Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.5
edited by Xiaoling
on 2022/06/07 11:33
Change comment: There is no comment for this version
To version 63.2
edited by Xiaoling
on 2022/07/08 14:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,61 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
63 63  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
66 66  
67 67  
68 68  
69 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
70 70  
71 71  * Smart Agriculture
72 72  
... ... @@ -73,672 +73,579 @@
73 73  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 74  ​
75 75  
76 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
84 84  
85 -== 2.1 How it works ==
103 +== 2.1  How it works ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 91  (((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
93 93  )))
94 94  
95 95  
96 -
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 -
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 -
150 -Uplink payload includes in total 11 bytes.
151 -
152 -
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
167 167  )))
168 168  
115 +[[image:image-20220708101605-2.png]]
169 169  
170 -
171 -=== 2.3.2 MOD~=1(Original value) ===
172 -
173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 -
175 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 -|(((
177 -**Size**
178 -
179 -**(bytes)**
180 -)))|**2**|**2**|**2**|**2**|**2**|**1**
181 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 -Temperature
183 -
184 -(Reserve, Ignore now)
185 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 -MOD & Digital Interrupt
187 -
188 -(Optional)
117 +(((
118 +
189 189  )))
190 190  
191 191  
192 192  
193 -=== 2.3.3 Battery Info ===
123 +== 2.2 Configure the NSE01 ==
194 194  
195 -Check the battery voltage for LSE01.
196 196  
197 -Ex1: 0x0B45 = 2885mV
126 +=== 2.2.1 Test Requirement ===
198 198  
199 -Ex2: 0x0B49 = 2889mV
200 200  
129 +To use NSE01 in your city, make sure meet below requirements:
201 201  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
202 202  
203 -=== 2.3.4 Soil Moisture ===
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
204 204  
205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 206  
207 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
140 +[[image:1657249419225-449.png]]
208 208  
209 209  
210 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 211  
144 +=== 2.2.2 Insert SIM card ===
212 212  
146 +Insert the NB-IoT Card get from your provider.
213 213  
214 -=== 2.3.5 Soil Temperature ===
148 +User need to take out the NB-IoT module and insert the SIM card like below:
215 215  
216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 217  
218 -**Example**:
151 +[[image:1657249468462-536.png]]
219 219  
220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 221  
222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 223  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
224 224  
225 -
226 -=== 2.3.6 Soil Conductivity (EC) ===
227 -
228 228  (((
229 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
230 -)))
231 -
232 232  (((
233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
234 234  )))
235 -
236 -(((
237 -Generally, the EC value of irrigation water is less than 800uS / cm.
238 238  )))
239 239  
240 -(((
241 -
242 -)))
243 243  
244 -(((
245 -
246 -)))
164 +**Connection:**
247 247  
248 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
249 249  
250 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
251 251  
252 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
253 253  
254 -mod=(bytes[10]>>7)&0x01=1.
255 255  
173 +In the PC, use below serial tool settings:
256 256  
257 -**Downlink Command:**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
258 258  
259 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
260 260  
261 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
262 262  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
263 263  
264 264  
265 -=== 2.3.8 ​Decode payload in The Things Network ===
266 266  
267 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
268 268  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
269 269  
270 -[[image:1654505570700-128.png]]
271 271  
272 -The payload decoder function for TTN is here:
196 +**Use below commands:**
273 273  
274 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
275 275  
202 +For parameter description, please refer to AT command set
276 276  
204 +[[image:1657249793983-486.png]]
277 277  
278 -== 2.4 Uplink Interval ==
279 279  
280 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
281 281  
209 +[[image:1657249831934-534.png]]
282 282  
283 283  
284 -== 2.5 Downlink Payload ==
285 285  
286 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
287 287  
288 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
289 289  
290 290  
291 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
292 292  
222 +[[image:1657249864775-321.png]]
293 293  
294 -* **Set TDC**
295 295  
296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
297 297  
298 -Payload:    01 00 00 1E    TDC=30S
299 299  
300 -Payload:    01 00 00 3C    TDC=60S
301 301  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
302 302  
303 -* **Reset**
231 +This feature is supported since firmware version v110
304 304  
305 -If payload = 0x04FF, it will reset the LSE01
306 306  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
307 307  
308 -* **CFM**
242 +[[image:1657249978444-674.png]]
309 309  
310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
245 +[[image:1657249990869-686.png]]
312 312  
313 313  
314 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
315 315  
316 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
317 317  
318 318  
319 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
320 320  
321 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
322 322  
323 323  
324 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
325 325  
262 +[[image:1657250217799-140.png]]
326 326  
327 -[[image:1654505874829-548.png]]
328 328  
329 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
330 330  
331 -Step 4: Search the LSE01 and add DevEUI.
