Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.6
edited by Xiaoling
on 2022/06/07 11:34
Change comment: There is no comment for this version
To version 65.4
edited by Xiaoling
on 2022/07/08 15:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1015 +12,797 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
23 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
28 +
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 +
38 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
66 +== 1.3  Specification ==
67 67  
68 68  
69 -== ​1.4 Applications ==
69 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -* Smart Agriculture
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 75  
76 -== 1.5 Firmware Change log ==
77 77  
76 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -**LSE01 v1.0 :**  Release
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
87 +Probe(% style="color:#037691" %)** Specification:**
84 84  
85 -== 2.1 How it works ==
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
91 +[[image:image-20220708101224-1.png]]
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
95 95  
95 +== ​1.4  Applications ==
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
97 +* Smart Agriculture
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
100 100  
102 +== 1.5  Pin Definitions ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
105 +[[image:1657246476176-652.png]]
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 += 2.  Use NSE01 to communicate with IoT Server =
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +== 2.1  How it works ==
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 +)))
115 115  
116 -**Add APP EUI in the application**
117 117  
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 -
152 -
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
167 167  )))
168 168  
123 +[[image:image-20220708101605-2.png]]
169 169  
170 -
171 -=== 2.3.2 MOD~=1(Original value) ===
172 -
173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 -
175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 -|(((
177 -**Size**
178 -
179 -**(bytes)**
180 -)))|**2**|**2**|**2**|**2**|**2**|**1**
181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 -Temperature
183 -
184 -(Reserve, Ignore now)
185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 -MOD & Digital Interrupt
187 -
188 -(Optional)
125 +(((
126 +
189 189  )))
190 190  
191 191  
192 192  
193 -=== 2.3.3 Battery Info ===
131 +== 2.2 Configure the NSE01 ==
194 194  
195 -Check the battery voltage for LSE01.
196 196  
197 -Ex1: 0x0B45 = 2885mV
134 +=== 2.2.1 Test Requirement ===
198 198  
199 -Ex2: 0x0B49 = 2889mV
200 200  
137 +To use NSE01 in your city, make sure meet below requirements:
201 201  
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
202 202  
203 -=== 2.3.4 Soil Moisture ===
143 +(((
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
145 +)))
204 204  
205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 206  
207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
148 +[[image:1657249419225-449.png]]
208 208  
209 209  
210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 211  
152 +=== 2.2.2 Insert SIM card ===
212 212  
154 +Insert the NB-IoT Card get from your provider.
213 213  
214 -=== 2.3.5 Soil Temperature ===
156 +User need to take out the NB-IoT module and insert the SIM card like below:
215 215  
216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 217  
218 -**Example**:
159 +[[image:1657249468462-536.png]]
219 219  
220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 221  
222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 223  
163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
224 224  
225 -
226 -=== 2.3.6 Soil Conductivity (EC) ===
227 -
228 228  (((
229 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
230 -)))
231 -
232 232  (((
233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
234 234  )))
235 -
236 -(((
237 -Generally, the EC value of irrigation water is less than 800uS / cm.
238 238  )))
239 239  
240 -(((
241 -
242 -)))
243 243  
244 -(((
245 -
246 -)))
172 +**Connection:**
247 247  
248 -=== 2.3.7 MOD ===
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
249 249  
250 -Firmware version at least v2.1 supports changing mode.
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
251 251  
252 -For example, bytes[10]=90
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
253 253  
254 -mod=(bytes[10]>>7)&0x01=1.
255 255  
181 +In the PC, use below serial tool settings:
256 256  
257 -**Downlink Command:**
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
258 258  
259 -If payload = 0x0A00, workmode=0
189 +(((
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
191 +)))
260 260  
261 -If** **payload =** **0x0A01, workmode=1
193 +[[image:image-20220708110657-3.png]]
262 262  
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
263 263  
264 264  
265 -=== 2.3.8 ​Decode payload in The Things Network ===
266 266  
267 -While using TTN network, you can add the payload format to decode the payload.
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
268 268  
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
269 269  
270 -[[image:1654505570700-128.png]]
271 271  
272 -The payload decoder function for TTN is here:
204 +**Use below commands:**
273 273  
274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
275 275  
210 +For parameter description, please refer to AT command set
276 276  
212 +[[image:1657249793983-486.png]]
277 277  
278 -== 2.4 Uplink Interval ==
279 279  
280 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
281 281  
217 +[[image:1657249831934-534.png]]
282 282  
283 283  
284 -== 2.5 Downlink Payload ==
285 285  
286 -By default, LSE50 prints the downlink payload to console port.
