Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,240 +1,130 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 66 66 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 75 75 76 -== 1.5 Firmware Change log == 77 77 78 +(% style="color:#037691" %)**Battery:** 78 78 79 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 80 80 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 103 103 104 104 105 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657328609906-564.png]] 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 - [[image:image-20220606163732-6.jpeg]]117 += 2. Use NSE01 to communicate with IoT Server = 113 113 114 - Youcan enter this key in the LoRaWAN Server portal.Below isTTN screenshot:119 +== 2.1 How it works == 115 115 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 - 170 - 171 -=== 2.3.2 MOD~=1(Original value) === 172 - 173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 - 175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 -|((( 177 -**Size** 178 - 179 -**(bytes)** 180 -)))|**2**|**2**|**2**|**2**|**2**|**1** 181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 -Temperature 183 - 184 -(Reserve, Ignore now) 185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 -MOD & Digital Interrupt 187 - 188 -(Optional) 189 -))) 190 - 191 - 192 - 193 -=== 2.3.3 Battery Info === 194 - 195 -Check the battery voltage for LSE01. 196 - 197 -Ex1: 0x0B45 = 2885mV 198 - 199 -Ex2: 0x0B49 = 2889mV 200 - 201 - 202 - 203 -=== 2.3.4 Soil Moisture === 204 - 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 - 207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 - 209 - 210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 - 212 - 213 - 214 -=== 2.3.5 Soil Temperature === 215 - 216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 - 218 -**Example**: 219 - 220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 - 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 - 224 - 225 - 226 -=== 2.3.6 Soil Conductivity (EC) === 227 - 228 228 ((( 229 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoilor (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 230 230 ))) 231 231 232 -((( 233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 -))) 235 235 236 236 ((( 237 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.127 +The diagram below shows the working flow in default firmware of NDDS75: 238 238 ))) 239 239 240 240 ((( ... ... @@ -241,483 +241,601 @@ 241 241 242 242 ))) 243 243 134 +[[image:1657328659945-416.png]] 135 + 244 244 ((( 245 245 246 246 ))) 247 247 248 -=== 2.3.7 MOD === 249 249 250 - Firmwareversion at least v2.1supportschangingmode.141 +== 2.2 Configure the NSE01 == 251 251 252 -For example, bytes[10]=90 253 253 254 - mod=(bytes[10]>>7)&0x01=1.144 +=== 2.2.1 Test Requirement === 255 255 256 256 257 -**Downlink Command:** 147 +((( 148 +To use NSE01 in your city, make sure meet below requirements: 149 +))) 258 258 259 -If payload = 0x0A00, workmode=0 151 +* Your local operator has already distributed a NB-IoT Network there. 152 +* The local NB-IoT network used the band that NSE01 supports. 153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 261 -If** **payload =** **0x0A01, workmode=1 155 +((( 156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 157 +))) 262 262 263 263 160 +[[image:1657249419225-449.png]] 264 264 265 -=== 2.3.8 Decode payload in The Things Network === 266 266 267 -While using TTN network, you can add the payload format to decode the payload. 268 268 164 +=== 2.2.2 Insert SIM card === 269 269 270 -[[image:1654505570700-128.png]] 166 +((( 167 +Insert the NB-IoT Card get from your provider. 