Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,243 +1,130 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 61 62 -== 1.3 Specification == 63 63 64 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.60 +== 1.3 Specification == 65 65 66 -[[image:image-20220606162220-5.png]] 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 69 69 70 - ==1.4 Applications==68 +(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -* Smart Agriculture 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 73 73 74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 - 76 76 77 - ==1.5 FirmwareChangelog==78 +(% style="color:#037691" %)**Battery:** 78 78 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 79 79 80 -**LSE01 v1.0 :** Release 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 83 83 84 -= 2. Configure LSE01 to connect to LoRaWAN network = 85 85 86 -== 2.1 How it works == 87 87 88 -((( 89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 90 -))) 91 91 92 -((( 93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 94 -))) 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 97 97 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 109 +== 1.5 Pin Definitions == 102 102 103 -[[image:1654503992078-669.png]] 104 104 112 +[[image:1657328609906-564.png]] 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 108 108 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 110 110 111 - EachLSE01is shipped witha stickerwiththedefault deviceEUI as below:117 += 2. Use NSE01 to communicate with IoT Server = 112 112 113 - [[image:image-20220606163732-6.jpeg]]119 +== 2.1 How it works == 114 114 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== 2.3.1 MOD~=0(Default Mode) === 147 - 148 -LSE01 will uplink payload via LoRaWAN with below payload format: 149 - 150 - 151 -Uplink payload includes in total 11 bytes. 152 - 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 161 - 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 165 - 166 -(Optional) 167 -))) 168 - 169 - 170 - 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 178 -|((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|**2**|**2**|**2**|**2**|**2**|**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 -Check the battery voltage for LSE01. 199 - 200 -Ex1: 0x0B45 = 2885mV 201 - 202 -Ex2: 0x0B49 = 2889mV 203 - 204 - 205 - 206 -=== 2.3.4 Soil Moisture === 207 - 208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 - 210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 - 212 - 213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 - 215 - 216 - 217 -=== 2.3.5 Soil Temperature === 218 - 219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 - 221 -**Example**: 222 - 223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 - 225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 - 227 - 228 - 229 -=== 2.3.6 Soil Conductivity (EC) === 230 - 231 231 ((( 232 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoilor (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 233 233 ))) 234 234 235 -((( 236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 -))) 238 238 239 239 ((( 240 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.127 +The diagram below shows the working flow in default firmware of NDDS75: 241 241 ))) 242 242 243 243 ((( ... ... @@ -244,481 +244,601 @@ 244 244 245 245 ))) 246 246 134 +[[image:1657328659945-416.png]] 135 + 247 247 ((( 248 248 249 249 ))) 250 250 251 -=== 2.3.7 MOD === 252 252 253 - Firmwareversion at least v2.1supportschangingmode.141 +== 2.2 Configure the NSE01 == 254 254 255 -For example, bytes[10]=90 256 256 257 - mod=(bytes[10]>>7)&0x01=1.144 +=== 2.2.1 Test Requirement === 258 258 259 259 260 -**Downlink Command:** 147 +((( 148 +To use NSE01 in your city, make sure meet below requirements: 149 +))) 261 261 262 -If payload = 0x0A00, workmode=0 151 +* Your local operator has already distributed a NB-IoT Network there. 152 +* The local NB-IoT network used the band that NSE01 supports. 153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 263 263 264 -If** **payload =** **0x0A01, workmode=1 155 +((( 156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 157 +))) 265 265 266 266 160 +[[image:1657249419225-449.png]] 267 267 268 -=== 2.3.8 Decode payload in The Things Network === 269 269 270 -While using TTN network, you can add the payload format to decode the payload. 