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
287 287  
288 -[[image:image-20220606165544-8.png]]
223 +This feature is supported since firmware version v1.0.1
289 289  
290 290  
291 -**Examples:**
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
292 292  
230 +[[image:1657249864775-321.png]]
293 293  
294 -* **Set TDC**
295 295  
296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
233 +[[image:1657249930215-289.png]]
297 297  
298 -Payload:    01 00 00 1E    TDC=30S
299 299  
300 -Payload:    01 00 00 3C    TDC=60S
301 301  
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
302 302  
303 -* **Reset**
239 +This feature is supported since firmware version v110
304 304  
305 -If payload = 0x04FF, it will reset the LSE01
306 306  
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
307 307  
308 -* **CFM**
250 +[[image:1657249978444-674.png]]
309 309  
310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
253 +[[image:1657249990869-686.png]]
312 312  
313 313  
314 -== 2.6 ​Show Data in DataCake IoT Server ==
256 +(((
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 +)))
315 315  
316 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
317 317  
318 318  
319 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
262 +=== 2.2.7 Use TCP protocol to uplink data ===
320 320  
321 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
264 +This feature is supported since firmware version v110
322 322  
323 323  
324 -[[image:1654505857935-743.png]]
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
325 325  
270 +[[image:1657250217799-140.png]]
326 326  
327 -[[image:1654505874829-548.png]]
328 328  
329 -Step 3: Create an account or log in Datacake.
273 +[[image:1657250255956-604.png]]
330 330  
331 -Step 4: Search the LSE01 and add DevEUI.
332 332  
333 333  
334 -[[image:1654505905236-553.png]]
277 +=== 2.2.8 Change Update Interval ===
335 335  
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
336 336  
337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
338 338  
339 -[[image:1654505925508-181.png]]
283 +(((
284 +(% style="color:red" %)**NOTE:**
285 +)))
340 340  
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 +)))
341 341  
342 342  
343 -== 2.7 Frequency Plans ==
344 344  
345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
293 +== 2.3  Uplink Payload ==
346 346  
295 +In this mode, uplink payload includes in total 18 bytes
347 347  
348 -=== 2.7.1 EU863-870 (EU868) ===
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
349 349  
350 -(% style="color:#037691" %)** Uplink:**
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
351 351  
352 -868.1 - SF7BW125 to SF12BW125
353 353  
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
306 +[[image:image-20220708111918-4.png]]
355 355  
356 -868.5 - SF7BW125 to SF12BW125
357 357  
358 -867.1 - SF7BW125 to SF12BW125
309 +The payload is ASCII string, representative same HEX:
359 359  
360 -867.3 - SF7BW125 to SF12BW125
311 +0x72403155615900640c7817075e0a8c02f900 where:
361 361  
362 -867.5 - SF7BW125 to SF12BW125
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
363 363  
364 -867.7 - SF7BW125 to SF12BW125
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
365 365  
366 -867.9 - SF7BW125 to SF12BW125
367 367  
368 -868.8 - FSK
369 369  
370 370  
371 -(% style="color:#037691" %)** Downlink:**
326 +== 2.4  Payload Explanation and Sensor Interface ==
372 372  
373 -Uplink channels 1-9 (RX1)
374 374  
375 -869.525 - SF9BW125 (RX2 downlink only)
329 +=== 2.4.1  Device ID ===
376 376  
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
377 377  
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
378 378  
379 -=== 2.7.2 US902-928(US915) ===
335 +**Example:**
380 380  
381 -Used in USA, Canada and South America. Default use CHE=2
337 +AT+DEUI=A84041F15612
382 382  
383 -(% style="color:#037691" %)**Uplink:**
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
384 384  
385 -903.9 - SF7BW125 to SF10BW125
386 386  
387 -904.1 - SF7BW125 to SF10BW125
388 388  
389 -904.3 - SF7BW125 to SF10BW125
343 +=== 2.4.2  Version Info ===
390 390  
391 -904.5 - SF7BW125 to SF10BW125
345 +Specify the software version: 0x64=100, means firmware version 1.00.