168 +))) 271 271 272 -The payload decoder function for TTN is here: 170 +((( 171 +User need to take out the NB-IoT module and insert the SIM card like below: 172 +))) 273 273 274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 275 275 175 +[[image:1657249468462-536.png]] 276 276 277 277 278 -== 2.4 Uplink Interval == 279 279 280 - TheLSE01 by default uplink the sensor data every20 minutes.UsercanchangehisintervalbyATCommand orLoRaWANDownlinkCommand.Seethis link: [[Change Uplink Interval>>doc:Main.EndDevice AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 181 +((( 182 +((( 183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 184 +))) 185 +))) 282 282 283 283 284 - == 2.5 Downlink Payload ==188 +**Connection:** 285 285 286 - Bydefault,LSE50 printshe downlink payload toconsole port.190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 287 287 288 - [[image:image-20220606165544-8.png]]192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 289 289 194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 290 290 291 -**Examples:** 292 292 197 +In the PC, use below serial tool settings: 293 293 294 -* **Set TDC** 199 +* Baud: (% style="color:green" %)**9600** 200 +* Data bits:** (% style="color:green" %)8(%%)** 201 +* Stop bits: (% style="color:green" %)**1** 202 +* Parity: (% style="color:green" %)**None** 203 +* Flow Control: (% style="color:green" %)**None** 295 295 296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 205 +((( 206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 207 +))) 297 297 298 - Payload:100001E TDC=30S209 +[[image:image-20220708110657-3.png]] 299 299 300 -Payload: 01 00 00 3C TDC=60S 211 +((( 212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 213 +))) 301 301 302 302 303 -* **Reset** 304 304 305 - If payload=0x04FF,itwill reset theLSE01217 +=== 2.2.4 Use CoAP protocol to uplink data === 306 306 219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 307 307 308 -* **CFM** 309 309 310 - DownlinkPayload: 05000001, Set AT+CFM=1 or 05000000 ,set AT+CFM=0222 +**Use below commands:** 311 311 224 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 312 312 228 +For parameter description, please refer to AT command set 313 313 314 - == 2.6 Show Datain DataCakeIoT Server ==230 +[[image:1657249793983-486.png]] 315 315 316 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 317 317 233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 318 318 319 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.235 +[[image:1657249831934-534.png]] 320 320 321 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 322 322 323 323 324 - [[image:1654505857935-743.png]]239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 325 325 241 +This feature is supported since firmware version v1.0.1 326 326 327 -[[image:1654505874829-548.png]] 328 328 329 -Step 3: Create an account or log in Datacake. 244 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 330 330 331 - Step 4: Search theLSE01and add DevEUI.248 +[[image:1657249864775-321.png]] 332 332 333 333 334 -[[image:1654 505905236-553.png]]251 +[[image:1657249930215-289.png]] 335 335 336 336 337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 338 338 339 - [[image:1654505925508-181.png]]255 +=== 2.2.6 Use MQTT protocol to uplink data === 340 340 257 +This feature is supported since firmware version v110 341 341 342 342 343 -== 2.7 Frequency Plans == 260 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 344 344 345 - The LSE01 uses OTAAmodeand below frequency plans by default.If user want to use it with different frequencyplan, please refer the AT command sets.268 +[[image:1657249978444-674.png]] 346 346 347 347 348 - === 2.7.1EU863-870(EU868) ===271 +[[image:1657249990869-686.png]] 349 349 350 -(% style="color:#037691" %)** Uplink:** 351 351 352 -868.1 - SF7BW125 to SF12BW125 274 +((( 275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 +))) 353 353 354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 355 355 356 -868.5 - SF7BW125 to SF12BW125 357 357 358 - 867.1-SF7BW125toSF12BW125280 +=== 2.2.7 Use TCP protocol to uplink data === 359 359 360 - 867.3-SF7BW125toSF12BW125282 +This feature is supported since firmware version v110 361 361 362 -867.5 - SF7BW125 to SF12BW125 363 363 364 -867.7 - SF7BW125 to SF12BW125 285 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 365 365 366 - 867.9 - SF7BW125to SF12BW125288 +[[image:1657250217799-140.png]] 367 367 368 -868.8 - FSK 369 369 291 +[[image:1657250255956-604.png]] 370 370 371 -(% style="color:#037691" %)** Downlink:** 372 372 373 -Uplink channels 1-9 (RX1) 374 374 375 - 869.525-SF9BW125(RX2downlinkonly)295 +=== 2.2.8 Change Update Interval === 376 376 297 +User can use below command to change the (% style="color:green" %)**uplink interval**. 