Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.6
edited by Xiaoling
on 2022/06/07 11:34
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,734 +12,628 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 -
152 -
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 -)))
168 -
169 -
170 -
171 -=== 2.3.2 MOD~=1(Original value) ===
172 -
173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 -
175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 -|(((
177 -**Size**
178 -
179 -**(bytes)**
180 -)))|**2**|**2**|**2**|**2**|**2**|**1**
181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 -Temperature
183 -
184 -(Reserve, Ignore now)
185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 -MOD & Digital Interrupt
187 -
188 -(Optional)
189 -)))
190 -
191 -
192 -
193 -=== 2.3.3 Battery Info ===
194 -
195 -Check the battery voltage for LSE01.
196 -
197 -Ex1: 0x0B45 = 2885mV
198 -
199 -Ex2: 0x0B49 = 2889mV
200 -
201 -
202 -
203 -=== 2.3.4 Soil Moisture ===
204 -
205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 -
207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
208 -
209 -
210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 -
212 -
213 -
214 -=== 2.3.5 Soil Temperature ===
215 -
216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 -
218 -**Example**:
219 -
220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 -
222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 -
224 -
225 -
226 -=== 2.3.6 Soil Conductivity (EC) ===
227 -
228 228  (((
229 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
230 230  )))
231 231  
232 -(((
233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
234 -)))
235 235  
236 236  (((
237 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
238 238  )))
239 239  
240 -(((
241 -
242 -)))
115 +[[image:image-20220708101605-2.png]]
243 243  
244 244  (((
245 245  
246 246  )))
247 247  
248 -=== 2.3.7 MOD ===
249 249  
250 -Firmware version at least v2.1 supports changing mode.
251 251  
252 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
253 253  
254 -mod=(bytes[10]>>7)&0x01=1.
255 255  
126 +=== 2.2.1 Test Requirement ===
256 256  
257 -**Downlink Command:**
258 258  
259 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
260 260  
261 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
262 262  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
263 263  
264 264  
265 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
266 266  
267 -While using TTN network, you can add the payload format to decode the payload.
268 268  
269 269  
270 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
271 271  
272 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
273 273  
274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
275 275  
276 276  
151 +[[image:1657249468462-536.png]]
277 277  
278 -== 2.4 Uplink Interval ==
279 279  
280 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
281 281  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
282 282  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
283 283  
284 -== 2.5 Downlink Payload ==
285 285  
286 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
287 287  
288 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
289 289  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
290 290  
291 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
292 292  
293 293  
294 -* **Set TDC**
173 +In the PC, use below serial tool settings:
295 295  
296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
297 297  
298 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
299 299  
300 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
301 301  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
302 302  
303 -* **Reset**
304 304  
305 -If payload = 0x04FF, it will reset the LSE01
306 306  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
307 307  
308 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
309 309  
310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
196 +**Use below commands:**
312 312  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
313 313  
314 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
315 315  
316 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
317 317  
318 318  
319 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
320 320  
321 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
322 322  
323 323  
324 -[[image:1654505857935-743.png]]
325 325  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
326 326  
327 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
328 328  
329 -Step 3: Create an account or log in Datacake.
330 330  
331 -Step 4: Search the LSE01 and add DevEUI.
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
332 332  
222 +[[image:1657249864775-321.png]]
333 333  
334 -[[image:1654505905236-553.png]]
335 335  
225 +[[image:1657249930215-289.png]]
336 336  
337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
338 338  
339 -[[image:1654505925508-181.png]]
340 340  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
341 341  
231 +This feature is supported since firmware version v110
342 342  
343 -== 2.7 Frequency Plans ==
344 344  
345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
346 346  
242 +[[image:1657249978444-674.png]]
347 347  
348 -=== 2.7.1 EU863-870 (EU868) ===
349 349  
350 -(% style="color:#037691" %)** Uplink:**
245 +[[image:1657249990869-686.png]]
351 351  
352 -868.1 - SF7BW125 to SF12BW125
353 353  
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
355 355  
356 -868.5 - SF7BW125 to SF12BW125
357 357  
358 -867.1 - SF7BW125 to SF12BW125
359 359  
360 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
361 361  
362 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
363 363  
364 -867.7 - SF7BW125 to SF12BW125
365 365  
366 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
367 367  
368 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
369 369  
370 370  
371 -(% style="color:#037691" %)** Downlink:**
265 +[[image:1657250255956-604.png]]
372 372  
373 -Uplink channels 1-9 (RX1)
374 374  
375 -869.525 - SF9BW125 (RX2 downlink only)
376 376  
269 +=== 2.2.8 Change Update Interval ===
377 377  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
378 378  
379 -=== 2.7.2 US902-928(US915) ===
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
380 380  
381 -Used in USA, Canada and South America. Default use CHE=2
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
382 382  
383 -(% style="color:#037691" %)**Uplink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
384 384  
385 -903.9 - SF7BW125 to SF10BW125
386 386  
387 -904.1 - SF7BW125 to SF10BW125
388 388  
389 -904.3 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
390 390  
391 -904.5 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
392 392  
393 -904.7 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
394 394  
395 -904.9 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
396 396  
397 -905.1 - SF7BW125 to SF10BW125
398 398  
399 -905.3 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
400 400  
401 401  
402 -(% style="color:#037691" %)**Downlink:**
301 +The payload is ASCII string, representative same HEX:
403 403  
404 -923.3 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
405 405  
406 -923.9 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
407 407  
408 -924.5 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
409 409  