332 332  
333 333  
334 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
335 335  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
336 336  
337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
338 338  
339 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
340 340  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
341 341  
342 342  
343 -== 2.7 Frequency Plans ==
344 344  
345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
346 346  
287 +In this mode, uplink payload includes in total 18 bytes
347 347  
348 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
349 349  
350 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
351 351  
352 -868.1 - SF7BW125 to SF12BW125
353 353  
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
355 355  
356 -868.5 - SF7BW125 to SF12BW125
357 357  
358 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
359 359  
360 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
361 361  
362 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
363 363  
364 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
365 365  
366 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
367 367  
368 -868.8 - FSK
369 369  
318 +=== 2.4.1  Device ID ===
370 370  
371 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
372 372  
373 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
374 374  
375 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
376 376  
326 +AT+DEUI=A84041F15612
377 377  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
378 378  
379 -=== 2.7.2 US902-928(US915) ===
380 380  
381 -Used in USA, Canada and South America. Default use CHE=2
382 382  
383 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
384 384  
385 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
386 386  
387 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
388 388  
389 -904.3 - SF7BW125 to SF10BW125
390 390  
391 -904.5 - SF7BW125 to SF10BW125
392 392  
393 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
394 394  
395 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
396 396  
397 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
398 398  
399 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
400 400  
401 401  
402 -(% style="color:#037691" %)**Downlink:**
403 403  
404 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
405 405  
406 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
407 407  
408 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
409 409  
410 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
411 411  
412 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
413 413  
414 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
415 415  
416 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
417 417  
418 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
419 419  
420 -923.3 - SF12BW500(RX2 downlink only)
421 421  
422 422  
374 +=== 2.4.5  Soil Moisture ===
423 423  
424 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
425 425  
426 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
427 427  
428 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
429 429  
430 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
431 431  
432 -486.5 - SF7BW125 to SF12BW125
433 433  
434 -486.7 - SF7BW125 to SF12BW125
435 435  
436 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
437 437  
438 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
439 439  
440 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
441 441  
442 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
443 443  
444 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
445 445  
446 446  
447 -(% style="color:#037691" %)**Downlink:**
448 448  
449 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
450 450  
451 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
452 452  
453 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
454 454  
455 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
456 456  
457 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
458 458  
459 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
460 460  
461 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
462 462  
463 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
464 464  
465 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
466 466  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
467 467  
468 468  
469 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
470 470  
471 -Default use CHE=2
472 472  
473 -(% style="color:#037691" %)**Uplink:**
448 +Example:
474 474  
475 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
476 476  
477 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
478 478  
479 -917.2 - SF7BW125 to SF12BW125
480 480  
481 -917.4 - SF7BW125 to SF12BW125
482 482  
483 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
484 484  
485 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
486 486  
487 -918.0 - SF7BW125 to SF12BW125
488 488  
489 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
490 490  
463 +(% style="color:blue" %)**AT+5VT=1000**
491 491  
492 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
493 493  
494 -923.3 - SF7BW500 to SF12BW500
495 495  
496 -923.9 - SF7BW500 to SF12BW500
497 497  
498 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
499 499  
500 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
501 501  
502 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
503 503  
504 -926.3 - SF7BW500 to SF12BW500
505 505  
506 -926.9 - SF7BW500 to SF12BW500
507 507  
508 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
509 509  
510 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
511 511  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
512 512  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
513 513  
514 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
515 515  
516 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
517 517  
518 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
519 519  
520 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
521 521  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
522 522  
523 -(% style="color:#037691" %)**Additional Uplink Channel**:
524 524  
525 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
526 526  
527 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
528 528  
529 -922.2 - SF7BW125 to SF10BW125
530 530  
531 -922.4 - SF7BW125 to SF10BW125
532 532  
533 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
534 534  
535 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
536 536  
537 -923.0 - SF7BW125 to SF10BW125
538 538  
539 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
540 540  
541 541  
542 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
543 543  
544 -923.6 - SF7BW125 to SF10BW125
545 545  
546 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
547 547  
548 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
549 549  
550 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
551 551  
552 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
553 553  
554 -924.6 - SF7BW125 to SF10BW125
555 555  
544 +(((
545 +
556 556  
557 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
558 558  
559 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
560 560  
561 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
562 562  
558 +(((
559 +
560 +)))
563 563  
564 564  
565 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
566 566  
567 -Default channel:
568 568  
569 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
570 570  
571 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
572 572  
573 -922.5 - SF7BW125 to SF12BW125
574 574  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
575 575  
576 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
577 577  
578 -922.1 - SF7BW125 to SF12BW125
579 579  
580 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
581 581  
582 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
583 583  
584 -922.7 - SF7BW125 to SF12BW125
585 585  
586 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
587 587  
588 -923.1 - SF7BW125 to SF12BW125
589 589  
590 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
591 591  
592 592  
593 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
594 594  
595 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 596  
597 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
598 -
599 -
600 -
601 -=== 2.7.7 IN865-867 (IN865) ===
602 -
603 -(% style="color:#037691" %)** Uplink:**
604 -
605 -865.0625 - SF7BW125 to SF12BW125
606 -
607 -865.4025 - SF7BW125 to SF12BW125
608 -
609 -865.9850 - SF7BW125 to SF12BW125
610 -
611 -
612 -(% style="color:#037691" %) **Downlink:**
613 -
614 -Uplink channels 1-3 (RX1)
615 -
616 -866.550 - SF10BW125 (RX2)
617 -
618 -
619 -
620 -
621 -== 2.8 LED Indicator ==
622 -
623 -The LSE01 has an internal LED which is to show the status of different state.