377 377 299 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 378 378 379 -=== 2.7.2 US902-928(US915) === 301 +((( 302 +(% style="color:red" %)**NOTE:** 303 +))) 380 380 381 -Used in USA, Canada and South America. Default use CHE=2 305 +((( 306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 +))) 382 382 383 -(% style="color:#037691" %)**Uplink:** 384 384 385 -903.9 - SF7BW125 to SF10BW125 386 386 387 - 904.1- SF7BW125toSF10BW125311 +== 2.3 Uplink Payload == 388 388 389 - 904.3-SF7BW125toSF10BW125313 +In this mode, uplink payload includes in total 18 bytes 390 390 391 -904.5 - SF7BW125 to SF10BW125 315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 +|=(% style="width: 60px;" %)((( 317 +**Size(bytes)** 318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 392 392 393 -904.7 - SF7BW125 to SF10BW125 321 +((( 322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 +))) 394 394 395 -904.9 - SF7BW125 to SF10BW125 396 396 397 - 905.1-SF7BW125 to SF10BW125326 +[[image:image-20220708111918-4.png]] 398 398 399 -905.3 - SF7BW125 to SF10BW125 400 400 329 +The payload is ASCII string, representative same HEX: 401 401 402 - (% style="color:#037691"%)**Downlink:**331 +0x72403155615900640c7817075e0a8c02f900 where: 403 403 404 -923.3 - SF7BW500 to SF12BW500 333 +* Device ID: 0x 724031556159 = 724031556159 334 +* Version: 0x0064=100=1.0.0 405 405 406 -923.9 - SF7BW500 to SF12BW500 336 +* BAT: 0x0c78 = 3192 mV = 3.192V 337 +* Singal: 0x17 = 23 338 +* Soil Moisture: 0x075e= 1886 = 18.86 % 339 +* Soil Temperature:0x0a8c =2700=27 °C 340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 +* Interrupt: 0x00 = 0 407 407 408 - 924.5-SF7BW500to SF12BW500343 +== 2.4 Payload Explanation and Sensor Interface == 409 409 410 -925.1 - SF7BW500 to SF12BW500 411 411 412 - 925.7-SF7BW500 to SF12BW500346 +=== 2.4.1 Device ID === 413 413 414 -926.3 - SF7BW500 to SF12BW500 348 +((( 349 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 +))) 415 415 416 -926.9 - SF7BW500 to SF12BW500 352 +((( 353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 +))) 417 417 418 -927.5 - SF7BW500 to SF12BW500 356 +((( 357 +**Example:** 358 +))) 419 419 420 -923.3 - SF12BW500(RX2 downlink only) 360 +((( 361 +AT+DEUI=A84041F15612 362 +))) 421 421 364 +((( 365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 +))) 422 422 423 423 424 -=== 2.7.3 CN470-510 (CN470) === 425 425 426 - UsedinChina,Defaultuse CHE=1370 +=== 2.4.2 Version Info === 427 427 428 -(% style="color:#037691" %)**Uplink:** 372 +((( 373 +Specify the software version: 0x64=100, means firmware version 1.00. 374 +))) 429 429 430 -486.3 - SF7BW125 to SF12BW125 376 +((( 377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 +))) 431 431 432 -486.5 - SF7BW125 to SF12BW125 433 433 434 -486.7 - SF7BW125 to SF12BW125 435 435 436 -4 86.9- SF7BW125toSF12BW125382 +=== 2.4.3 Battery Info === 437 437 438 -487.1 - SF7BW125 to SF12BW125 384 +((( 385 +Check the battery voltage for LSE01. 386 +))) 439 439 440 -487.3 - SF7BW125 to SF12BW125 388 +((( 389 +Ex1: 0x0B45 = 2885mV 390 +))) 441 441 442 -487.5 - SF7BW125 to SF12BW125 392 +((( 393 +Ex2: 0x0B49 = 2889mV 394 +))) 443 443 444 -487.7 - SF7BW125 to SF12BW125 445 445 446 446 447 - (% style="color:#037691"%)**Downlink:**398 +=== 2.4.4 Signal Strength === 448 448 449 -506.7 - SF7BW125 to SF12BW125 400 +((( 401 +NB-IoT Network signal Strength. 