Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,734 +12,628 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 70 70 71 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -**LSE01 v1.0 :** Release 80 80 87 +== 1.4 Applications == 81 81 89 +* Smart Agriculture 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 84 84 85 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 97 +[[image:1657246476176-652.png]] 94 94 95 95 96 96 97 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 98 98 99 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 - 170 - 171 -=== 2.3.2 MOD~=1(Original value) === 172 - 173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 - 175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 -|((( 177 -**Size** 178 - 179 -**(bytes)** 180 -)))|**2**|**2**|**2**|**2**|**2**|**1** 181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 -Temperature 183 - 184 -(Reserve, Ignore now) 185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 -MOD & Digital Interrupt 187 - 188 -(Optional) 189 -))) 190 - 191 - 192 - 193 -=== 2.3.3 Battery Info === 194 - 195 -Check the battery voltage for LSE01. 196 - 197 -Ex1: 0x0B45 = 2885mV 198 - 199 -Ex2: 0x0B49 = 2889mV 200 - 201 - 202 - 203 -=== 2.3.4 Soil Moisture === 204 - 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 - 207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 - 209 - 210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 - 212 - 213 - 214 -=== 2.3.5 Soil Temperature === 215 - 216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 - 218 -**Example**: 219 - 220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 - 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 - 224 - 225 - 226 -=== 2.3.6 Soil Conductivity (EC) === 227 - 228 228 ((( 229 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 230 230 ))) 231 231 232 -((( 233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 -))) 235 235 236 236 ((( 237 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 238 238 ))) 239 239 240 -((( 241 - 242 -))) 115 +[[image:image-20220708101605-2.png]] 243 243 244 244 ((( 245 245 246 246 ))) 247 247 248 -=== 2.3.7 MOD === 249 249 250 -Firmware version at least v2.1 supports changing mode. 251 251 252 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 253 253 254 -mod=(bytes[10]>>7)&0x01=1. 255 255 126 +=== 2.2.1 Test Requirement === 256 256 257 -**Downlink Command:** 258 258 259 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 260 260 261 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 263 263 264 264 265 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 266 266 267 -While using TTN network, you can add the payload format to decode the payload. 268 268 269 269 270 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 271 271 272 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 273 273 274 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 275 275 276 276 151 +[[image:1657249468462-536.png]] 277 277 278 -== 2.4 Uplink Interval == 279 279 280 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 281 281 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 282 282 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 283 283 284 -== 2.5 Downlink Payload == 285 285 286 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 287 287 288 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 289 289 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 290 290 291 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 292 292 293 293 294 - ***SetTDC**173 +In the PC, use below serial tool settings: 295 295 296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 297 297 298 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 299 299 300 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 301 301 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 302 302 303 -* **Reset** 304 304 305 -If payload = 0x04FF, it will reset the LSE01 306 306 191 +=== 2.2.4 Use CoAP protocol to uplink data === 307 307 308 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 309 309 310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 311 311 196 +**Use below commands:** 312 312 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 313 313 314 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 315 315 316 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 317 317 318 318 319 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 320 320 321 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 322 322 323 323 324 -[[image:1654505857935-743.png]] 325 325 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 326 326 327 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 328 328 329 -Step 3: Create an account or log in Datacake. 330 330 331 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 332 332 222 +[[image:1657249864775-321.png]] 333 333 334 -[[image:1654505905236-553.png]] 335 335 225 +[[image:1657249930215-289.png]] 336 336 337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 338 338 339 -[[image:1654505925508-181.png]] 340 340 229 +=== 2.2.6 Use MQTT protocol to uplink data === 341 341 231 +This feature is supported since firmware version v110 342 342 343 -== 2.7 Frequency Plans == 344 344 345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 346 346 242 +[[image:1657249978444-674.png]] 347 347 348 -=== 2.7.1 EU863-870 (EU868) === 349 349 350 - (% style="color:#037691" %)** Uplink:**245 +[[image:1657249990869-686.png]] 351 351 352 -868.1 - SF7BW125 to SF12BW125 353 353 354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 355 355 356 -868.5 - SF7BW125 to SF12BW125 357 357 358 -867.1 - SF7BW125 to SF12BW125 359 359 360 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 361 361 362 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 363 363 364 -867.7 - SF7BW125 to SF12BW125 365 365 366 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 367 367 368 - 868.8-FSK262 +[[image:1657250217799-140.png]] 369 369 370 370 371 - (% style="color:#037691" %)** Downlink:**265 +[[image:1657250255956-604.png]] 372 372 373 -Uplink channels 1-9 (RX1) 374 374 375 -869.525 - SF9BW125 (RX2 downlink only) 376 376 269 +=== 2.2.8 Change Update Interval === 377 377 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 378 378 379 -== =2.7.2US902-928(US915)===273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 380 380 381 -Used in USA, Canada and South America. Default use CHE=2 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 382 382 383 -(% style="color:#037691" %)**Uplink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 384 384 385 -903.9 - SF7BW125 to SF10BW125 386 386 387 -904.1 - SF7BW125 to SF10BW125 388 388 389 - 904.3-SF7BW125 toSF10BW125285 +== 2.3 Uplink Payload == 390 390 391 - 904.5-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 392 392 393 -904.7 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 394 394 395 - 904.9-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 396 396 397 -905.1 - SF7BW125 to SF10BW125 398 398 399 - 905.3-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 400 400 401 401 402 - (%style="color:#037691"%)**Downlink:**301 +The payload is ASCII string, representative same HEX: 403 403 404 - 923.3 - SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 405 405 406 -923.9 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 407 407 408 -924.5 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 409 409 410 - 925.1-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 411 411 412 -925.7 - SF7BW500 to SF12BW500 413 413 414 - 926.3-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 415 415 416 - 926.9-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 417 417 418 - 927.5-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 419 419 420 - 923.3 - SF12BW500(RX2 downlink only)324 +**Example:** 421 421 326 +AT+DEUI=A84041F15612 422 422 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 423 423 424 -=== 2.7.3 CN470-510 (CN470) === 425 425 426 -Used in China, Default use CHE=1 427 427 428 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 429 429 430 - 486.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 431 431 432 - 486.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 433 433 434 -486.7 - SF7BW125 to SF12BW125 435 435 436 -486.9 - SF7BW125 to SF12BW125 437 437 438 -4 87.1- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 439 439 440 -487.3 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 441 441 442 -487.5 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 443 443 444 -487.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 445 445 446 446 447 -(% style="color:#037691" %)**Downlink:** 448 448 449 - 506.7-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 450 450 451 - 506.9-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 452 452 453 - 507.1- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 454 454 455 - 507.3-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 456 456 457 - 507.5-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 458 458 459 - 507.7- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 460 460 461 - 507.9-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 462 462 463 - 508.1-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 464 464 465 -505.3 - SF12BW125 (RX2 downlink only) 466 466 467 467 374 +=== 2.4.5 Soil Moisture === 468 468 469 -=== 2.7.4 AU915-928(AU915) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 470 470 471 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 472 472 473 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 474 474 475 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 476 476 477 -917.0 - SF7BW125 to SF12BW125 478 478 479 -917.2 - SF7BW125 to SF12BW125 480 480 481 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 482 482 483 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 484 484 485 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 486 486 487 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 488 488 489 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 490 490 491 491 492 -(% style="color:#037691" %)**Downlink:** 493 493 494 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 495 495 496 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 497 497 498 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 499 499 500 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 501 501 502 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 503 503 504 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 505 505 506 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 507 507 508 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 509 509 510 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 511 511 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 512 513 513 514 - ===2.7.5AS920-923&AS923-925(AS923)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 515 515 516 -(% style="color:#037691" %)**Default Uplink channel:** 517 517 518 - 923.2 - SF7BW125 to SF10BW125448 +Example: 519 519 520 - 923.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 521 521 452 +0x(01): Interrupt Uplink Packet. 522 522 523 -(% style="color:#037691" %)**Additional Uplink Channel**: 524 524 525 -(OTAA mode, channel added by JoinAccept message) 526 526 527 - (% style="color:#037691"%)**AS920~~AS923forJapan,Malaysia, Singapore**:456 +=== 2.4.9 +5V Output === 528 528 529 - 922.2 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 530 530 531 -922.4 - SF7BW125 to SF10BW125 532 532 533 - 922.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 534 534 535 - 922.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 536 536 537 - 923.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 538 539 -922.0 - SF7BW125 to SF10BW125 540 540 541 541 542 - (% style="color:#037691"%)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand,Vietnam**:469 +== 2.5 Downlink Payload == 543 543 544 - 923.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 545 545 546 - 923.8- SF7BW125to SF10BW125473 +[[image:image-20220708133731-5.png]] 547 547 548 -924.0 - SF7BW125 to SF10BW125 549 549 550 -924.2 - SF7BW125 to SF10BW125 551 551 552 -924.4 - SF7BW125 to SF10BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 553 553 554 -924.6 - SF7BW125 to SF10BW125 481 +((( 482 + 483 +))) 555 555 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 556 556 557 -(% style="color:#037691" %)** Downlink:** 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 558 558 559 -Uplink channels 1-8 (RX1) 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 560 560 561 -923.2 - SF10BW125 (RX2) 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 562 562 501 +((( 502 + 503 +))) 563 563 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 564 564 565 -=== 2.7.6 KR920-923 (KR920) === 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 566 566 567 -Default channel: 568 568 569 - 922.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 570 570 571 - 922.