271 271 164 +=== 2.2.2 Insert SIM card === 272 272 273 -[[image:1654505570700-128.png]] 166 +((( 167 +Insert the NB-IoT Card get from your provider. 168 +))) 274 274 275 -The payload decoder function for TTN is here: 170 +((( 171 +User need to take out the NB-IoT module and insert the SIM card like below: 172 +))) 276 276 277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 278 278 175 +[[image:1657249468462-536.png]] 279 279 280 280 281 -== 2.4 Uplink Interval == 282 282 283 - TheLSE01 by default uplink the sensor data every20 minutes.UsercanchangehisintervalbyATCommand orLoRaWANDownlinkCommand.Seethis link: [[Change Uplink Interval>>doc:Main.EndDevice AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 284 284 181 +((( 182 +((( 183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 184 +))) 185 +))) 285 285 286 286 287 - == 2.5 Downlink Payload ==188 +**Connection:** 288 288 289 - Bydefault,LSE50 printshe downlink payload toconsole port.190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 290 290 291 - [[image:image-20220606165544-8.png]]192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 292 292 194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 293 293 294 -**Examples:** 295 295 197 +In the PC, use below serial tool settings: 296 296 297 -* **Set TDC** 199 +* Baud: (% style="color:green" %)**9600** 200 +* Data bits:** (% style="color:green" %)8(%%)** 201 +* Stop bits: (% style="color:green" %)**1** 202 +* Parity: (% style="color:green" %)**None** 203 +* Flow Control: (% style="color:green" %)**None** 298 298 299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 205 +((( 206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 207 +))) 300 300 301 - Payload:100001E TDC=30S209 +[[image:image-20220708110657-3.png]] 302 302 303 -Payload: 01 00 00 3C TDC=60S 211 +((( 212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 213 +))) 304 304 305 305 306 -* **Reset** 307 307 308 - If payload=0x04FF,itwill reset theLSE01217 +=== 2.2.4 Use CoAP protocol to uplink data === 309 309 219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 310 310 311 -* **CFM** 312 312 313 - DownlinkPayload: 05000001, Set AT+CFM=1 or 05000000 ,set AT+CFM=0222 +**Use below commands:** 314 314 224 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 315 315 228 +For parameter description, please refer to AT command set 316 316 317 - == 2.6 Show Datain DataCakeIoT Server ==230 +[[image:1657249793983-486.png]] 318 318 319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 320 320 233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 321 321 322 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.235 +[[image:1657249831934-534.png]] 323 323 324 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 325 325 326 326 327 - [[image:1654505857935-743.png]]239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 328 328 241 +This feature is supported since firmware version v1.0.1 329 329 330 -[[image:1654505874829-548.png]] 331 331 332 -Step 3: Create an account or log in Datacake. 244 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 333 333 334 - Step 4: Search theLSE01and add DevEUI.248 +[[image:1657249864775-321.png]] 335 335 336 336 337 -[[image:1654 505905236-553.png]]251 +[[image:1657249930215-289.png]] 338 338 339 339 340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 341 341 342 - [[image:1654505925508-181.png]]255 +=== 2.2.6 Use MQTT protocol to uplink data === 343 343 257 +This feature is supported since firmware version v110 344 344 345 345 346 -== 2.7 Frequency Plans == 260 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 347 347 348 - The LSE01 uses OTAAmodeand below frequency plans by default.If user want to use it with different frequencyplan, please refer the AT command sets.268 +[[image:1657249978444-674.png]] 349 349 350 350 351 - === 2.7.1EU863-870(EU868) ===271 +[[image:1657249990869-686.png]] 352 352 353 -(% style="color:#037691" %)** Uplink:** 354 354 355 -868.1 - SF7BW125 to SF12BW125 274 +((( 275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 +))) 356 356 357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 358 358 359 -868.5 - SF7BW125 