624 -
625 -* Blink once when device power on.
626 -* Solid ON for 5 seconds once device successful Join the network.
627 -* Blink once when device transmit a packet.
628 -
629 -== 2.9 Installation in Soil ==
630 -
631 -**Measurement the soil surface**
632 -
633 -
634 -[[image:1654506634463-199.png]] ​
635 -
636 636  (((
637 -(((
638 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
639 639  )))
640 -)))
641 641  
642 642  
643 -[[image:1654506665940-119.png]]
644 644  
645 -(((
646 -Dig a hole with diameter > 20CM.
647 -)))
598 +=== 2.9.2  Power consumption Analyze ===
648 648  
649 649  (((
650 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
651 651  )))
652 652  
653 653  
654 -== 2.10 ​Firmware Change Log ==
655 -
656 656  (((
657 -**Firmware download link:**
606 +Instruction to use as below:
658 658  )))
659 659  
660 660  (((
661 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
662 662  )))
663 663  
664 -(((
665 -
666 -)))
667 667  
668 668  (((
669 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
670 670  )))
671 671  
672 -(((
673 -
618 +* (((
619 +Product Model
674 674  )))
675 -
676 -(((
677 -**V1.0.**
621 +* (((
622 +Uplink Interval
678 678  )))
624 +* (((
625 +Working Mode
626 +)))
679 679  
680 680  (((
681 -Release
629 +And the Life expectation in difference case will be shown on the right.
682 682  )))
683 683  
632 +[[image:image-20220708141352-7.jpeg]]
684 684  
685 -== 2.11 ​Battery Analysis ==
686 686  
687 -=== 2.11.1 ​Battery Type ===
688 688  
689 -(((
690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 -)))
636 +=== 2.9.3  ​Battery Note ===
692 692  
693 693  (((
694 -The battery is designed to last for more than 5 years for the LSN50.
639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
695 695  )))
696 696  
697 -(((
698 -(((
699 -The battery-related documents are as below:
700 -)))
701 -)))
702 702  
703 -* (((
704 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
705 -)))
706 -* (((
707 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
708 -)))
709 -* (((
710 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
711 -)))
712 712  
713 - [[image:image-20220606171726-9.png]]
644 +=== 2.9.4  Replace the battery ===
714 714  
715 -
716 -
717 -=== 2.11.2 ​Battery Note ===
718 -
719 719  (((
720 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
721 721  )))
722 722  
723 723  
724 724  
725 -=== 2.11.3 Replace the battery ===
652 += 3. ​ Access NB-IoT Module =
726 726  
727 727  (((
728 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +Users can directly access the AT command set of the NB-IoT module.
729 729  )))
730 730  
731 731  (((
732 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]
733 733  )))
734 734  
735 -(((
736 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
737 -)))
662 +[[image:1657261119050-993.png]]
738 738  
664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]]
739 739  
740 740  
741 -= 3. ​Using the AT Commands =
742 742  
743 743  == 3.1 Access AT Commands ==
744 744  
... ... @@ -761,7 +761,7 @@
761 761   [[image:1654502050864-459.png||height="564" width="806"]]
762 762  
763 763  
764 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
765 765  
766 766  
767 767  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -919,19 +919,14 @@
919 919  
920 920  (((
921 921  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
922 -)))
923 923  
924 -(% class="box infomessage" %)
925 -(((
926 -**AT+CHE=2**
848 +* (% style="color:#037691" %)**AT+CHE=2**
849 +* (% style="color:#037691" %)**ATZ**
927 927  )))
928 928  
929 -(% class="box infomessage" %)
930 930  (((
931 -**ATZ**
932 -)))
853 +
933 933  
934 -(((
935 935  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
936 936  )))
937 937  
... ... @@ -946,18 +946,22 @@
946 946  [[image:image-20220606154825-4.png]]
947 947  
948 948  
869 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
949 949  
871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
872 +
873 +
950 950  = 5. Trouble Shooting =
951 951  
952 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
876 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
953 953  
954 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
955 955  
956 956  
957 -== 5.2 AT Command input doesnt work ==
881 +== 5.2 AT Command input doesn't work ==
958 958  
959 959  (((
960 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
961 961  )))
962 962  
963 963  
... ... @@ -1039,7 +1039,6 @@
1039 1039  * (((
1040 1040  Weight / pcs : g
1041 1041  
1042 -
1043 1043  
1044 1044  )))
1045 1045  
... ... @@ -1047,8 +1047,3 @@
1047 1047  
1048 1048  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1049 1049  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1050 -
1051 -
1052 -~)~)~)
1053 -~)~)~)
1054 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content