402 +))) 450 450 451 -506.9 - SF7BW125 to SF12BW125 404 +((( 405 +**Ex1: 0x1d = 29** 406 +))) 452 452 453 -507.1 - SF7BW125 to SF12BW125 408 +((( 409 +(% style="color:blue" %)**0**(%%) -113dBm or less 410 +))) 454 454 455 -507.3 - SF7BW125 to SF12BW125 412 +((( 413 +(% style="color:blue" %)**1**(%%) -111dBm 414 +))) 456 456 457 -507.5 - SF7BW125 to SF12BW125 416 +((( 417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 +))) 458 458 459 -507.7 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 +))) 460 460 461 -507.9 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 +))) 462 462 463 -508.1 - SF7BW125 to SF12BW125 464 464 465 -505.3 - SF12BW125 (RX2 downlink only) 466 466 430 +=== 2.4.5 Soil Moisture === 467 467 432 +((( 433 +((( 434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 +))) 436 +))) 468 468 469 -=== 2.7.4 AU915-928(AU915) === 438 +((( 439 +((( 440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 +))) 442 +))) 470 470 471 -Default use CHE=2 444 +((( 445 + 446 +))) 472 472 473 -(% style="color:#037691" %)**Uplink:** 448 +((( 449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 +))) 474 474 475 -916.8 - SF7BW125 to SF12BW125 476 476 477 -917.0 - SF7BW125 to SF12BW125 478 478 479 - 917.2-SF7BW125toSF12BW125454 +=== 2.4.6 Soil Temperature === 480 480 481 -917.4 - SF7BW125 to SF12BW125 456 +((( 457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 +))) 482 482 483 -917.6 - SF7BW125 to SF12BW125 460 +((( 461 +**Example**: 462 +))) 484 484 485 -917.8 - SF7BW125 to SF12BW125 464 +((( 465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 +))) 486 486 487 -918.0 - SF7BW125 to SF12BW125 468 +((( 469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 +))) 488 488 489 -918.2 - SF7BW125 to SF12BW125 490 490 491 491 492 - (% style="color:#037691"%)**Downlink:**474 +=== 2.4.7 Soil Conductivity (EC) === 493 493 494 -923.3 - SF7BW500 to SF12BW500 476 +((( 477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 +))) 495 495 496 -923.9 - SF7BW500 to SF12BW500 480 +((( 481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 +))) 497 497 498 -924.5 - SF7BW500 to SF12BW500 484 +((( 485 +Generally, the EC value of irrigation water is less than 800uS / cm. 486 +))) 499 499 500 -925.1 - SF7BW500 to SF12BW500 488 +((( 489 + 490 +))) 501 501 502 -925.7 - SF7BW500 to SF12BW500 492 +((( 493 + 494 +))) 503 503 504 - 926.3-SF7BW500toSF12BW500496 +=== 2.4.8 Digital Interrupt === 505 505 506 -926.9 - SF7BW500 to SF12BW500 498 +((( 499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 +))) 507 507 508 -927.5 - SF7BW500 to SF12BW500 502 +((( 503 +The command is: 504 +))) 509 509 510 -923.3 - SF12BW500(RX2 downlink only) 506 +((( 507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 +))) 511 511 512 512 511 +((( 512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 +))) 513 513 514 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 515 515 516 -(% style="color:#037691" %)**Default Uplink channel:** 516 +((( 517 +Example: 518 +))) 517 517 518 -923.2 - SF7BW125 to SF10BW125 520 +((( 521 +0x(00): Normal uplink packet. 522 +))) 519 519 520 -923.4 - SF7BW125 to SF10BW125 524 +((( 525 +0x(01): Interrupt Uplink Packet. 526 +))) 521 521 522 522 523 -(% style="color:#037691" %)**Additional Uplink Channel**: 524 524 525 - (OTAAmode,channeladded by JoinAcceptmessage)530 +=== 2.4.9 +5V Output === 526 526 527 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 +((( 533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 +))) 528 528 529 -922.2 - SF7BW125 to SF10BW125 530 530 531 -922.4 - SF7BW125 to SF10BW125 537 +((( 538 +The 5V output time can be controlled by AT Command. 539 +))) 532 532 533 -922.6 - SF7BW125 to SF10BW125 541 +((( 542 +(% style="color:blue" %)**AT+5VT=1000** 543 +))) 534 534 535 -922.8 - SF7BW125 to SF10BW125 545 +((( 546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 +))) 536 536 537 -923.0 - SF7BW125 to SF10BW125 538 538 539 -922.0 - SF7BW125 to SF10BW125 540 540 551 +== 2.5 Downlink Payload == 541 541 542 - (% style="color:#037691"%)**AS923~~AS925 for Brunei,Cambodia,HongKong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:553 +By default, NSE01 prints the downlink payload to console port. 543 543 544 - 923.6 - SF7BW125to SF10BW125555 +[[image:image-20220708133731-5.png]] 545 545 546 -923.8 - SF7BW125 to SF10BW125 547 547 548 -924.0 - SF7BW125 to SF10BW125 558 +((( 559 +(% style="color:blue" %)**Examples:** 560 +))) 549 549 550 -924.2 - SF7BW125 to SF10BW125 562 +((( 563 + 564 +))) 551 551 552 -924.4 - SF7BW125 to SF10BW125 566 +* ((( 567 +(% style="color:blue" %)**Set TDC** 568 +))) 553 553 554 -924.6 - SF7BW125 to SF10BW125 570 +((( 571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 +))) 555 555 574 +((( 575 +Payload: 01 00 00 1E TDC=30S 576 +))) 556 556 557 -(% style="color:#037691" %)** Downlink:** 578 +((( 579 +Payload: 01 00 00 3C TDC=60S 580 +))) 558 558 559 -Uplink channels 1-8 (RX1) 582 +((( 583 + 584 +))) 560 560 561 -923.2 - SF10BW125 (RX2) 586 +* ((( 587 +(% style="color:blue" %)**Reset** 588 +))) 562 562 590 +((( 591 +If payload = 0x04FF, it will reset the NSE01 592 +))) 563 563 564 564 565 - ===2.7.6 KR920-923(KR920)===595 +* (% style="color:blue" %)**INTMOD** 566 566 567 -Default channel: 597 +((( 598 +Downlink Payload: 06000003, Set AT+INTMOD=3 599 +))) 568 568 569 -922.1 - SF7BW125 to SF12BW125 570 570 571 -922.3 - SF7BW125 to SF12BW125 572 572 573 - 922.5-SF7BW125toSF12BW125603 +== 2.6 LED Indicator == 574 574 605 +((( 606 +The NSE01 has an internal LED which is to show the status of different state. 575 575 576 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 577 577 578 -922.1 - SF7BW125 to SF12BW125 609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 +* Then the LED will be on for 1 second means device is boot normally. 611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 +* For each uplink probe, LED will be on for 500ms. 613 +))) 579 579 580 -922.3 - SF7BW125 to SF12BW125 581 581 582 -922.5 - SF7BW125 to SF12BW125 583 583 584 -922.7 - SF7BW125 to SF12BW125 585 585 586 - 922.9 - SF7BW125to SF12BW125618 +== 2.7 Installation in Soil == 587 587 588 - 923.1- SF7BW125toSF12BW125620 +__**Measurement the soil surface**__ 589 589 590 -923.3 - SF7BW125 to SF12BW125 622 +((( 623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 +))) 591 591 626 +[[image:1657259653666-883.png]] 592 592 593 -(% style="color:#037691" %)**Downlink:** 594 594 595 -Uplink channels 1-7(RX1) 629 +((( 630 + 596 596 597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 632 +((( 633 +Dig a hole with diameter > 20CM. 634 +))) 598 598 636 +((( 637 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 +))) 639 +))) 599 599 641 +[[image:1654506665940-119.png]] 600 600 601 -=== 2.7.7 IN865-867 (IN865) === 643 +((( 644 + 645 +))) 602 602 603 -(% style="color:#037691" %)** Uplink:** 604 604 605 - 865.0625- SF7BW125toSF12BW125648 +== 2.8 Firmware Change Log == 606 606 607 -865.4025 - SF7BW125 to SF12BW125 608 608 609 - 865.9850-SF7BW125toSF12BW125651 +Download URL & Firmware Change log 610 610 653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 611 611 612 -(% style="color:#037691" %) **Downlink:** 613 613 614 -Up linkchannels 1-3 (RX1)656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 615 615 616 -866.550 - SF10BW125 (RX2) 617 617 618 618 660 +== 2.9 Battery Analysis == 619 619 662 +=== 2.9.1 Battery Type === 620 620 621 -== 2.8 LED Indicator == 622 622 623 -The LSE01 has an internal LED which is to show the status of different state. 624 - 625 -* Blink once when device power on. 626 -* Solid ON for 5 seconds once device successful Join the network. 627 -* Blink once when device transmit a packet. 628 - 629 - 630 - 631 -== 2.9 Installation in Soil == 632 - 633 -**Measurement the soil surface** 634 - 635 - 636 -[[image:1654506634463-199.png]] 637 - 638 638 ((( 639 -((( 640 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 641 641 ))) 642 -))) 643 643 644 644 645 -[[image:1654506665940-119.png]] 646 - 647 647 ((( 648 - Dig aholewithdiameter>20CM.671 +The battery is designed to last for several years depends on the actually use environment and update interval. 