392 392  
393 -904.7 - SF7BW125 to SF10BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
394 394  
395 -904.9 - SF7BW125 to SF10BW125
396 396  
397 -905.1 - SF7BW125 to SF10BW125
398 398  
399 -905.3 - SF7BW125 to SF10BW125
351 +=== 2.4.3  Battery Info ===
400 400  
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
401 401  
402 -(% style="color:#037691" %)**Downlink:**
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
403 403  
404 -923.3 - SF7BW500 to SF12BW500
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
405 405  
406 -923.9 - SF7BW500 to SF12BW500
407 407  
408 -924.5 - SF7BW500 to SF12BW500
409 409  
410 -925.1 - SF7BW500 to SF12BW500
367 +=== 2.4.4  Signal Strength ===
411 411  
412 -925.7 - SF7BW500 to SF12BW500
369 +NB-IoT Network signal Strength.
413 413  
414 -926.3 - SF7BW500 to SF12BW500
371 +**Ex1: 0x1d = 29**
415 415  
416 -926.9 - SF7BW500 to SF12BW500
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
417 417  
418 -927.5 - SF7BW500 to SF12BW500
375 +(% style="color:blue" %)**1**(%%)  -111dBm
419 419  
420 -923.3 - SF12BW500(RX2 downlink only)
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
421 421  
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 422  
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
423 423  
424 -=== 2.7.3 CN470-510 (CN470) ===
425 425  
426 -Used in China, Default use CHE=1
427 427  
428 -(% style="color:#037691" %)**Uplink:**
385 +=== 2.4.5  Soil Moisture ===
429 429  
430 -486.3 - SF7BW125 to SF12BW125
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
431 431  
432 -486.5 - SF7BW125 to SF12BW125
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
433 433  
434 -486.7 - SF7BW125 to SF12BW125
395 +(((
396 +
397 +)))
435 435  
436 -486.9 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
437 437  
438 -487.1 - SF7BW125 to SF12BW125
439 439  
440 -487.3 - SF7BW125 to SF12BW125
441 441  
442 -487.5 - SF7BW125 to SF12BW125
405 +=== 2.4. Soil Temperature ===
443 443  
444 -487.7 - SF7BW125 to SF12BW125
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
445 445  
411 +(((
412 +**Example**:
413 +)))
446 446  
447 -(% style="color:#037691" %)**Downlink:**
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
448 448  
449 -506.7 - SF7BW125 to SF12BW125
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
450 450  
451 -506.9 - SF7BW125 to SF12BW125
452 452  
453 -507.1 - SF7BW125 to SF12BW125
454 454  
455 -507.3 - SF7BW125 to SF12BW125
425 +=== 2.4.7  Soil Conductivity (EC) ===
456 456  
457 -507.5 - SF7BW125 to SF12BW125
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
458 458  
459 -507.7 - SF7BW125 to SF12BW125
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
460 460  
461 -507.9 - SF7BW125 to SF12BW125
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
462 462  
463 -508.1 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
464 464  
465 -505.3 - SF12BW125 (RX2 downlink only)
443 +(((
444 +
445 +)))
466 466  
447 +=== 2.4.8  Digital Interrupt ===
467 467  
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
468 468  
469 -=== 2.7.4 AU915-928(AU915) ===
451 +The command is:
470 470  
471 -Default use CHE=2
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
472 472  
473 -(% style="color:#037691" %)**Uplink:**
474 474  
475 -916.8 - SF7BW125 to SF12BW125
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
476 476  
477 -917.0 - SF7BW125 to SF12BW125
478 478  
479 -917.2 - SF7BW125 to SF12BW125
459 +Example:
480 480  
481 -917.4 - SF7BW125 to SF12BW125
461 +0x(00): Normal uplink packet.
482 482  
483 -917.6 - SF7BW125 to SF12BW125
463 +0x(01): Interrupt Uplink Packet.
484 484  
485 -917.8 - SF7BW125 to SF12BW125
486 486  
487 -918.0 - SF7BW125 to SF12BW125
488 488  
489 -918.2 - SF7BW125 to SF12BW125
467 +=== 2.4.9  ​+5V Output ===
490 490  
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
491 491  
492 -(% style="color:#037691" %)**Downlink:**
493 493  
494 -923.3 - SF7BW500 to SF12BW500
472 +The 5V output time can be controlled by AT Command.
495 495  
496 -923.9 - SF7BW500 to SF12BW500
474 +(% style="color:blue" %)**AT+5VT=1000**
497 497  
498 -924.5 - SF7BW500 to SF12BW500
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
499 499  
500 -925.1 - SF7BW500 to SF12BW500
501 501  
502 -925.7 - SF7BW500 to SF12BW500
503 503  
504 -926.3 - SF7BW500 to SF12BW500
480 +== 2.5  Downlink Payload ==
505 505  
506 -926.9 - SF7BW500 to SF12BW500
482 +By default, NSE01 prints the downlink payload to console port.
