
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
424 424  
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
425 425  
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 426  
427 -=== 2.7.3 CN470-510 (CN470) ===
428 428  
429 -Used in China, Default use CHE=1
430 430  
431 -(% style="color:#037691" %)**Uplink:**
383 +=== 2.4.5  Soil Moisture ===
432 432  
433 -486.3 - SF7BW125 to SF12BW125
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
434 434  
435 -486.5 - SF7BW125 to SF12BW125
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
436 436  
437 -486.7 - SF7BW125 to SF12BW125
393 +(((
394 +
395 +)))
438 438  
439 -486.9 - SF7BW125 to SF12BW125
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
440 440  
441 -487.1 - SF7BW125 to SF12BW125
442 442  
443 -487.3 - SF7BW125 to SF12BW125
444 444  
445 -487.5 - SF7BW125 to SF12BW125
403 +=== 2.4. Soil Temperature ===
446 446  
447 -487.7 - SF7BW125 to SF12BW125
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
448 448  
409 +(((
410 +**Example**:
411 +)))
449 449  
450 -(% style="color:#037691" %)**Downlink:**
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
451 451  
452 -506.7 - SF7BW125 to SF12BW125
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
453 453  
454 -506.9 - SF7BW125 to SF12BW125
455 455  
456 -507.1 - SF7BW125 to SF12BW125
457 457  
458 -507.3 - SF7BW125 to SF12BW125
423 +=== 2.4.7  Soil Conductivity (EC) ===
459 459  
460 -507.5 - SF7BW125 to SF12BW125
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
461 461  
462 -507.7 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
463 463  
464 -507.9 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
465 465  
466 -508.1 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
441 +(((
442 +
443 +)))
469 469  
445 +=== 2.4.8  Digital Interrupt ===
470 470  
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
471 471  
472 -=== 2.7.4 AU915-928(AU915) ===
449 +The command is:
473 473  
474 -Default use CHE=2
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
475 475  
476 -(% style="color:#037691" %)**Uplink:**
477 477  
478 -916.8 - SF7BW125 to SF12BW125
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
479 479  
480 -917.0 - SF7BW125 to SF12BW125
481 481  
482 -917.2 - SF7BW125 to SF12BW125
457 +Example:
483 483  
484 -917.4 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
485 485  
486 -917.6 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
487 487  
488 -917.8 - SF7BW125 to SF12BW125
489 489  
490 -918.0 - SF7BW125 to SF12BW125
491 491  
492 -918.2 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
493 493  
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
494 494  
495 -(% style="color:#037691" %)**Downlink:**
496 496  
497 -923.3 - SF7BW500 to SF12BW500
470 +The 5V output time can be controlled by AT Command.
498 498  
499 -923.9 - SF7BW500 to SF12BW500
472 +(% style="color:blue" %)**AT+5VT=1000**
500 500  
501 -924.5 - SF7BW500 to SF12BW500
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
502 502  
503 -925.1 - SF7BW500 to SF12BW500
504 504  
505 -925.7 - SF7BW500 to SF12BW500
506 506  
507 -926.3 - SF7BW500 to SF12BW500
478 +== 2.5  Downlink Payload ==
508 508  
509 -926.9 - SF7BW500 to SF12BW500
480 +By default, NSE01 prints the downlink payload to console port.
510 510  
511 -927.5 - SF7BW500 to SF12BW500
482 +[[image:image-20220708133731-5.png]]
512 512  
513 -923.3 - SF12BW500(RX2 downlink only)
514 514  
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
515 515  
489 +(((
490 +
491 +)))
516 516  
517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
518 518  
519 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
520 520  
521 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
522 522  
523 -923.4 - SF7BW125 to SF10BW125
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
524 524  
509 +(((
510 +
511 +)))
525 525  
526 -(% style="color:#037691" %)**Additional Uplink Channel**:
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
527 527  
528 -(OTAA mode, channel added by JoinAccept message)
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
529 529  
530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
531 531  
532 -922.2 - SF7BW125 to SF10BW125
522 +* (% style="color:blue" %)**INTMOD**
533 533  