649 649 ))) 650 650 651 -((( 652 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 653 -))) 654 654 655 - 656 -== 2.10 Firmware Change Log == 657 - 658 658 ((( 659 - **Firmware downloadlink:**676 +The battery related documents as below: 660 660 ))) 661 661 662 - (((663 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]664 - )))679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 665 665 666 666 ((( 667 - 684 +[[image:image-20220708140453-6.png]] 668 668 ))) 669 669 670 -((( 671 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 672 -))) 673 673 674 -((( 675 - 676 -))) 677 677 678 -((( 679 -**V1.0.** 680 -))) 689 +=== 2.9.2 Power consumption Analyze === 681 681 682 682 ((( 683 - Release692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 684 ))) 685 685 686 686 687 -== 2.11 Battery Analysis == 688 - 689 -=== 2.11.1 Battery Type === 690 - 691 691 ((( 692 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.697 +Instruction to use as below: 693 693 ))) 694 694 695 695 ((( 696 - Thebatterys designedlastforrethan5 years fortheSN50.701 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 697 697 ))) 698 698 704 + 699 699 ((( 700 -((( 701 -The battery-related documents are as below: 706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 702 702 ))) 703 -))) 704 704 705 705 * ((( 706 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],710 +Product Model 707 707 ))) 708 708 * ((( 709 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],713 +Uplink Interval 710 710 ))) 711 711 * ((( 712 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]716 +Working Mode 713 713 ))) 714 714 715 - [[image:image-20220606171726-9.png]] 719 +((( 720 +And the Life expectation in difference case will be shown on the right. 721 +))) 716 716 723 +[[image:image-20220708141352-7.jpeg]] 717 717 718 718 719 -=== 2.11.2 Battery Note === 720 720 727 +=== 2.9.3 Battery Note === 728 + 721 721 ((( 722 722 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 723 723 ))) ... ... @@ -724,303 +724,176 @@ 724 724 725 725 726 726 727 -=== 2. 11.3Replace the battery ===735 +=== 2.9.4 Replace the battery === 728 728 729 729 ((( 730 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 731 731 ))) 732 732 741 + 742 + 743 += 3. Access NB-IoT Module = 744 + 733 733 ((( 734 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.746 +Users can directly access the AT command set of the NB-IoT module. 735 735 ))) 736 736 737 737 ((( 738 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 739 739 ))) 740 740 753 +[[image:1657261278785-153.png]] 741 741 742 742 743 -= 3. Using the AT Commands = 744 744 745 -= =3.1AccessAT Commands ==757 += 4. Using the AT Commands = 746 746 759 +== 4.1 Access AT Commands == 747 747 748 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 749 749 750 -[[image:1654501986557-872.png||height="391" width="800"]] 751 751 764 +AT+<CMD>? : Help on <CMD> 752 752 753 - Orifyouhavebelowboard,usebelowconnection:766 +AT+<CMD> : Run <CMD> 754 754 768 +AT+<CMD>=<value> : Set the value 755 755 756 - [[image:1654502005655-729.png||height="503"width="801"]]770 +AT+<CMD>=? : Get the value 757 757 758 758 759 - 760 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 761 - 762 - 763 - [[image:1654502050864-459.png||height="564" width="806"]] 764 - 765 - 766 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 767 - 768 - 769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 770 - 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 772 - 773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 774 - 775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 776 - 777 - 778 778 (% style="color:#037691" %)**General Commands**(%%) 779 779 780 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention775 +AT : Attention 781 781 782 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help777 +AT? : Short Help 783 783 784 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset779 +ATZ : MCU Reset 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval781 +AT+TDC : Application Data Transmission Interval 787 787 783 +AT+CFG : Print all