Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1003 +12,781 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 70 70 71 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -**LSE01 v1.0 :** Release 80 80 87 +== 1.4 Applications == 81 81 89 +* Smart Agriculture 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 84 84 85 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 97 +[[image:1657246476176-652.png]] 94 94 95 95 96 96 97 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 98 98 99 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 - 153 -Uplink payload includes in total 11 bytes. 154 - 155 - 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 - 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 170 -))) 171 - 172 - 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 -Check the battery voltage for LSE01. 199 - 200 -Ex1: 0x0B45 = 2885mV 201 - 202 -Ex2: 0x0B49 = 2889mV 203 - 204 - 205 - 206 -=== 2.3.4 Soil Moisture === 207 - 208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 - 210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 - 212 - 213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 - 215 - 216 - 217 -=== 2.3.5 Soil Temperature === 218 - 219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 - 221 -**Example**: 222 - 223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 - 225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 - 227 - 228 - 229 -=== 2.3.6 Soil Conductivity (EC) === 230 - 231 231 ((( 232 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 233 233 ))) 234 234 235 -((( 236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 -))) 238 238 239 239 ((( 240 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 241 241 ))) 242 242 243 -((( 244 - 245 -))) 115 +[[image:image-20220708101605-2.png]] 246 246 247 247 ((( 248 248 249 249 ))) 250 250 251 -=== 2.3.7 MOD === 252 252 253 -Firmware version at least v2.1 supports changing mode. 254 254 255 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 256 256 257 -mod=(bytes[10]>>7)&0x01=1. 258 258 126 +=== 2.2.1 Test Requirement === 259 259 260 -**Downlink Command:** 261 261 262 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 263 263 264 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 265 265 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 266 266 267 267 268 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 269 269 270 -While using TTN network, you can add the payload format to decode the payload. 271 271 272 272 273 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 274 274 275 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 276 276 277 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 278 278 279 279 151 +[[image:1657249468462-536.png]] 280 280 281 -== 2.4 Uplink Interval == 282 282 283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 284 284 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 285 285 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 286 286 287 -== 2.5 Downlink Payload == 288 288 289 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 290 290 291 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 292 292 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 293 293 294 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 295 295 296 296 297 - ***SetTDC**173 +In the PC, use below serial tool settings: 298 298 299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 300 300 301 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 302 302 303 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 304 304 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 305 305 306 -* **Reset** 307 307 308 -If payload = 0x04FF, it will reset the LSE01 309 309 191 +=== 2.2.4 Use CoAP protocol to uplink data === 310 310 311 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 312 312 313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 314 314 196 +**Use below commands:** 315 315 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 316 316 317 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 318 318 319 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 320 320 321 321 322 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 323 323 324 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 325 325 326 326 327 -[[image:1654505857935-743.png]] 328 328 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 329 329 330 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 331 331 332 -Step 3: Create an account or log in Datacake. 333 333 334 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 335 335 222 +[[image:1657249864775-321.png]] 336 336 337 -[[image:1654505905236-553.png]] 338 338 225 +[[image:1657249930215-289.png]] 339 339 340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 341 341 342 -[[image:1654505925508-181.png]] 343 343 229 +=== 2.2.6 Use MQTT protocol to uplink data === 344 344 231 +This feature is supported since firmware version v110 345 345 346 -== 2.7 Frequency Plans == 347 347 348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 349 349 242 +[[image:1657249978444-674.png]] 350 350 351 -=== 2.7.1 EU863-870 (EU868) === 352 352 353 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249990869-686.png]] 354 354 355 -868.1 - SF7BW125 to SF12BW125 356 356 357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 358 358 359 -868.5 - SF7BW125 to SF12BW125 360 360 