to SF12BW125 360 360 361 - 867.1-SF7BW125toSF12BW125280 +=== 2.2.7 Use TCP protocol to uplink data === 362 362 363 - 867.3-SF7BW125toSF12BW125282 +This feature is supported since firmware version v110 364 364 365 -867.5 - SF7BW125 to SF12BW125 366 366 367 -867.7 - SF7BW125 to SF12BW125 285 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 368 368 369 - 867.9 - SF7BW125to SF12BW125288 +[[image:1657250217799-140.png]] 370 370 371 -868.8 - FSK 372 372 291 +[[image:1657250255956-604.png]] 373 373 374 -(% style="color:#037691" %)** Downlink:** 375 375 376 -Uplink channels 1-9 (RX1) 377 377 378 - 869.525-SF9BW125(RX2downlinkonly)295 +=== 2.2.8 Change Update Interval === 379 379 297 +User can use below command to change the (% style="color:green" %)**uplink interval**. 380 380 299 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 382 -=== 2.7.2 US902-928(US915) === 301 +((( 302 +(% style="color:red" %)**NOTE:** 303 +))) 383 383 384 -Used in USA, Canada and South America. Default use CHE=2 305 +((( 306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 +))) 385 385 386 -(% style="color:#037691" %)**Uplink:** 387 387 388 -903.9 - SF7BW125 to SF10BW125 389 389 390 - 904.1- SF7BW125toSF10BW125311 +== 2.3 Uplink Payload == 391 391 392 - 904.3-SF7BW125toSF10BW125313 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -904.5 - SF7BW125 to SF10BW125 315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 +|=(% style="width: 60px;" %)((( 317 +**Size(bytes)** 318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 395 395 396 -904.7 - SF7BW125 to SF10BW125 321 +((( 322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 +))) 397 397 398 -904.9 - SF7BW125 to SF10BW125 399 399 400 - 905.1-SF7BW125 to SF10BW125326 +[[image:image-20220708111918-4.png]] 401 401 402 -905.3 - SF7BW125 to SF10BW125 403 403 329 +The payload is ASCII string, representative same HEX: 404 404 405 - (% style="color:#037691"%)**Downlink:**331 +0x72403155615900640c7817075e0a8c02f900 where: 406 406 407 -923.3 - SF7BW500 to SF12BW500 333 +* Device ID: 0x 724031556159 = 724031556159 334 +* Version: 0x0064=100=1.0.0 408 408 409 -923.9 - SF7BW500 to SF12BW500 336 +* BAT: 0x0c78 = 3192 mV = 3.192V 337 +* Singal: 0x17 = 23 338 +* Soil Moisture: 0x075e= 1886 = 18.86 % 339 +* Soil Temperature:0x0a8c =2700=27 °C 340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 +* Interrupt: 0x00 = 0 410 410 411 - 924.5-SF7BW500to SF12BW500343 +== 2.4 Payload Explanation and Sensor Interface == 412 412 413 -925.1 - SF7BW500 to SF12BW500 414 414 415 - 925.7-SF7BW500 to SF12BW500346 +=== 2.4.1 Device ID === 416 416 417 -926.3 - SF7BW500 to SF12BW500 348 +((( 349 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 +))) 418 418 419 -926.9 - SF7BW500 to SF12BW500 352 +((( 353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 +))) 420 420 421 -927.5 - SF7BW500 to SF12BW500 356 +((( 357 +**Example:** 358 +))) 422 422 423 -923.3 - SF12BW500(RX2 downlink only) 360 +((( 361 +AT+DEUI=A84041F15612 362 +))) 424 424 364 +((( 365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 +))) 425 425 426 426 427 -=== 2.7.3 CN470-510 (CN470) === 428 428 429 - UsedinChina,Defaultuse CHE=1370 +=== 2.4.2 Version Info === 430 430 431 -(% style="color:#037691" %)**Uplink:** 372 +((( 373 +Specify the software version: 0x64=100, means firmware version 1.00. 374 +))) 432 432 433 -486.3 - SF7BW125 to SF12BW125 376 +((( 377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 +))) 434 434 435 -486.5 - SF7BW125 to SF12BW125 436 436 437 -486.7 - SF7BW125 to SF12BW125 438 438 439 -4 86.9- SF7BW125toSF12BW125382 +=== 2.4.3 Battery Info === 440 440 441 -487.1 - SF7BW125 to SF12BW125 384 +((( 385 +Check the battery voltage for LSE01. 386 +))) 442 442 443 -487.3 - SF7BW125 to SF12BW125 388 +((( 389 +Ex1: 0x0B45 = 2885mV 390 +))) 444 444 445 -487.5 - SF7BW125 to SF12BW125 392 +((( 393 +Ex2: 0x0B49 = 2889mV 394 +))) 446 446 447 -487.7 - SF7BW125 to SF12BW125 448 448 449 449 450 - (% style="color:#037691"%)**Downlink:**398 +=== 2.4.4 Signal Strength === 451 451 452 -506.7 - SF7BW125 to SF12BW125 400 +((( 401 +NB-IoT Network signal Strength. 