507 507  
508 -927.5 - SF7BW500 to SF12BW500
484 +[[image:image-20220708133731-5.png]]
509 509  
510 -923.3 - SF12BW500(RX2 downlink only)
511 511  
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
512 512  
491 +(((
492 +
493 +)))
513 513  
514 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
515 515  
516 -(% style="color:#037691" %)**Default Uplink channel:**
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
517 517  
518 -923.2 - SF7BW125 to SF10BW125
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
519 519  
520 -923.4 - SF7BW125 to SF10BW125
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
521 521  
511 +(((
512 +
513 +)))
522 522  
523 -(% style="color:#037691" %)**Additional Uplink Channel**:
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
524 524  
525 -(OTAA mode, channel added by JoinAccept message)
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
526 526  
527 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
528 528  
529 -922.2 - SF7BW125 to SF10BW125
524 +* (% style="color:blue" %)**INTMOD**
530 530  
531 -922.4 - SF7BW125 to SF10BW125
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
532 532  
533 -922.6 - SF7BW125 to SF10BW125
534 534  
535 -922.8 - SF7BW125 to SF10BW125
536 536  
537 -923.0 - SF7BW125 to SF10BW125
530 +== 2. ​LED Indicator ==
538 538  
539 -922.0 - SF7BW125 to SF10BW125
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
540 540  
541 541  
542 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
543 543  
544 -923.6 - SF7BW125 to SF10BW125
545 545  
546 -923.8 - SF7BW125 to SF10BW125
547 547  
548 -924.0 - SF7BW125 to SF10BW125
549 549  
550 -924.2 - SF7BW125 to SF10BW125
545 +== 2.7  Installation in Soil ==
551 551  
552 -924.4 - SF7BW125 to SF10BW125
547 +__**Measurement the soil surface**__
553 553  
554 -924.6 - SF7BW125 to SF10BW125
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
555 555  
551 +[[image:1657259653666-883.png]] ​
556 556  
557 -(% style="color:#037691" %)** Downlink:**
558 558  
559 -Uplink channels 1-8 (RX1)
554 +(((
555 +
560 560  
561 -923.2 - SF10BW125 (RX2)
557 +(((
558 +Dig a hole with diameter > 20CM.
559 +)))
562 562  
561 +(((
562 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
563 563  
566 +[[image:1654506665940-119.png]]
564 564  
565 -=== 2.7.6 KR920-923 (KR920) ===
568 +(((
569 +
570 +)))
566 566  
567 -Default channel:
568 568  
569 -922.1 - SF7BW125 to SF12BW125
573 +== 2. Firmware Change Log ==
570 570  
571 -922.3 - SF7BW125 to SF12BW125
572 572  
573 -922.5 - SF7BW125 to SF12BW125
576 +Download URL & Firmware Change log
574 574  
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
575 575  
576 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
577 577  
578 -922.1 - SF7BW125 to SF12BW125
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
579 579  
580 -922.3 - SF7BW125 to SF12BW125
581 581  
582 -922.5 - SF7BW125 to SF12BW125
583 583  
584 -922.7 - SF7BW125 to SF12BW125
585 +== 2. Battery Analysis ==
585 585  
586 -922.9 - SF7BW125 to SF12BW125
587 +=== 2.9.1  ​Battery Type ===
587 587  
588 -923.1 - SF7BW125 to SF12BW125
589 589  
590 -923.3 - SF7BW125 to SF12BW125
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
591 591  
592 592  
593 -(% style="color:#037691" %)**Downlink:**
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
594 594  
595 -Uplink channels 1-7(RX1)
596 596  
597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
596 +The battery related documents as below:
598 598  
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 599  
600 -
601 -=== 2.7.7 IN865-867 (IN865) ===
602 -
603 -(% style="color:#037691" %)** Uplink:**
604 -
605 -865.0625 - SF7BW125 to SF12BW125
606 -
607 -865.4025 - SF7BW125 to SF12BW125
608 -
609 -865.9850 - SF7BW125 to SF12BW125
610 -
611 -
612 -(% style="color:#037691" %) **Downlink:**
613 -
614 -Uplink channels 1-3 (RX1)
615 -
616 -866.550 - SF10BW125 (RX2)
617 -
618 -
619 -
620 -
621 -== 2.8 LED Indicator ==
622 -
623 -The LSE01 has an internal LED which is to show the status of different state.