361 -867.1 - SF7BW125 to SF12BW125 362 362 363 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 364 364 365 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 366 366 367 -867.7 - SF7BW125 to SF12BW125 368 368 369 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 370 370 371 - 868.8-FSK262 +[[image:1657250217799-140.png]] 372 372 373 373 374 - (% style="color:#037691" %)** Downlink:**265 +[[image:1657250255956-604.png]] 375 375 376 -Uplink channels 1-9 (RX1) 377 377 378 -869.525 - SF9BW125 (RX2 downlink only) 379 379 269 +=== 2.2.8 Change Update Interval === 380 380 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 381 381 382 -== =2.7.2US902-928(US915)===273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 383 383 384 -Used in USA, Canada and South America. Default use CHE=2 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 385 385 386 -(% style="color:#037691" %)**Uplink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 387 387 388 -903.9 - SF7BW125 to SF10BW125 389 389 390 -904.1 - SF7BW125 to SF10BW125 391 391 392 - 904.3-SF7BW125 toSF10BW125285 +== 2.3 Uplink Payload == 393 393 394 - 904.5-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 395 395 396 -904.7 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 397 397 398 - 904.9-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 399 399 400 -905.1 - SF7BW125 to SF10BW125 401 401 402 - 905.3-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 403 403 404 404 405 - (%style="color:#037691"%)**Downlink:**301 +The payload is ASCII string, representative same HEX: 406 406 407 - 923.3 - SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 408 408 409 -923.9 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 410 410 411 -924.5 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 412 412 413 - 925.1-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 414 414 415 -925.7 - SF7BW500 to SF12BW500 416 416 417 - 926.3-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 418 418 419 - 926.9-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 420 420 421 - 927.5-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 422 422 423 - 923.3 - SF12BW500(RX2 downlink only)324 +**Example:** 424 424 326 +AT+DEUI=A84041F15612 425 425 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 426 426 427 -=== 2.7.3 CN470-510 (CN470) === 428 428 429 -Used in China, Default use CHE=1 430 430 431 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 432 432 433 - 486.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 434 434 435 - 486.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 436 436 437 -486.7 - SF7BW125 to SF12BW125 438 438 439 -486.9 - SF7BW125 to SF12BW125 440 440 441 -4 87.1- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 442 442 443 -487.3 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 444 444 445 -487.5 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 446 446 447 -487.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 448 448 449 449 450 -(% style="color:#037691" %)**Downlink:** 451 451 452 - 506.7-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 453 453 454 - 506.9-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 455 455 456 - 507.1- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 457 457 458 - 507.3-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 459 459 460 - 507.5-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 461 461 462 - 507.7- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 463 463 464 - 507.9-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 465 465 466 - 508.1-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 469 469 470 470 374 +=== 2.4.5 Soil Moisture === 471 471 472 -=== 2.7.4 AU915-928(AU915) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 473 473 474 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 475 475 476 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 477 477 478 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 479 479 480 -917.0 - SF7BW125 to SF12BW125 481 481 482 -917.2 - SF7BW125 to SF12BW125 483 483 484 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 485 485 486 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 487 487 488 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 489 489 490 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 491 491 492 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 493 493 494 494 495 -(% style="color:#037691" %)**Downlink:** 496 496 497 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 498 498 499 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 500 500 501 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 502 502 503 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 504 504 505 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 506 506 507 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 508 508 509 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 510 510 511 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 512 512 513 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 514 514 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 515 515 516 516 517 - ===2.7.5AS920-923&AS923-925(AS923)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 518 518 519 -(% style="color:#037691" %)**Default Uplink channel:** 520 520 521 - 923.2 - SF7BW125 to SF10BW125448 +Example: 522 522 523 - 923.