402 +))) 453 453 454 -506.9 - SF7BW125 to SF12BW125 404 +((( 405 +**Ex1: 0x1d = 29** 406 +))) 455 455 456 -507.1 - SF7BW125 to SF12BW125 408 +((( 409 +(% style="color:blue" %)**0**(%%) -113dBm or less 410 +))) 457 457 458 -507.3 - SF7BW125 to SF12BW125 412 +((( 413 +(% style="color:blue" %)**1**(%%) -111dBm 414 +))) 459 459 460 -507.5 - SF7BW125 to SF12BW125 416 +((( 417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 +))) 461 461 462 -507.7 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 +))) 463 463 464 -507.9 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 +))) 465 465 466 -508.1 - SF7BW125 to SF12BW125 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 469 469 430 +=== 2.4.5 Soil Moisture === 470 470 432 +((( 433 +((( 434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 +))) 436 +))) 471 471 472 -=== 2.7.4 AU915-928(AU915) === 438 +((( 439 +((( 440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 +))) 442 +))) 473 473 474 -Default use CHE=2 444 +((( 445 + 446 +))) 475 475 476 -(% style="color:#037691" %)**Uplink:** 448 +((( 449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 +))) 477 477 478 -916.8 - SF7BW125 to SF12BW125 479 479 480 -917.0 - SF7BW125 to SF12BW125 481 481 482 - 917.2-SF7BW125toSF12BW125454 +=== 2.4.6 Soil Temperature === 483 483 484 -917.4 - SF7BW125 to SF12BW125 456 +((( 457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 +))) 485 485 486 -917.6 - SF7BW125 to SF12BW125 460 +((( 461 +**Example**: 462 +))) 487 487 488 -917.8 - SF7BW125 to SF12BW125 464 +((( 465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 +))) 489 489 490 -918.0 - SF7BW125 to SF12BW125 468 +((( 469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 +))) 491 491 492 -918.2 - SF7BW125 to SF12BW125 493 493 494 494 495 - (% style="color:#037691"%)**Downlink:**474 +=== 2.4.7 Soil Conductivity (EC) === 496 496 497 -923.3 - SF7BW500 to SF12BW500 476 +((( 477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 +))) 498 498 499 -923.9 - SF7BW500 to SF12BW500 480 +((( 481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 +))) 500 500 501 -924.5 - SF7BW500 to SF12BW500 484 +((( 485 +Generally, the EC value of irrigation water is less than 800uS / cm. 486 +))) 502 502 503 -925.1 - SF7BW500 to SF12BW500 488 +((( 489 + 490 +))) 504 504 505 -925.7 - SF7BW500 to SF12BW500 492 +((( 493 + 494 +))) 506 506 507 - 926.3-SF7BW500toSF12BW500496 +=== 2.4.8 Digital Interrupt === 508 508 509 -926.9 - SF7BW500 to SF12BW500 498 +((( 499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 +))) 510 510 511 -927.5 - SF7BW500 to SF12BW500 502 +((( 503 +The command is: 504 +))) 512 512 513 -923.3 - SF12BW500(RX2 downlink only) 506 +((( 507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 +))) 514 514 515 515 511 +((( 512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 +))) 516 516 517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 518 518 519 -(% style="color:#037691" %)**Default Uplink channel:** 516 +((( 517 +Example: 518 +))) 520 520 521 -923.2 - SF7BW125 to SF10BW125 520 +((( 521 +0x(00): Normal uplink packet. 522 +))) 522 522 523 -923.4 - SF7BW125 to SF10BW125 524 +((( 525 +0x(01): Interrupt Uplink Packet. 526 +))) 524 524 525 525 526 -(% style="color:#037691" %)**Additional Uplink Channel**: 527 527 528 - (OTAAmode,channeladded by JoinAcceptmessage)530 +=== 2.4.9 +5V Output === 529 529 530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 +((( 533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 +))) 531 531 532 -922.2 - SF7BW125 to SF10BW125 533 533 534 -922.4 - SF7BW125 to SF10BW125 537 +((( 538 +The 5V output time can be controlled by AT Command. 539 +))) 535 535 536 -922.6 - SF7BW125 to SF10BW125 541 +((( 542 +(% style="color:blue" %)**AT+5VT=1000** 543 +))) 537 537 538 -922.8 - SF7BW125 to SF10BW125 545 +((( 546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 +))) 539 539 540 -923.0 - SF7BW125 to SF10BW125 541 541 542 -922.0 - SF7BW125 to SF10BW125 543 543 551 +== 2.5 Downlink Payload == 544 544 545 - (% style="color:#037691"%)**AS923~~AS925 for Brunei,Cambodia,HongKong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:553 +By default, NSE01 prints the downlink payload to console port. 546 546 547 - 923.6 - SF7BW125to SF10BW125555 +[[image:image-20220708133731-5.png]] 548 548 549 -923.8 - SF7BW125 to SF10BW125 550 550 551 -924.0 - SF7BW125 to SF10BW125 558 +((( 559 +(% style="color:blue" %)**Examples:** 560 +))) 552 552 553 -924.2 - SF7BW125 to SF10BW125 562 +((( 563 + 564 +))) 554 554 555 -924.4 - SF7BW125 to SF10BW125 566 +* ((( 567 +(% style="color:blue" %)**Set TDC** 568 +))) 556 556 557 -924.6 - SF7BW125 to SF10BW125 570 +((( 571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 +))) 558 558 574 +((( 575 +Payload: 01 00 00 1E TDC=30S 576 +))) 559 559 560 -(% style="color:#037691" %)** Downlink:** 578 +((( 579 +Payload: 01 00 00 3C TDC=60S 580 +))) 561 561 562 -Uplink channels 1-8 (RX1) 582 +((( 583 + 584 +))) 563 563 564 -923.2 - SF10BW125 (RX2) 586 +* ((( 587 +(% style="color:blue" %)**Reset** 588 +))) 565 565 590 +((( 591 +If payload = 0x04FF, it will reset the NSE01 592 +))) 566 566 567 567 568 - ===2.7.6 KR920-923(KR920)===595 +* (% style="color:blue" %)**INTMOD** 569 569 570 -Default channel: 597 +((( 598 +Downlink Payload: 06000003, Set AT+INTMOD=3 599 +))) 571 571 572 -922.1 - SF7BW125 to SF12BW125 573 573 574 -922.3 - SF7BW125 to SF12BW125 575 575 576 - 922.5-SF7BW125toSF12BW125603 +== 2.6 LED Indicator == 577 577 605 +((( 606 +The NSE01 has an internal LED which is to show the status of different state. 578 578 579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 580 580 581 -922.1 - SF7BW125 to SF12BW125 609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 +* Then the LED will be on for 1 second means device is boot normally. 611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 +* For each uplink probe, LED will be on for 500ms. 613 +))) 582 582 583 -922.3 - SF7BW125 to SF12BW125 584 584 585 -922.5 - SF7BW125 to SF12BW125 586 586 587 -922.7 - SF7BW125 to SF12BW125 588 588 589 - 922.9 - SF7BW125to SF12BW125618 +== 2.7 Installation in Soil == 590 590 591 - 923.1- SF7BW125toSF12BW125620 +__**Measurement the soil surface**__ 592 592 593 -923.3 - SF7BW125 to SF12BW125 622 +((( 623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 +))) 594 594 626 +[[image:1657259653666-883.png]] 595 595 596 -(% style="color:#037691" %)**Downlink:** 597 597 598 -Uplink channels 1-7(RX1) 629 +((( 630 + 599 599 600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 632 +((( 633 +Dig a hole with diameter > 20CM. 634 +))) 601 601 636 +((( 637 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 +))) 639 +))) 602 602 641 +[[image:1654506665940-119.png]] 603 603 604 -=== 2.7.7 IN865-867 (IN865) === 643 +((( 644 + 645 +))) 605 605 606 -(% style="color:#037691" %)** Uplink:** 607 607 608 - 865.0625- SF7BW125toSF12BW125648 +== 2.8 Firmware Change Log == 609 609 610 -865.4025 - SF7BW125 to SF12BW125 611 611 612 - 865.9850-SF7BW125toSF12BW125651 +Download URL & Firmware Change log 613 613 653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 614 614 615 -(% style="color:#037691" %) **Downlink:** 616 616 617 -Up linkchannels 1-3 (RX1)656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 618 618 619 -866.550 - SF10BW125 (RX2) 620 620 621 621 660 +== 2.9 Battery Analysis == 622 622 662 +=== 2.9.1 Battery Type === 623 623 624 -== 2.8 LED Indicator == 625 625 626 -The LSE01 has an internal LED which is to show the status of different state. 627 - 628 -* Blink once when device power on. 629 -* Solid ON for 5 seconds once device successful Join the network. 630 -* Blink once when device transmit a packet. 631 - 632 -== 2.9 Installation in Soil == 633 - 634 -**Measurement the soil surface** 635 - 636 - 637 -[[image:1654506634463-199.png]] 638 - 639 639 ((( 640 -((( 641 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 642 642 ))) 643 -))) 644 644 645 645 646 -[[image:1654506665940-119.png]] 647 - 648 648 ((( 649 - Dig aholewithdiameter>20CM.671 +The battery is designed to last for several years depends on the actually use environment and update interval. 650 650 ))) 651 651 652 -((( 653 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 654 -))) 655 655 656 - 657 -== 2.10 Firmware Change Log == 658 - 659 659 ((( 660 - **Firmware downloadlink:**676 +The battery related documents as below: 661 661 ))) 662 662 663 - (((664 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]665 - )))679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 666 666 667 667 ((( 668 - 684 +[[image:image-20220708140453-6.png]] 669 669 ))) 670 670 671 -((( 672 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 673 -))) 674 674 675 -((( 676 - 677 -))) 678 678 679 -((( 680 -**V1.0.