configurations 788 788 789 - (%style="color:#037691"%)**Keys,IDsand EUIs management**785 +AT+CFGMOD : Working mode selection 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI787 +AT+INTMOD : Set the trigger interrupt mode 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey789 +AT+5VT : Set extend the time of 5V power 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key791 +AT+PRO : Choose agreement 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress793 +AT+WEIGRE : Get weight or set weight to 0 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI795 +AT+WEIGAP : Get or Set the GapValue of weight 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)797 +AT+RXDL : Extend the sending and receiving time 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network799 +AT+CNTFAC : Get or set counting parameters 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode801 +AT+SERVADDR : Server Address 806 806 807 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 808 808 809 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network804 +(% style="color:#037691" %)**COAP Management** 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode806 +AT+URI : Resource parameters 812 812 813 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 814 814 815 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format809 +(% style="color:#037691" %)**UDP Management** 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat811 +AT+CFM : Upload confirmation mode (only valid for UDP) 818 818 819 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 820 820 821 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data814 +(% style="color:#037691" %)**MQTT Management** 822 822 816 +AT+CLIENT : Get or Set MQTT client 823 823 824 - (%style="color:#037691"%)**LoRaNetworkManagement**818 +AT+UNAME : Get or Set MQTT Username 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate820 +AT+PWD : Get or Set MQTT password 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA822 +AT+PUBTOPIC : Get or Set MQTT publish topic 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting824 +AT+SUBTOPIC : Get or Set MQTT subscription topic 831 831 832 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 833 833 834 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink827 +(% style="color:#037691" %)**Information** 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink829 +AT+FDR : Factory Data Reset 837 837 838 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1831 +AT+PWORD : Serial Access Password 839 839 840 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 841 841 842 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 843 843 844 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1835 += 5. FAQ = 845 845 846 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2837 +== 5.1 How to Upgrade Firmware == 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 853 - 854 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 855 - 856 - 857 -(% style="color:#037691" %)**Information** 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 870 - 871 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 872 - 873 - 874 -= 4. FAQ = 875 - 876 -== 4.1 How to change the LoRa Frequency Bands/Region? == 877 - 878 878 ((( 879 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 -When downloading the images, choose the required image file for download. 841 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 881 881 ))) 882 882 883 883 ((( 884 - 845 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 885 885 ))) 886 886 887 887 ((( 888 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 889 889 ))) 890 890 891 -((( 892 - 893 -))) 894 894 895 -((( 896 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 897 -))) 898 898 899 -((( 900 - 901 -))) 854 +== 5.2 Can I calibrate NSE01 to different soil types? == 902 902 903 903 ((( 904 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 905 905 ))) 906 906 907 -[[image:image-20220606154726-3.png]] 908 908 