534 -922.4 - SF7BW125 to SF10BW125
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
535 535  
536 -922.6 - SF7BW125 to SF10BW125
537 537  
538 -922.8 - SF7BW125 to SF10BW125
539 539  
540 -923.0 - SF7BW125 to SF10BW125
528 +== 2. ​LED Indicator ==
541 541  
542 -922.0 - SF7BW125 to SF10BW125
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
543 543  
544 544  
545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
546 546  
547 -923.6 - SF7BW125 to SF10BW125
548 548  
549 -923.8 - SF7BW125 to SF10BW125
550 550  
551 -924.0 - SF7BW125 to SF10BW125
552 552  
553 -924.2 - SF7BW125 to SF10BW125
543 +== 2.7  Installation in Soil ==
554 554  
555 -924.4 - SF7BW125 to SF10BW125
545 +__**Measurement the soil surface**__
556 556  
557 -924.6 - SF7BW125 to SF10BW125
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
558 558  
549 +[[image:1657259653666-883.png]] ​
559 559  
560 -(% style="color:#037691" %)** Downlink:**
561 561  
562 -Uplink channels 1-8 (RX1)
552 +(((
553 +
563 563  
564 -923.2 - SF10BW125 (RX2)
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
565 565  
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
566 566  
564 +[[image:1654506665940-119.png]]
567 567  
568 -=== 2.7.6 KR920-923 (KR920) ===
566 +(((
567 +
568 +)))
569 569  
570 -Default channel:
571 571  
572 -922.1 - SF7BW125 to SF12BW125
571 +== 2. Firmware Change Log ==
573 573  
574 -922.3 - SF7BW125 to SF12BW125
575 575  
576 -922.5 - SF7BW125 to SF12BW125
574 +Download URL & Firmware Change log
577 577  
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
578 578  
579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
580 580  
581 -922.1 - SF7BW125 to SF12BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
582 582  
583 -922.3 - SF7BW125 to SF12BW125
584 584  
585 -922.5 - SF7BW125 to SF12BW125
586 586  
587 -922.7 - SF7BW125 to SF12BW125
583 +== 2. Battery Analysis ==
588 588  
589 -922.9 - SF7BW125 to SF12BW125
585 +=== 2.9.1  ​Battery Type ===
590 590  
591 -923.1 - SF7BW125 to SF12BW125
592 592  
593 -923.3 - SF7BW125 to SF12BW125
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
594 594  
595 595  
596 -(% style="color:#037691" %)**Downlink:**
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
597 597  
598 -Uplink channels 1-7(RX1)
599 599  
600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +The battery related documents as below:
601 601  
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 602  
603 -
604 -=== 2.7.7 IN865-867 (IN865) ===
605 -
606 -(% style="color:#037691" %)** Uplink:**
607 -
608 -865.0625 - SF7BW125 to SF12BW125
609 -
610 -865.4025 - SF7BW125 to SF12BW125
611 -
612 -865.9850 - SF7BW125 to SF12BW125
613 -
614 -
615 -(% style="color:#037691" %) **Downlink:**
616 -
617 -Uplink channels 1-3 (RX1)
618 -
619 -866.550 - SF10BW125 (RX2)
620 -
621 -
622 -
623 -
624 -== 2.8 LED Indicator ==
625 -
626 -The LSE01 has an internal LED which is to show the status of different state.
627 -
628 -* Blink once when device power on.
629 -* Solid ON for 5 seconds once device successful Join the network.
630 -* Blink once when device transmit a packet.
631 -
632 -
633 -
634 -== 2.9 Installation in Soil ==
635 -
636 -**Measurement the soil surface**
637 -
638 -
639 -[[image:1654506634463-199.png]] ​
640 -
641 641  (((
642 -(((
643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
644 644  )))
645 -)))
646 646  
647 647  
648 -[[image:1654506665940-119.png]]
649 649  
650 -(((
651 -Dig a hole with diameter > 20CM.
652 -)))
606 +=== 2.9.2  Power consumption Analyze ===
653 653  
654 654  (((
655 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
656 656  )))
657 657  
658 658  
659 -== 2.10 ​Firmware Change Log ==
660 -
661 661  (((
662 -**Firmware download link:**
614 +Instruction to use as below:
663 663  )))
664 664  
665 665  (((
666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  )))
668 668  
669 -(((
670 -
671 -)))
672 672  
673 673  (((
674 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
675 675  )))
676 676  
677 -(((
678 -
626 +* (((
627 +Product Model
679 679  )))
680 -
681 -(((
682 -**V1.0.**
629 +* (((
630 +Uplink Interval
683 683  )))
632 +* (((
633 +Working Mode
634 +)))
684 684  
685 685  (((
686 -Release
637 +And the Life expectation in difference case will be shown on the right.