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 524 524 452 +0x(01): Interrupt Uplink Packet. 525 525 526 -(% style="color:#037691" %)**Additional Uplink Channel**: 527 527 528 -(OTAA mode, channel added by JoinAccept message) 529 529 530 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:456 +=== 2.4.9 +5V Output === 531 531 532 - 922.2 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 533 533 534 -922.4 - SF7BW125 to SF10BW125 535 535 536 - 922.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 537 537 538 - 922.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 539 539 540 - 923.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 541 542 -922.0 - SF7BW125 to SF10BW125 543 543 544 544 545 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:469 +== 2.5 Downlink Payload == 546 546 547 - 923.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 548 548 549 - 923.8- SF7BW125to SF10BW125473 +[[image:image-20220708133731-5.png]] 550 550 551 -924.0 - SF7BW125 to SF10BW125 552 552 553 -924.2 - SF7BW125 to SF10BW125 476 +((( 477 +(% style="color:blue" %)**Examples:** 478 +))) 554 554 555 -924.4 - SF7BW125 to SF10BW125 480 +((( 481 + 482 +))) 556 556 557 -924.6 - SF7BW125 to SF10BW125 484 +* ((( 485 +(% style="color:blue" %)**Set TDC** 486 +))) 558 558 488 +((( 489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 490 +))) 559 559 560 -(% style="color:#037691" %)** Downlink:** 492 +((( 493 +Payload: 01 00 00 1E TDC=30S 494 +))) 561 561 562 -Uplink channels 1-8 (RX1) 496 +((( 497 +Payload: 01 00 00 3C TDC=60S 498 +))) 563 563 564 -923.2 - SF10BW125 (RX2) 500 +((( 501 + 502 +))) 565 565 504 +* ((( 505 +(% style="color:blue" %)**Reset** 506 +))) 566 566 508 +((( 509 +If payload = 0x04FF, it will reset the NSE01 510 +))) 567 567 568 -=== 2.7.6 KR920-923 (KR920) === 569 569 570 - Defaultchannel:513 +* (% style="color:blue" %)**INTMOD** 571 571 572 - 922.1-SF7BW125toSF12BW125515 +Downlink Payload: 06000003, Set AT+INTMOD=3 573 573 574 -922.3 - SF7BW125 to SF12BW125 575 575 576 -922.5 - SF7BW125 to SF12BW125 577 577 519 +== 2.6 LED Indicator == 578 578 579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 521 +((( 522 +The NSE01 has an internal LED which is to show the status of different state. 580 580 581 -922.1 - SF7BW125 to SF12BW125 582 582 583 -922.3 - SF7BW125 to SF12BW125 525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 526 +* Then the LED will be on for 1 second means device is boot normally. 527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 528 +* For each uplink probe, LED will be on for 500ms. 529 +))) 584 584 585 -922.5 - SF7BW125 to SF12BW125 586 586 587 -922.7 - SF7BW125 to SF12BW125 588 588 589 -922.9 - SF7BW125 to SF12BW125 590 590 591 - 923.1 - SF7BW125to SF12BW125534 +== 2.7 Installation in Soil == 592 592 593 - 923.3- SF7BW125toSF12BW125536 +__**Measurement the soil surface**__ 594 594 538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 595 595 596 - (% style="color:#037691" %)**Downlink:**540 +[[image:1657259653666-883.png]] 597 597 598 -Uplink channels 1-7(RX1) 599 599 600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 543 +((( 544 + 601 601 546 +((( 547 +Dig a hole with diameter > 20CM. 548 +))) 602 602 550 +((( 551 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 552 +))) 553 +))) 603 603 604 - === 2.7.7 IN865-867 (IN865) ===555 +[[image:1654506665940-119.png]] 605 605 606 -(% style="color:#037691" %)** Uplink:** 557 +((( 558 + 559 +))) 607 607 608 -865.0625 - SF7BW125 to SF12BW125 609 609 610 - 865.4025- SF7BW125toSF12BW125562 +== 2.8 Firmware Change Log == 611 611 612 -865.9850 - SF7BW125 to SF12BW125 613 613 565 +Download URL & Firmware Change log 614 614 615 - (% style="color:#037691" %) **Downlink:**567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 616 616 617 -Uplink channels 1-3 (RX1) 618 618 619 - 866.550-SF10BW125 (RX2)570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 620 620 621 621 622 622 574 +== 2.9 Battery Analysis == 623 623 624 -== 2. 8LED Indicator ==576 +=== 2.9.1 Battery Type === 625 625 626 -The LSE01 has an internal LED which is to show the status of different state. 627 627 628 -* Blink once when device power on. 629 -* Solid ON for 5 seconds once device successful Join the network. 630 -* Blink once when device transmit a packet. 579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 631 631 632 632 582 +The battery is designed to last for several years depends on the actually use environment and update interval. 633 633 634 -== 2.9 Installation in Soil == 635 635 636 - **Measurementthesoilsurface**585 +The battery related documents as below: 637 637 587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 638 638 639 -[[image:1654506634463-199.png]] 640 - 641 641 ((( 642 -((( 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 592 +[[image:image-20220708140453-6.png]] 644 644 ))) 645 -))) 646 646 647 647 648 -[[image:1654506665940-119.png]] 649 649 650 -((( 651 -Dig a hole with diameter > 20CM. 652 -))) 597 +=== 2.9.2 Power consumption Analyze === 653 653 654 654 ((( 655 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 656 656 ))) 657 657 658 658 659 -== 2.10 Firmware Change Log == 660 - 661 661 ((( 662 - **Firmware downloadlink:**605 +Instruction to use as below: 663 663 ))) 664 664 665 665 ((( 666 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]609 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 667 667 ))) 668 668 669 -((( 670 - 671 -))) 672 672 673 673 ((( 674 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 675 675 ))) 676 676 677 -((( 678 - 617 +* ((( 618 +Product Model 679 679 ))) 680 - 681 -((( 682 -**V1.0.