Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,61 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 63 63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 66 66 67 67 68 68 69 -== 1.4 Applications == 87 +== 1.4 Applications == 70 70 71 71 * Smart Agriculture 72 72 ... ... @@ -73,672 +73,579 @@ 73 73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 74 75 75 76 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 77 77 78 78 79 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 80 80 81 81 82 82 83 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 84 84 85 -== 2.1 How it works == 103 +== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 91 ((( 92 - Incaseyoucan’tsettheOTAAkeysintheLoRaWANOTAAserver,andyouhave touse thekeys fromtheserver, youcan[[useATCommands>>||anchor="H3.200BUsingtheATCommands"]].107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 93 93 ))) 94 94 95 95 96 - 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 - 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 - 101 - 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 167 167 ))) 168 168 115 +[[image:image-20220708101605-2.png]] 169 169 170 - 171 -=== 2.3.2 MOD~=1(Original value) === 172 - 173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 - 175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 -|((( 177 -**Size** 178 - 179 -**(bytes)** 180 -)))|**2**|**2**|**2**|**2**|**2**|**1** 181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 -Temperature 183 - 184 -(Reserve, Ignore now) 185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 -MOD & Digital Interrupt 187 - 188 -(Optional) 117 +((( 118 + 189 189 ))) 190 190 191 191 192 192 193 -== =2.3.3BatteryInfo===123 +== 2.2 Configure the NSE01 == 194 194 195 -Check the battery voltage for LSE01. 196 196 197 - Ex1:0x0B45=2885mV126 +=== 2.2.1 Test Requirement === 198 198 199 -Ex2: 0x0B49 = 2889mV 200 200 129 +To use NSE01 in your city, make sure meet below requirements: 201 201 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 202 202 203 -=== 2.3.4 Soil Moisture === 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 204 204 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 206 207 - For example,if the data youget from the register is __0x050xDC__, the moisture content in the soil is140 +[[image:1657249419225-449.png]] 208 208 209 209 210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 211 144 +=== 2.2.2 Insert SIM card === 212 212 146 +Insert the NB-IoT Card get from your provider. 213 213 214 - ===2.3.5SoilTemperature===148 +User need to take out the NB-IoT module and insert the SIM card like below: 215 215 216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 217 218 - **Example**:151 +[[image:1657249468462-536.png]] 219 219 220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 221 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 223 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 224 224 225 - 226 -=== 2.3.6 Soil Conductivity (EC) === 227 - 228 228 ((( 229 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 230 -))) 231 - 232 232 ((( 233 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 234 234 ))) 235 - 236 -((( 237 -Generally, the EC value of irrigation water is less than 800uS / cm. 238 238 ))) 239 239 240 -((( 241 - 242 -))) 243 243 244 -((( 245 - 246 -))) 164 +**Connection:** 247 247 248 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 249 249 250 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 251 251 252 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 253 253 254 -mod=(bytes[10]>>7)&0x01=1. 255 255 173 +In the PC, use below serial tool settings: 256 256 257 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 258 258 259 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 260 260 261 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 262 262 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 263 263 264 264 265 -=== 2.3.8 Decode payload in The Things Network === 266 266 267 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 268 268 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 269 269 270 -[[image:1654505570700-128.png]] 271 271 272 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 273 273 274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 275 275 202 +For parameter description, please refer to AT command set 276 276 204 +[[image:1657249793983-486.png]] 277 277 278 -== 2.4 Uplink Interval == 279 279 280 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 281 281 209 +[[image:1657249831934-534.png]] 282 282 283 283 284 -== 2.5 Downlink Payload == 285 285 286 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 287 287 288 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 289 289 290 290 291 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 292 222 +[[image:1657249864775-321.png]] 293 293 294 -* **Set TDC** 295 295 296 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 297 297 298 -Payload: 01 00 00 1E TDC=30S 299 299 300 -Payload: 01 00 00 3C TDC=60S 301 301 229 +=== 2.2.6 Use MQTT protocol to uplink data === 302 302 303 - ***Reset**231 +This feature is supported since firmware version v110 304 304 305 -If payload = 0x04FF, it will reset the LSE01 306 306 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 307 307 308 - * **CFM**242 +[[image:1657249978444-674.png]] 309 309 310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 311 311 245 +[[image:1657249990869-686.png]] 312 312 313 313 314 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 315 315 316 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 317 317 318 318 319 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 320 320 321 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 322 322 323 323 324 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 325 325 262 +[[image:1657250217799-140.png]] 326 326 327 -[[image:1654505874829-548.png]] 328 328 329 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 330 330 331 -Step 4: Search the LSE01 and add DevEUI. 