687 687  )))
688 688  
640 +[[image:image-20220708141352-7.jpeg]]
689 689  
690 -== 2.11 ​Battery Analysis ==
691 691  
692 -=== 2.11.1 ​Battery Type ===
693 693  
694 -(((
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -)))
644 +=== 2.9.3  ​Battery Note ===
697 697  
698 698  (((
699 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 700  )))
701 701  
702 -(((
703 -(((
704 -The battery-related documents are as below:
705 -)))
706 -)))
707 707  
708 -* (((
709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 -)))
714 -* (((
715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 -)))
717 717  
718 - [[image:image-20220606171726-9.png]]
652 +=== 2.9.4  Replace the battery ===
719 719  
720 -
721 -
722 -=== 2.11.2 ​Battery Note ===
723 -
724 724  (((
725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
726 726  )))
727 727  
728 728  
729 729  
730 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
731 731  
732 732  (((
733 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
734 734  )))
735 735  
736 736  (((
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
738 738  )))
739 739  
740 -(((
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 -)))
670 +[[image:1657261278785-153.png]]
743 743  
744 744  
745 745  
746 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
747 747  
748 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
749 749  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
750 750  
751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 752  
753 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
754 754  
683 +AT+<CMD>         : Run <CMD>
755 755  
756 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
757 757  
687 +AT+<CMD>=?  : Get the value
758 758  
759 -[[image:1654502005655-729.png||height="503" width="801"]]
760 760  
761 -
762 -
763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
764 -
765 -
766 - [[image:1654502050864-459.png||height="564" width="806"]]
767 -
768 -
769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
770 -
771 -
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
777 -
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
779 -
780 -
781 781  (% style="color:#037691" %)**General Commands**(%%)      
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
786 786  
787 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
790 790  
700 +AT+CFG  : Print all configurations
791 791  
792 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
825 825  
733 +AT+CLIENT               : Get or Set MQTT client
826 826  
827 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
858 -
859 -
860 -(% style="color:#037691" %)**Information** 
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
873 -
874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
875 -
876 -
877 -= ​4. FAQ =
878 -
879 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
880 -
881 881  (((
882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
884 884  )))
885 885  
886 886  (((
887 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
888 888  )))
889 889  
890 890  (((
891 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
892 892  )))
893 893  
894 -(((
895 -
896 -)))
897 897  
898 -(((
899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
900 -)))
901 901  
902 -(((
903 -
904 -)))
771 += 6.  Trouble Shooting =
905 905  
906 -(((
907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
908 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
909 909  
910 -[[image:image-20220606154726-3.png]]
911 911  
912 -
913 -When you use the TTN network, the US915 frequency bands use are:
914 -
915 -* 903.9 - SF7BW125 to SF10BW125
916 -* 904.1 - SF7BW125 to SF10BW125
917 -* 904.3 - SF7BW125 to SF10BW125
918 -* 904.5 - SF7BW125 to SF10BW125
919 -* 904.7 - SF7BW125 to SF10BW125
920 -* 904.9 - SF7BW125 to SF10BW125
921 -* 905.1 - SF7BW125 to SF10BW125
922 -* 905.3 - SF7BW125 to SF10BW125
923 -* 904.6 - SF8BW500
924 -
776 +(% class="wikigeneratedid" %)
925 925  (((
926 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
927 927  )))
928 928  
929 -(% class="box infomessage" %)
930 -(((
931 -**AT+CHE=2**
932 -)))
933 933  
934 -(% class="box infomessage" %)
935 -(((
936 -**ATZ**
937 -)))
938 938  
939 -(((
940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
941 -)))
783 +== 6.2  AT Command input doesn't work ==
942 942  
943 943  (((
944 -
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
945 945  )))
946 946  
947 -(((
948 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
949 -)))
950 950  
951 -[[image:image-20220606154825-4.png]]
952 952  
791 += 7. ​ Order Info =
953 953  
954 954  
955 -= 5. Trouble Shooting =
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
956 956  
957 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
958 958  
959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
960 -
961 -
962 -== 5.2 AT Command input doesn’t work ==
963 -
964 -(((
965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
966 -)))
967 -
968 -
969 -== 5.3 Device rejoin in at the second uplink packet ==
970 -
971 -(% style="color:#4f81bd" %)**Issue describe as below:**
972 -
973 -[[image:1654500909990-784.png]]
974 -
975 -
976 -(% style="color:#4f81bd" %)**Cause for this issue:**
977 -
978 -(((
979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
980 -)))
981 -
982 -
983 -(% style="color:#4f81bd" %)**Solution: **
984 -
985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
986 -
987 -[[image:1654500929571-736.png||height="458" width="832"]]
988 -
989 -
990 -= 6. ​Order Info =
991 -
992 -
993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
994 -
995 -
996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
997 -
998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1004 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1006 -
1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1008 -
1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1011 -
1012 1012  (% class="wikigeneratedid" %)
1013 1013  (((
1014 1014  
1015 1015  )))
1016 1016  
1017 -= 7. Packing Info =
802 += 8.  Packing Info =
1018 1018  
1019 1019  (((
1020 1020  
1021 1021  
1022 1022  (% style="color:#037691" %)**Package Includes**:
1023 -)))
1024 1024  
1025 -* (((
1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1027 1027  )))
1028 1028  
1029 1029  (((
... ... @@ -1030,30 +1030,20 @@
1030 1030  
1031 1031  
1032 1032  (% style="color:#037691" %)**Dimension and weight**:
1033 -)))
1034 1034  
1035 -* (((
1036 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1037 1037  )))
1038 -* (((
1039 -Device Weight: g
1040 -)))
1041 -* (((
1042 -Package Size / pcs : cm
1043 -)))
1044 -* (((
1045 -Weight / pcs : g
1046 1046  
824 +(((
825 +
1047 1047  
827 +
1048 1048  
1049 1049  )))
1050 1050  
1051 -= 8. Support =
831 += 9.  Support =
1052 1052  
1053 1053  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1054 1054  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 -
1056 -
1057 -~)~)~)
1058 -~)~)~)
1059 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content