624 -
625 -* Blink once when device power on.
626 -* Solid ON for 5 seconds once device successful Join the network.
627 -* Blink once when device transmit a packet.
628 -
629 -
630 -
631 -== 2.9 Installation in Soil ==
632 -
633 -**Measurement the soil surface**
634 -
635 -
636 -[[image:1654506634463-199.png]] ​
637 -
638 638  (((
639 -(((
640 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
603 +[[image:image-20220708140453-6.png]]
641 641  )))
642 -)))
643 643  
644 644  
645 -[[image:1654506665940-119.png]]
646 646  
647 -(((
648 -Dig a hole with diameter > 20CM.
649 -)))
608 +=== 2.9.2  Power consumption Analyze ===
650 650  
651 651  (((
652 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
653 653  )))
654 654  
655 655  
656 -== 2.10 ​Firmware Change Log ==
657 -
658 658  (((
659 -**Firmware download link:**
616 +Instruction to use as below:
660 660  )))
661 661  
662 662  (((
663 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
664 664  )))
665 665  
666 -(((
667 -
668 -)))
669 669  
670 670  (((
671 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
672 672  )))
673 673  
674 -(((
675 -
628 +* (((
629 +Product Model
676 676  )))
677 -
678 -(((
679 -**V1.0.**
631 +* (((
632 +Uplink Interval
680 680  )))
634 +* (((
635 +Working Mode
636 +)))
681 681  
682 682  (((
683 -Release
639 +And the Life expectation in difference case will be shown on the right.
684 684  )))
685 685  
642 +[[image:image-20220708141352-7.jpeg]]
686 686  
687 -== 2.11 ​Battery Analysis ==
688 688  
689 -=== 2.11.1 ​Battery Type ===
690 690  
691 -(((
692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 -)))
646 +=== 2.9.3  ​Battery Note ===
694 694  
695 695  (((
696 -The battery is designed to last for more than 5 years for the LSN50.
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
697 697  )))
698 698  
699 -(((
700 -(((
701 -The battery-related documents are as below:
702 -)))
703 -)))
704 704  
705 -* (((
706 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 -)))
708 -* (((
709 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
713 -)))
714 714  
715 - [[image:image-20220606171726-9.png]]
654 +=== 2.9.4  Replace the battery ===
716 716  
717 -
718 -
719 -=== 2.11.2 ​Battery Note ===
720 -
721 721  (((
722 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
723 723  )))
724 724  
725 725  
726 726  
727 -=== 2.11.3 Replace the battery ===
662 += 3. ​ Access NB-IoT Module =
728 728  
729 729  (((
730 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
665 +Users can directly access the AT command set of the NB-IoT module.
731 731  )))
732 732  
733 733  (((
734 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
735 735  )))
736 736  
737 -(((
738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
739 -)))
672 +[[image:1657261278785-153.png]]
740 740  
741 741  
742 742  
743 -= 3. Using the AT Commands =
676 += 4.  Using the AT Commands =
744 744  
745 -== 3.1 Access AT Commands ==
678 +== 4.1  Access AT Commands ==
746 746  
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
747 747  
748 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
749 749  
750 -[[image:1654501986557-872.png||height="391" width="800"]]
683 +AT+<CMD>?  : Help on <CMD>
751 751  
685 +AT+<CMD>         : Run <CMD>
752 752  
753 -Or if you have below board, use below connection:
687 +AT+<CMD>=<value> : Set the value
754 754  
689 +AT+<CMD>=?  : Get the value
755 755  
756 -[[image:1654502005655-729.png||height="503" width="801"]]
757 757  
758 -
759 -
760 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
761 -
762 -
763 - [[image:1654502050864-459.png||height="564" width="806"]]
764 -
765 -
766 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
767 -
768 -
769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
770 -
771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
772 -
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
774 -
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
776 -
777 -
778 778  (% style="color:#037691" %)**General Commands**(%%)      
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
783 783  
784 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
787 787  
702 +AT+CFG  : Print all configurations
788 788  
789 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
822 822  
735 +AT+CLIENT               : Get or Set MQTT client
823 823  
824 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
851 -
852 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
853 -
854 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
855 -
856 -
857 -(% style="color:#037691" %)**Information** 
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
870 -
871 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
872 -
873 -
874 -= ​4. FAQ =
875 -
876 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
877 -