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 572 572 573 -922.5 - SF7BW125 to SF12BW125 574 574 575 575 576 - (% style="color:#037691"%)**Uplink:(OTAA mode, channel added by JoinAcceptmessage)**520 +== 2.6 LED Indicator == 577 577 578 -922.1 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 579 579 580 -922.3 - SF7BW125 to SF12BW125 581 581 582 -922.5 - SF7BW125 to SF12BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 583 583 584 -922.7 - SF7BW125 to SF12BW125 585 585 586 -922.9 - SF7BW125 to SF12BW125 587 587 588 -923.1 - SF7BW125 to SF12BW125 589 589 590 - 923.3 - SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 591 591 537 +__**Measurement the soil surface**__ 592 592 593 - (%style="color:#037691" %)**Downlink:**539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 594 594 595 - Uplink channels1-7(RX1)541 +[[image:1657259653666-883.png]] 596 596 597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 598 598 544 +((( 545 + 599 599 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 600 600 601 -=== 2.7.7 IN865-867 (IN865) === 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 602 602 603 - (% style="color:#037691" %)** Uplink:**556 +[[image:1654506665940-119.png]] 604 604 605 -865.0625 - SF7BW125 to SF12BW125 558 +((( 559 + 560 +))) 606 606 607 -865.4025 - SF7BW125 to SF12BW125 608 608 609 - 865.9850- SF7BW125toSF12BW125563 +== 2.8 Firmware Change Log == 610 610 611 611 612 - (% style="color:#037691"%)**Downlink:**566 +Download URL & Firmware Change log 613 613 614 - Uplinkchannels1-3 (RX1)568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 615 615 616 -866.550 - SF10BW125 (RX2) 617 617 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 618 618 619 619 620 620 621 -== 2. 8LED Indicator ==575 +== 2.9 Battery Analysis == 622 622 623 - TheLSE01has an internal LED which isto show thestatus of differentstate.577 +=== 2.9.1 Battery Type === 624 624 625 -* Blink once when device power on. 626 -* Solid ON for 5 seconds once device successful Join the network. 627 -* Blink once when device transmit a packet. 628 628 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 629 629 630 630 631 - ==2.9InstallationinSoil==583 +The battery is designed to last for several years depends on the actually use environment and update interval. 632 632 633 -**Measurement the soil surface** 634 634 586 +The battery related documents as below: 635 635 636 -[[image:1654506634463-199.png]] 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 637 637 638 638 ((( 639 -((( 640 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 641 641 ))) 642 -))) 643 643 644 644 645 -[[image:1654506665940-119.png]] 646 646 647 -((( 648 -Dig a hole with diameter > 20CM. 649 -))) 598 +2.9.2 650 650 651 -((( 652 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 653 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 654 654 655 655 656 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 657 657 658 -((( 659 -**Firmware download link:** 660 -))) 661 661 662 -((( 663 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 664 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 665 665 666 -((( 667 - 668 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 669 669 670 -((( 671 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 672 -))) 673 673 674 -((( 675 - 676 -))) 611 +Step 2: Open it and choose 677 677 678 - (((679 -* *V1.0.**680 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 681 681 682 -((( 683 -Release 684 -))) 617 +And the Life expectation in difference case will be shown on the right. 685 685 686 686 687 -== 2.11 Battery Analysis == 688 688 689 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 690 690 691 691 ((( 692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 -))) 694 - 695 -((( 696 -The battery is designed to last for more than 5 years for the LSN50. 697 -))) 698 - 699 -((( 700 -((( 701 -The battery-related documents are as below: 702 -))) 703 -))) 704 - 705 -* ((( 706 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 -))) 708 -* ((( 709 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 710 -))) 711 -* ((( 712 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 713 -))) 714 - 715 - [[image:image-20220606171726-9.png]] 716 - 717 - 718 - 719 -=== 2.11.2 Battery Note === 720 - 721 -((( 722 722 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 723 723 ))) 724 724 725 725 726 726 727 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 728 728 729 -((( 730 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 731 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 732 732 733 -((( 734 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 735 -))) 736 736 737 -((( 738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 739 -))) 740 740 741 - 742 - 743 743 = 3. Using the AT Commands = 744 744 745 745 == 3.1 Access AT Commands == ... ... @@ -763,7 +763,7 @@ 763 763 [[image:1654502050864-459.png||height="564" width="806"]] 764 764 765 765 766 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 767 767 768 768 769 769 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -921,19 +921,14 @@ 921 921 922 922 ((( 923 923 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 924 -))) 925 925 926 -(% class="box infomessage" %) 927 -((( 928 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 929 929 ))) 930 930 931 -(% class="box infomessage" %) 932 932 ((( 933 -**ATZ** 934 -))) 822 + 935 935 936 -((( 937 937 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 938 938 ))) 939 939 ... ... @@ -948,18 +948,22 @@ 948 948 [[image:image-20220606154825-4.png]] 949 949 950 950 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 951 951 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 952 952 = 5. Trouble Shooting = 953 953 954 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 955 955 956 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 957 957 958 958 959 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 960 960 961 961 ((( 962 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 963 963 ))) 964 964 965 965 ... ... @@ -1041,7 +1041,6 @@ 1041 1041 * ((( 1042 1042 Weight / pcs : g 1043 1043 1044 - 1045 1045 1046 1046 ))) 1047 1047 ... ... @@ -1049,8 +1049,3 @@ 1049 1049 1050 1050 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1051 1051 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1052 - 1053 - 1054 -~)~)~) 1055 -~)~)~) 1056 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content