410 -925.1 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
411 411  
412 -925.7 - SF7BW500 to SF12BW500
413 413  
414 -926.3 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
415 415  
416 -926.9 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
417 417  
418 -927.5 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
419 419  
420 -923.3 - SF12BW500(RX2 downlink only)
324 +**Example:**
421 421  
326 +AT+DEUI=A84041F15612
422 422  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
423 423  
424 -=== 2.7.3 CN470-510 (CN470) ===
425 425  
426 -Used in China, Default use CHE=1
427 427  
428 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
429 429  
430 -486.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
431 431  
432 -486.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
433 433  
434 -486.7 - SF7BW125 to SF12BW125
435 435  
436 -486.9 - SF7BW125 to SF12BW125
437 437  
438 -487.1 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
439 439  
440 -487.3 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
441 441  
442 -487.5 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
443 443  
444 -487.7 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
445 445  
446 446  
447 -(% style="color:#037691" %)**Downlink:**
448 448  
449 -506.7 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
450 450  
451 -506.9 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
452 452  
453 -507.1 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
454 454  
455 -507.3 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
456 456  
457 -507.5 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
458 458  
459 -507.7 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
460 460  
461 -507.9 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
462 462  
463 -508.1 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
464 464  
465 -505.3 - SF12BW125 (RX2 downlink only)
466 466  
467 467  
374 +=== 2.4.5  Soil Moisture ===
468 468  
469 -=== 2.7.4 AU915-928(AU915) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
470 470  
471 -Default use CHE=2
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
472 472  
473 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
474 474  
475 -916.8 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
476 476  
477 -917.0 - SF7BW125 to SF12BW125
478 478  
479 -917.2 - SF7BW125 to SF12BW125
480 480  
481 -917.4 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
482 482  
483 -917.6 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
484 484  
485 -917.8 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
486 486  
487 -918.0 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
488 488  
489 -918.2 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
490 490  
491 491  
492 -(% style="color:#037691" %)**Downlink:**
493 493  
494 -923.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
495 495  
496 -923.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
497 497  
498 -924.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
499 499  
500 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
501 501  
502 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
503 503  
504 -926.3 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
505 505  
506 -926.9 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
507 507  
508 -927.5 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
509 509  
510 -923.3 - SF12BW500(RX2 downlink only)
440 +The command is:
511 511  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 512  
513 513  
514 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
515 515  
516 -(% style="color:#037691" %)**Default Uplink channel:**
517 517  
518 -923.2 - SF7BW125 to SF10BW125
448 +Example:
519 519  
520 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
521 521  
452 +0x(01): Interrupt Uplink Packet.
522 522  
523 -(% style="color:#037691" %)**Additional Uplink Channel**:
524 524  
525 -(OTAA mode, channel added by JoinAccept message)
526 526  
527 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
528 528  
529 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
530 530  
531 -922.4 - SF7BW125 to SF10BW125
532 532  
533 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
534 534  
535 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
536 536  
537 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 538  
539 -922.0 - SF7BW125 to SF10BW125
540 540  
541 541  
542 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
543 543  
544 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
545 545  
546 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
547 547  
548 -924.0 - SF7BW125 to SF10BW125
549 549  
550 -924.2 - SF7BW125 to SF10BW125
551 551  
552 -924.4 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
553 553  
554 -924.6 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
555 555  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
556 556  
557 -(% style="color:#037691" %)** Downlink:**
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
558 558  
559 -Uplink channels 1-8 (RX1)
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
560 560  
561 -923.2 - SF10BW125 (RX2)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
562 562  
501 +(((
502 +
503 +)))
563 563  
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
564 564  
565 -=== 2.7.6 KR920-923 (KR920) ===
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
566 566  
567 -Default channel:
568 568  
569 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
570 570  
571 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
572 572  
573 -922.5 - SF7BW125 to SF12BW125
574 574  
575 575  
576 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
520 +== 2.6  ​LED Indicator ==
577 577  
578 -922.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
579 579  
580 -922.3 - SF7BW125 to SF12BW125
581 581  
582 -922.5 - SF7BW125 to SF12BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
583 583  
584 -922.7 - SF7BW125 to SF12BW125
585 585  
586 -922.9 - SF7BW125 to SF12BW125
587 587  
588 -923.1 - SF7BW125 to SF12BW125
589 589  
590 -923.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
591 591  
537 +__**Measurement the soil surface**__
592 592  
593 -(% style="color:#037691" %)**Downlink:**
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
594 594  
595 -Uplink channels 1-7(RX1)
541 +[[image:1657259653666-883.png]] ​
596 596  
597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
598 598  
544 +(((
545 +
599 599  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
600 600  
601 -=== 2.7.7 IN865-867 (IN865) ===
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
602 602  
603 -(% style="color:#037691" %)** Uplink:**
556 +[[image:1654506665940-119.png]]
604 604  
605 -865.0625 - SF7BW125 to SF12BW125
558 +(((
559 +
560 +)))
606 606  
607 -865.4025 - SF7BW125 to SF12BW125
608 608  
609 -865.9850 - SF7BW125 to SF12BW125
563 +== 2.8  Firmware Change Log ==
610 610  
611 611  
612 -(% style="color:#037691" %) **Downlink:**
566 +Download URL & Firmware Change log
613 613  
614 -Uplink channels 1-3 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
615 615  
616 -866.550 - SF10BW125 (RX2)
617 617  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
618 618  
619 619  
620 620  
621 -== 2.8 LED Indicator ==
575 +== 2. ​Battery Analysis ==
622 622  
623 -The LSE01 has an internal LED which is to show the status of different state.