878 878  (((
879 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
880 -When downloading the images, choose the required image file for download. ​
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
881 881  )))
882 882  
883 883  (((
884 -
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
885 885  )))
886 886  
887 887  (((
888 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
889 889  )))
890 890  
891 -(((
892 -
893 -)))
894 894  
895 -(((
896 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
897 -)))
898 898  
899 -(((
900 -
901 -)))
773 += 6.  Trouble Shooting =
902 902  
903 -(((
904 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
905 -)))
775 +== 6.1  ​Connection problem when uploading firmware ==
906 906  
907 -[[image:image-20220606154726-3.png]]
908 908  
909 -
910 -When you use the TTN network, the US915 frequency bands use are:
911 -
912 -* 903.9 - SF7BW125 to SF10BW125
913 -* 904.1 - SF7BW125 to SF10BW125
914 -* 904.3 - SF7BW125 to SF10BW125
915 -* 904.5 - SF7BW125 to SF10BW125
916 -* 904.7 - SF7BW125 to SF10BW125
917 -* 904.9 - SF7BW125 to SF10BW125
918 -* 905.1 - SF7BW125 to SF10BW125
919 -* 905.3 - SF7BW125 to SF10BW125
920 -* 904.6 - SF8BW500
921 -
778 +(% class="wikigeneratedid" %)
922 922  (((
923 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
924 924  )))
925 925  
926 -(% class="box infomessage" %)
927 -(((
928 -**AT+CHE=2**
929 -)))
930 930  
931 -(% class="box infomessage" %)
932 -(((
933 -**ATZ**
934 -)))
935 935  
936 -(((
937 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
938 -)))
785 +== 6.2  AT Command input doesn't work ==
939 939  
940 940  (((
941 -
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
942 942  )))
943 943  
944 -(((
945 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
946 -)))
947 947  
948 -[[image:image-20220606154825-4.png]]
949 949  
793 += 7. ​ Order Info =
950 950  
951 951  
952 -= 5. Trouble Shooting =
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
953 953  
954 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
955 955  
956 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
957 -
958 -
959 -== 5.2 AT Command input doesn’t work ==
960 -
961 -(((
962 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
963 -)))
964 -
965 -
966 -== 5.3 Device rejoin in at the second uplink packet ==
967 -
968 -(% style="color:#4f81bd" %)**Issue describe as below:**
969 -
970 -[[image:1654500909990-784.png]]
971 -
972 -
973 -(% style="color:#4f81bd" %)**Cause for this issue:**
974 -
975 -(((
976 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
977 -)))
978 -
979 -
980 -(% style="color:#4f81bd" %)**Solution: **
981 -
982 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
983 -
984 -[[image:1654500929571-736.png||height="458" width="832"]]
985 -
986 -
987 -= 6. ​Order Info =
988 -
989 -
990 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
991 -
992 -
993 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
994 -
995 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
996 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
997 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
998 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
999 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1000 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1001 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1002 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1003 -
1004 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1005 -
1006 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1007 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1008 -
1009 1009  (% class="wikigeneratedid" %)
1010 1010  (((
1011 1011  
1012 1012  )))
1013 1013  
1014 -= 7. Packing Info =
804 += 8.  Packing Info =
1015 1015  
1016 1016  (((
1017 1017  
1018 1018  
1019 1019  (% style="color:#037691" %)**Package Includes**:
1020 -)))
1021 1021  
1022 -* (((
1023 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
811 +
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
1024 1024  )))
1025 1025  
1026 1026  (((
... ... @@ -1027,30 +1027,20 @@
1027 1027  
1028 1028  
1029 1029  (% style="color:#037691" %)**Dimension and weight**:
1030 -)))
1031 1031  
1032 -* (((
1033 -Device Size: cm
821 +
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
1034 1034  )))
1035 -* (((
1036 -Device Weight: g
1037 -)))
1038 -* (((
1039 -Package Size / pcs : cm
1040 -)))
1041 -* (((
1042 -Weight / pcs : g
1043 1043  
826 +(((
827 +
1044 1044  
829 +
1045 1045  
1046 1046  )))
1047 1047  
1048 -= 8. Support =
833 += 9.  Support =
1049 1049  
1050 1050  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1051 1051  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1052 -
1053 -
1054 -~)~)~)
1055 -~)~)~)
1056 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content