332 332 333 333 334 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 335 335 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 336 336 337 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 338 338 339 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 340 340 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 341 341 342 342 343 -== 2.7 Frequency Plans == 344 344 345 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 346 346 287 +In this mode, uplink payload includes in total 18 bytes 347 347 348 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 349 349 350 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 351 351 352 -868.1 - SF7BW125 to SF12BW125 353 353 354 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 355 355 356 -868.5 - SF7BW125 to SF12BW125 357 357 358 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 359 359 360 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 361 361 362 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 363 363 364 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 365 365 366 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 367 367 368 -868.8 - FSK 369 369 318 +=== 2.4.1 Device ID === 370 370 371 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 372 372 373 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 374 374 375 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 376 376 326 +AT+DEUI=A84041F15612 377 377 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 378 378 379 -=== 2.7.2 US902-928(US915) === 380 380 381 -Used in USA, Canada and South America. Default use CHE=2 382 382 383 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 384 384 385 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 386 386 387 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 388 388 389 -904.3 - SF7BW125 to SF10BW125 390 390 391 -904.5 - SF7BW125 to SF10BW125 392 392 393 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 394 394 395 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 396 396 397 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 398 398 399 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 400 400 401 401 402 -(% style="color:#037691" %)**Downlink:** 403 403 404 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 405 405 406 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 407 407 408 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 409 409 410 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 411 411 412 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 413 413 414 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 415 416 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 417 417 418 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 419 419 420 -923.3 - SF12BW500(RX2 downlink only) 421 421 422 422 374 +=== 2.4.5 Soil Moisture === 423 423 424 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 425 425 426 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 427 427 428 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 429 429 430 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 431 431 432 -486.5 - SF7BW125 to SF12BW125 433 433 434 -486.7 - SF7BW125 to SF12BW125 435 435 436 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 437 437 438 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 439 439 440 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 441 441 442 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 443 443 444 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 445 445 446 446 447 -(% style="color:#037691" %)**Downlink:** 448 448 449 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 450 450 451 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 452 452 453 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 454 454 455 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 456 456 457 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 458 458 459 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 460 460 461 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 462 462 463 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 464 464 465 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 466 466 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 467 467 468 468 469 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 470 470 471 -Default use CHE=2 472 472 473 - (% style="color:#037691" %)**Uplink:**448 +Example: 474 474 475 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 476 476 477 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 478 478 479 -917.2 - SF7BW125 to SF12BW125 480 480 481 -917.4 - SF7BW125 to SF12BW125 482 482 483 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 484 484 485 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 486 486 487 -918.0 - SF7BW125 to SF12BW125 488 488 489 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 490 490 463 +(% style="color:blue" %)**AT+5VT=1000** 491 491 492 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 493 493 494 -923.3 - SF7BW500 to SF12BW500 495 495 496 -923.9 - SF7BW500 to SF12BW500 497 497 498 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 499 499 500 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 501 501 502 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 503 503 504 -926.3 - SF7BW500 to SF12BW500 505 505 506 -926.9 - SF7BW500 to SF12BW500 507 507 508 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 509 509 510 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 511 511 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 512 512 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 513 513 514 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 515 515 516 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 517 517 518 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 519 519 520 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 521 521 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 522 522 523 -(% style="color:#037691" %)**Additional Uplink Channel**: 524 524 525 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 526 526 527 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 528 528 529 -922.2 - SF7BW125 to SF10BW125 530 530 531 -922.4 - SF7BW125 to SF10BW125 532 532 533 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 534 534 535 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 536 536 537 -923.0 - SF7BW125 to SF10BW125 538 538 539 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 540 540 541 541 542 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 543 543 544 -923.6 - SF7BW125 to SF10BW125 545 545 546 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 547 547 548 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 549 549 550 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 551 551 552 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 553 553 554 -924.6 - SF7BW125 to SF10BW125 555 555 544 +((( 545 + 556 556 557 