861 += 6. Trouble Shooting = 909 909 910 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:863 +== 6.1 Connection problem when uploading firmware == 911 911 912 -* 903.9 - SF7BW125 to SF10BW125 913 -* 904.1 - SF7BW125 to SF10BW125 914 -* 904.3 - SF7BW125 to SF10BW125 915 -* 904.5 - SF7BW125 to SF10BW125 916 -* 904.7 - SF7BW125 to SF10BW125 917 -* 904.9 - SF7BW125 to SF10BW125 918 -* 905.1 - SF7BW125 to SF10BW125 919 -* 905.3 - SF7BW125 to SF10BW125 920 -* 904.6 - SF8BW500 921 921 922 922 ((( 923 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 924 924 ))) 925 925 926 -(% class=" boxinfomessage" %)870 +(% class="wikigeneratedid" %) 927 927 ((( 928 -**AT+CHE=2** 929 -))) 930 - 931 -(% class="box infomessage" %) 932 -((( 933 -**ATZ** 934 -))) 935 - 936 -((( 937 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 938 -))) 939 - 940 -((( 941 941 942 942 ))) 943 943 944 -((( 945 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 946 -))) 947 947 948 - [[image:image-20220606154825-4.png]]876 +== 6.2 AT Command input doesn't work == 949 949 950 - 951 - 952 -= 5. Trouble Shooting = 953 - 954 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 955 - 956 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 957 - 958 - 959 -== 5.2 AT Command input doesn’t work == 960 - 961 961 ((( 962 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 963 -))) 879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 964 964 965 - 966 -== 5.3 Device rejoin in at the second uplink packet == 967 - 968 -(% style="color:#4f81bd" %)**Issue describe as below:** 969 - 970 -[[image:1654500909990-784.png]] 971 - 972 - 973 -(% style="color:#4f81bd" %)**Cause for this issue:** 974 - 975 -((( 976 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 881 + 977 977 ))) 978 978 979 979 980 - (% style="color:#4f81bd"%)**Solution:**885 += 7. Order Info = 981 981 982 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 983 983 984 - [[image:1654500929571-736.png||height="458" width="832"]]888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 985 985 986 986 987 -= 6. Order Info = 988 - 989 - 990 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 991 - 992 - 993 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 994 - 995 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 996 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 997 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 998 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 999 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1000 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1001 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1002 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1003 - 1004 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1005 - 1006 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1007 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1008 - 1009 1009 (% class="wikigeneratedid" %) 1010 1010 ((( 1011 1011 1012 1012 ))) 1013 1013 1014 -= 7. Packing Info =896 += 8. Packing Info = 1015 1015 1016 1016 ((( 1017 1017 1018 1018 1019 1019 (% style="color:#037691" %)**Package Includes**: 1020 -))) 1021 1021 1022 -* (((1023 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 904 +* External antenna x 1 1024 1024 ))) 1025 1025 1026 1026 ((( ... ... @@ -1027,30 +1027,19 @@ 1027 1027 1028 1028 1029 1029 (% style="color:#037691" %)**Dimension and weight**: 1030 -))) 1031 1031 1032 -* (((1033 - DeviceSize:cm912 +* Size: 195 x 125 x 55 mm 913 +* Weight: 420g 1034 1034 ))) 1035 -* ((( 1036 -Device Weight: g 1037 -))) 1038 -* ((( 1039 -Package Size / pcs : cm 1040 -))) 1041 -* ((( 1042 -Weight / pcs : g 1043 1043 916 +((( 917 + 1044 1044 919 + 1045 1045 1046 1046 ))) 1047 1047 1048 -= 8. Support =923 += 9. Support = 1049 1049 1050 1050 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1051 1051 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1052 - 1053 - 1054 -~)~)~) 1055 -~)~)~) 1056 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content