** 620 +* ((( 621 +Uplink Interval 683 683 ))) 623 +* ((( 624 +Working Mode 625 +))) 684 684 685 685 ((( 686 - Release628 +And the Life expectation in difference case will be shown on the right. 687 687 ))) 688 688 631 +[[image:image-20220708141352-7.jpeg]] 689 689 690 -== 2.11 Battery Analysis == 691 691 692 -=== 2.11.1 Battery Type === 693 693 694 -((( 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 -))) 635 +=== 2.9.3 Battery Note === 697 697 698 698 ((( 699 -The battery is designed to last for more than5 yearsfor theLSN50.638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 700 700 ))) 701 701 702 -((( 703 -((( 704 -The battery-related documents are as below: 705 -))) 706 -))) 707 707 708 -* ((( 709 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 -))) 711 -* ((( 712 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 -))) 714 -* ((( 715 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 -))) 717 717 718 - [[image:image-20220606171726-9.png]]643 +=== 2.9.4 Replace the battery === 719 719 720 - 721 - 722 -=== 2.11.2 Battery Note === 723 - 724 724 ((( 725 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 726 726 ))) 727 727 728 728 729 729 730 -= ==2.11.3Replacethebattery===651 += 3. Access NB-IoT Module = 731 731 732 732 ((( 733 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.654 +Users can directly access the AT command set of the NB-IoT module. 734 734 ))) 735 735 736 736 ((( 737 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 738 738 ))) 739 739 740 -((( 741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 -))) 661 +[[image:1657261278785-153.png]] 743 743 744 744 745 745 746 -= 3.Using the AT Commands =665 += 4. Using the AT Commands = 747 747 748 -== 3.1 Access AT Commands ==667 +== 4.1 Access AT Commands == 749 749 669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 750 750 751 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 752 752 753 - [[image:1654501986557-872.png||height="391"width="800"]]672 +AT+<CMD>? : Help on <CMD> 754 754 674 +AT+<CMD> : Run <CMD> 755 755 756 - Orifyouhavebelowboard,usebelowconnection:676 +AT+<CMD>=<value> : Set the value 757 757 678 +AT+<CMD>=? : Get the value 758 758 759 -[[image:1654502005655-729.png||height="503" width="801"]] 760 760 761 - 762 - 763 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 - 765 - 766 - [[image:1654502050864-459.png||height="564" width="806"]] 767 - 768 - 769 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 - 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 - 778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 - 780 - 781 781 (% style="color:#037691" %)**General Commands**(%%) 782 782 783 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention683 +AT : Attention 784 784 785 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help685 +AT? : Short Help 786 786 787 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset687 +ATZ : MCU Reset 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval689 +AT+TDC : Application Data Transmission Interval 790 790 691 +AT+CFG : Print all configurations 791 791 792 - (%style="color:#037691"%)**Keys,IDsand EUIs management**693 +AT+CFGMOD : Working mode selection 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI695 +AT+INTMOD : Set the trigger interrupt mode 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey697 +AT+5VT : Set extend the time of 5V power 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key699 +AT+PRO : Choose agreement 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress701 +AT+WEIGRE : Get weight or set weight to 0 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI703 +AT+WEIGAP : Get or Set the GapValue of weight 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)705 +AT+RXDL : Extend the sending and receiving time 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network707 +AT+CNTFAC : Get or set counting parameters 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode709 +AT+SERVADDR : Server Address 809 809 810 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 811 811 812 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network712 +(% style="color:#037691" %)**COAP Management** 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode714 +AT+URI : Resource parameters 815 815 816 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 817 817 818 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format717 +(% style="color:#037691" %)**UDP Management** 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat719 +AT+CFM : Upload confirmation mode (only valid for UDP) 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 823 823 824 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data722 +(% style="color:#037691" %)**MQTT Management** 825 825 724 +AT+CLIENT : Get or Set MQTT client 826 826 827 - (%style="color:#037691"%)**LoRaNetworkManagement**726 +AT+UNAME : Get or Set MQTT Username 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate728 +AT+PWD : Get or Set MQTT password 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA730 +AT+PUBTOPIC : Get or Set MQTT publish topic 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting732 +AT+SUBTOPIC : Get or Set MQTT subscription topic 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 836 836 837 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink735 +(% style="color:#037691" %)**Information** 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink737 +AT+FDR : Factory Data Reset 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1739 +AT+PWORD : Serial Access Password 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1743 += 5. FAQ = 848 848 849 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2745 +== 5.1 How to Upgrade Firmware == 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 852 852 853 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 - 859 - 860 -(% style="color:#037691" %)**Information** 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 - 874 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 - 876 - 877 -= 4. FAQ = 878 - 879 -== 4.1 How to change the LoRa Frequency Bands/Region? == 880 - 881 881 ((( 882 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 -When downloading the images, choose the required image file for download. 749 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 884 884 ))) 885 885 886 886 ((( 887 - 753 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 888 888 ))) 889 889 890 890 ((( 891 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.757 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 892 892 ))) 893 893 894 -((( 895 - 896 -))) 897 897 898 -((( 899 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 -))) 901 901 902 -((( 903 - 904 -))) 762 += 6. Trouble Shooting = 905 905 906 -((( 907 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 908 -))) 764 +== 6.1 Connection problem when uploading firmware == 909 909 910 -[[image:image-20220606154726-3.png]] 911 911 912 - 913 -When you use the TTN network, the US915 frequency bands use are: 914 - 915 -* 903.9 - SF7BW125 to SF10BW125 916 -* 904.1 - SF7BW125 to SF10BW125 917 -* 904.3 - SF7BW125 to SF10BW125 918 -* 904.5 - SF7BW125 to SF10BW125 919 -* 904.7 - SF7BW125 to SF10BW125 920 -* 904.9 - SF7BW125 to SF10BW125 921 -* 905.1 - SF7BW125 to SF10BW125 922 -* 905.3 - SF7BW125 to SF10BW125 923 -* 904.6 - SF8BW500 924 - 767 +(% class="wikigeneratedid" %) 925 925 ((( 926 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:769 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 927 927 ))) 928 928 929 -(% class="box infomessage" %) 930 -((( 931 -**AT+CHE=2** 932 -))) 933 933 934 -(% class="box infomessage" %) 935 -((( 936 -**ATZ** 937 -))) 938 938 939 -((( 940 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 -))) 774 +== 6.2 AT Command input doesn't work == 942 942 943 943 ((( 944 - 777 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 945 945 ))) 946 946 947 -((( 948 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 -))) 950 950 951 -[[image:image-20220606154825-4.png]] 952 952 782 += 7. Order Info = 953 953 954 954 955 - = 5. TroubleShooting=785 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 956 956 957 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 958 959 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 - 961 - 962 -== 5.2 AT Command input doesn’t work == 963 - 964 -((( 965 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 -))) 967 - 968 - 969 -== 5.3 Device rejoin in at the second uplink packet == 970 - 971 -(% style="color:#4f81bd" %)**Issue describe as below:** 972 - 973 -[[image:1654500909990-784.png]] 974 - 975 - 976 -(% style="color:#4f81bd" %)**Cause for this issue:** 977 - 978 -((( 979 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 980 -))) 981 - 982 - 983 -(% style="color:#4f81bd" %)**Solution: ** 984 - 985 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 - 987 -[[image:1654500929571-736.png||height="458" width="832"]] 988 - 989 - 990 -= 6. Order Info = 991 - 992 - 993 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 - 995 - 996 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 - 998 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 - 1007 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 - 1009 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 - 1012 1012 (% class="wikigeneratedid" %) 1013 1013 ((( 1014 1014 ... ... @@ -1020,10 +1020,10 @@ 1020 1020 1021 1021 1022 1022 (% style="color:#037691" %)**Package Includes**: 1023 -))) 1024 1024 1025 -* ((( 1026 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 800 + 801 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 802 +* External antenna x 1 1027 1027 ))) 1028 1028 1029 1029 ((( ... ... @@ -1030,30 +1030,20 @@ 1030 1030 1031 1031 1032 1032 (% style="color:#037691" %)**Dimension and weight**: 1033 -))) 1034 1034 1035 -* ((( 1036 -Device Size: cm 810 + 811 +* Size: 195 x 125 x 55 mm 812 +* Weight: 420g 1037 1037 ))) 1038 -* ((( 1039 -Device Weight: g 1040 -))) 1041 -* ((( 1042 -Package Size / pcs : cm 1043 -))) 1044 -* ((( 1045 -Weight / pcs : g 1046 1046 815 +((( 816 + 1047 1047 818 + 1048 1048 1049 1049 ))) 1050 1050 1051 -= 8. Support =822 += 9. Support = 1052 1052 1053 1053 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1054 1054 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 - 1056 - 1057 -~)~)~) 1058 -~)~)~) 1059 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content