577 +=== 2.9.1  ​Battery Type ===
624 624  
625 -* Blink once when device power on.
626 -* Solid ON for 5 seconds once device successful Join the network.
627 -* Blink once when device transmit a packet.
628 628  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
629 629  
630 630  
631 -== 2.9 Installation in Soil ==
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
632 632  
633 -**Measurement the soil surface**
634 634  
586 +The battery related documents as below:
635 635  
636 -[[image:1654506634463-199.png]] ​
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
637 637  
638 638  (((
639 -(((
640 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
641 641  )))
642 -)))
643 643  
644 644  
645 -[[image:1654506665940-119.png]]
646 646  
647 -(((
648 -Dig a hole with diameter > 20CM.
649 -)))
598 +2.9.2 
650 650  
651 -(((
652 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
653 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
654 654  
655 655  
656 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
657 657  
658 -(((
659 -**Firmware download link:**
660 -)))
661 661  
662 -(((
663 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
664 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
665 665  
666 -(((
667 -
668 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
669 669  
670 -(((
671 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
672 -)))
673 673  
674 -(((
675 -
676 -)))
611 +Step 2: Open it and choose
677 677  
678 -(((
679 -**V1.0.**
680 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
681 681  
682 -(((
683 -Release
684 -)))
617 +And the Life expectation in difference case will be shown on the right.
685 685  
686 686  
687 -== 2.11 ​Battery Analysis ==
688 688  
689 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
690 690  
691 691  (((
692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 -)))
694 -
695 -(((
696 -The battery is designed to last for more than 5 years for the LSN50.
697 -)))
698 -
699 -(((
700 -(((
701 -The battery-related documents are as below:
702 -)))
703 -)))
704 -
705 -* (((
706 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 -)))
708 -* (((
709 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
710 -)))
711 -* (((
712 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
713 -)))
714 -
715 - [[image:image-20220606171726-9.png]]
716 -
717 -
718 -
719 -=== 2.11.2 ​Battery Note ===
720 -
721 -(((
722 722  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
723 723  )))
724 724  
725 725  
726 726  
727 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
728 728  
729 -(((
730 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
731 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
732 732  
733 -(((
734 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
735 -)))
736 736  
737 -(((
738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
739 -)))
740 740  
741 -
742 -
743 743  = 3. ​Using the AT Commands =
744 744  
745 745  == 3.1 Access AT Commands ==
... ... @@ -763,7 +763,7 @@
763 763   [[image:1654502050864-459.png||height="564" width="806"]]
764 764  
765 765  
766 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
767 767  
768 768  
769 769  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -921,19 +921,14 @@
921 921  
922 922  (((
923 923  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
924 -)))
925 925  
926 -(% class="box infomessage" %)
927 -(((
928 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
929 929  )))
930 930  
931 -(% class="box infomessage" %)
932 932  (((
933 -**ATZ**
934 -)))
822 +
935 935  
936 -(((
937 937  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
938 938  )))
939 939  
... ... @@ -948,18 +948,22 @@
948 948  [[image:image-20220606154825-4.png]]
949 949  
950 950  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
951 951  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
952 952  = 5. Trouble Shooting =
953 953  
954 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
955 955  
956 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
957 957  
958 958  
959 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
960 960  
961 961  (((
962 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
963 963  )))
964 964  
965 965  
... ... @@ -1041,7 +1041,6 @@
1041 1041  * (((
1042 1042  Weight / pcs : g
1043 1043  
1044 -
1045 1045  
1046 1046  )))
1047 1047  
... ... @@ -1049,8 +1049,3 @@
1049 1049  
1050 1050  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1051 1051  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1052 -
1053 -
1054 -~)~)~)
1055 -~)~)~)
1056 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content