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 558 558 559 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 560 560 561 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 562 562 558 +((( 559 + 560 +))) 563 563 564 564 565 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 566 566 567 -Default channel: 568 568 569 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 570 570 571 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 572 572 573 -922.5 - SF7BW125 to SF12BW125 574 574 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 575 575 576 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 577 577 578 -922.1 - SF7BW125 to SF12BW125 579 579 580 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 581 581 582 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 583 583 584 -922.7 - SF7BW125 to SF12BW125 585 585 586 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 587 587 588 -923.1 - SF7BW125 to SF12BW125 589 589 590 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 591 591 592 592 593 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 594 594 595 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 596 597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 598 - 599 - 600 - 601 -=== 2.7.7 IN865-867 (IN865) === 602 - 603 -(% style="color:#037691" %)** Uplink:** 604 - 605 -865.0625 - SF7BW125 to SF12BW125 606 - 607 -865.4025 - SF7BW125 to SF12BW125 608 - 609 -865.9850 - SF7BW125 to SF12BW125 610 - 611 - 612 -(% style="color:#037691" %) **Downlink:** 613 - 614 -Uplink channels 1-3 (RX1) 615 - 616 -866.550 - SF10BW125 (RX2) 617 - 618 - 619 - 620 - 621 -== 2.8 LED Indicator == 622 - 623 -The LSE01 has an internal LED which is to show the status of different state. 624 - 625 -* Blink once when device power on. 626 -* Solid ON for 5 seconds once device successful Join the network. 627 -* Blink once when device transmit a packet. 628 - 629 -== 2.9 Installation in Soil == 630 - 631 -**Measurement the soil surface** 632 - 633 - 634 -[[image:1654506634463-199.png]] 635 - 636 636 ((( 637 -((( 638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 639 639 ))) 640 -))) 641 641 642 642 643 -[[image:1654506665940-119.png]] 644 644 645 -((( 646 -Dig a hole with diameter > 20CM. 647 -))) 598 +=== 2.9.2 Power consumption Analyze === 648 648 649 649 ((( 650 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 651 651 ))) 652 652 653 653 654 -== 2.10 Firmware Change Log == 655 - 656 656 ((( 657 - **Firmware downloadlink:**606 +Instruction to use as below: 658 658 ))) 659 659 660 660 ((( 661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]610 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 662 662 ))) 663 663 664 -((( 665 - 666 -))) 667 667 668 668 ((( 669 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 670 670 ))) 671 671 672 -((( 673 - 618 +* ((( 619 +Product Model 674 674 ))) 675 - 676 -((( 677 -**V1.0.** 621 +* ((( 622 +Uplink Interval 678 678 ))) 624 +* ((( 625 +Working Mode 626 +))) 679 679 680 680 ((( 681 - Release629 +And the Life expectation in difference case will be shown on the right. 682 682 ))) 683 683 632 +[[image:image-20220708141352-7.jpeg]] 684 684 685 -== 2.11 Battery Analysis == 686 686 687 -=== 2.11.1 Battery Type === 688 688 689 -((( 690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 -))) 636 +=== 2.9.3 Battery Note === 692 692 693 693 ((( 694 -The battery is designed to last for more than5 yearsfor theLSN50.639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 695 695 ))) 696 696 697 -((( 698 -((( 699 -The battery-related documents are as below: 700 -))) 701 -))) 702 702 703 -* ((( 704 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 705 -))) 706 -* ((( 707 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 708 -))) 709 -* ((( 710 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 711 -))) 712 712 713 - [[image:image-20220606171726-9.png]]644 +=== 2.9.4 Replace the battery === 714 714 715 - 716 - 717 -=== 2.11.2 Battery Note === 718 - 719 719 ((( 720 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 721 721 ))) 722 722 723 723 724 724 725 -= ==2.11.3Replacethebattery===652 += 3. Access NB-IoT Module = 726 726 727 727 ((( 728 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.655 +Users can directly access the AT command set of the NB-IoT module. 729 729 ))) 730 730 731 731 ((( 732 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 733 733 ))) 734 734 735 -((( 736 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 737 -))) 662 +[[image:1657261119050-993.png]] 738 738 664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]] 739 739 740 740 741 -= 3. Using the AT Commands = 742 742 743 743 == 3.1 Access AT Commands == 744 744 ... ... @@ -761,7 +761,7 @@ 761 761 [[image:1654502050864-459.png||height="564" width="806"]] 762 762 763 763 764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 765 765 766 766 767 767 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -919,19 +919,14 @@ 919 919 920 920 ((( 921 921 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 922 -))) 923 923 924 -(% class="box infomessage" %) 925 -((( 926 -**AT+CHE=2** 848 +* (% style="color:#037691" %)**AT+CHE=2** 849 +* (% style="color:#037691" %)**ATZ** 927 927 ))) 928 928 929 -(% class="box infomessage" %) 930 930 ((( 931 -**ATZ** 932 -))) 853 + 933 933 934 -((( 935 935 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 936 936 ))) 937 937 ... ... @@ -946,18 +946,22 @@ 946 946 [[image:image-20220606154825-4.png]] 947 947 948 948 869 +== 4.2 Can I calibrate LSE01 to different soil types? == 949 949 871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 872 + 873 + 950 950 = 5. Trouble Shooting = 951 951 952 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==876 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 953 953 954 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 955 955 956 956 957 -== 5.2 AT Command input doesn ’t work ==881 +== 5.2 AT Command input doesn't work == 958 958 959 959 ((( 960 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 961 961 ))) 962 962 963 963 ... ... @@ -1039,7 +1039,6 @@ 1039 1039 * ((( 1040 1040 Weight / pcs : g 1041 1041 1042 - 1043 1043 1044 1044 ))) 1045 1045 ... ... @@ -1047,8 +1047,3 @@ 1047 1047 1048 1048 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1049 1049 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1050 - 1051 - 1052 -~)~)~) 1053 -~)~)~) 1054 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content