** 681 -))) 689 +=== 2.9.2 Power consumption Analyze === 682 682 683 683 ((( 684 - Release692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 685 685 ))) 686 686 687 687 688 -== 2.11 Battery Analysis == 689 - 690 -=== 2.11.1 Battery Type === 691 - 692 692 ((( 693 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.697 +Instruction to use as below: 694 694 ))) 695 695 696 696 ((( 697 - Thebatterys designedlastforrethan5 years fortheSN50.701 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 698 698 ))) 699 699 704 + 700 700 ((( 701 -((( 702 -The battery-related documents are as below: 706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 703 ))) 704 -))) 705 705 706 706 * ((( 707 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],710 +Product Model 708 708 ))) 709 709 * ((( 710 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],713 +Uplink Interval 711 711 ))) 712 712 * ((( 713 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]716 +Working Mode 714 714 ))) 715 715 716 - [[image:image-20220606171726-9.png]] 719 +((( 720 +And the Life expectation in difference case will be shown on the right. 721 +))) 717 717 723 +[[image:image-20220708141352-7.jpeg]] 718 718 719 719 720 -=== 2.11.2 Battery Note === 721 721 727 +=== 2.9.3 Battery Note === 728 + 722 722 ((( 723 723 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 724 724 ))) ... ... @@ -725,303 +725,176 @@ 725 725 726 726 727 727 728 -=== 2. 11.3Replace the battery ===735 +=== 2.9.4 Replace the battery === 729 729 730 730 ((( 731 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 732 732 ))) 733 733 741 + 742 + 743 += 3. Access NB-IoT Module = 744 + 734 734 ((( 735 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.746 +Users can directly access the AT command set of the NB-IoT module. 736 736 ))) 737 737 738 738 ((( 739 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 740 740 ))) 741 741 753 +[[image:1657261278785-153.png]] 742 742 743 743 744 -= 3. Using the AT Commands = 745 745 746 -= =3.1AccessAT Commands ==757 += 4. Using the AT Commands = 747 747 759 +== 4.1 Access AT Commands == 748 748 749 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 750 750 751 -[[image:1654501986557-872.png||height="391" width="800"]] 752 752 764 +AT+<CMD>? : Help on <CMD> 753 753 754 - Orifyouhavebelowboard,usebelowconnection:766 +AT+<CMD> : Run <CMD> 755 755 768 +AT+<CMD>=<value> : Set the value 756 756 757 - [[image:1654502005655-729.png||height="503"width="801"]]770 +AT+<CMD>=? : Get the value 758 758 759 759 760 - 761 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 762 - 763 - 764 - [[image:1654502050864-459.png||height="564" width="806"]] 765 - 766 - 767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 768 - 769 - 770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 771 - 772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 773 - 774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 775 - 776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 777 - 778 - 779 779 (% style="color:#037691" %)**General Commands**(%%) 780 780 781 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention775 +AT : Attention 782 782 783 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help777 +AT? : Short Help 784 784 785 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset779 +ATZ : MCU Reset 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval781 +AT+TDC : Application Data Transmission Interval 788 788 783 +AT+CFG : Print all configurations 789 789 790 - (%style="color:#037691"%)**Keys,IDsand EUIs management**785 +AT+CFGMOD : Working mode selection 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI787 +AT+INTMOD : Set the trigger interrupt mode 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey789 +AT+5VT : Set extend the time of 5V power 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key791 +AT+PRO : Choose agreement 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress793 +AT+WEIGRE : Get weight or set weight to 0 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI795 +AT+WEIGAP : Get or Set the GapValue of weight 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)797 +AT+RXDL : Extend the sending and receiving time 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network799 +AT+CNTFAC : Get or set counting parameters 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode801 +AT+SERVADDR : Server Address 807 807 808 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 809 809 810 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network804 +(% style="color:#037691" %)**COAP Management** 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode806 +AT+URI : Resource parameters 813 813 814 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 815 815 816 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format809 +(% style="color:#037691" %)**UDP Management** 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat811 +AT+CFM : Upload confirmation mode (only valid for UDP) 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 821 821 822 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data814 +(% style="color:#037691" %)**MQTT Management** 823 823 816 +AT+CLIENT : Get or Set MQTT client 824 824 825 - (%style="color:#037691"%)**LoRaNetworkManagement**818 +AT+UNAME : Get or Set MQTT Username 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate820 +AT+PWD : Get or Set MQTT password 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA822 +AT+PUBTOPIC : Get or Set MQTT publish topic 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting824 +AT+SUBTOPIC : Get or Set MQTT subscription topic 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink827 +(% style="color:#037691" %)**Information** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink829 +AT+FDR : Factory Data Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1831 +AT+PWORD : Serial Access Password 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 844 844 845 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1835 += 5. FAQ = 846 846 847 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2837 +== 5.1 How to Upgrade Firmware == 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 850 850 851 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 856 - 857 - 858 -(% style="color:#037691" %)**Information** 859 - 860 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 863 - 864 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 865 - 866 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 867 - 868 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 871 - 872 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 873 - 874 - 875 -= 4. FAQ = 876 - 877 -== 4.1 How to change the LoRa Frequency Bands/Region? == 878 - 879 879 ((( 880 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 881 -When downloading the images, choose the required image file for download. 841 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 882 ))) 883 883 884 884 ((( 885 - 845 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 886 886 ))) 887 887 888 888 ((( 889 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 890 890 ))) 891 891 892 -((( 893 - 894 -))) 895 895 896 -((( 897 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 898 -))) 899 899 900 -((( 901 - 902 -))) 854 +== 5.2 Can I calibrate NSE01 to different soil types? == 903 903 904 904 ((( 905 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 906 906 ))) 907 907 908 -[[image:image-20220606154726-3.png]] 909 909 861 += 6. Trouble Shooting = 910 910 911 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:863 +== 6.1 Connection problem when uploading firmware == 912 912 913 -* 903.9 - SF7BW125 to SF10BW125 914 -* 904.1 - SF7BW125 to SF10BW125 915 -* 904.3 - SF7BW125 to SF10BW125 916 -* 904.5 - SF7BW125 to SF10BW125 917 -* 904.7 - SF7BW125 to SF10BW125 918 -* 904.9 - SF7BW125 to SF10BW125 919 -* 905.1 - SF7BW125 to SF10BW125 920 -* 905.3 - SF7BW125 to SF10BW125 921 -* 904.6 - SF8BW500 922 922 923 923 ((( 924 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 925 925 ))) 926 926 927 -(% class=" boxinfomessage" %)870 +(% class="wikigeneratedid" %) 928 928 ((( 929 -**AT+CHE=2** 930 -))) 931 - 932 -(% class="box infomessage" %) 933 -((( 934 -**ATZ** 935 -))) 936 - 937 -((( 938 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 939 -))) 940 - 941 -((( 942 942 943 943 ))) 944 944 945 -((( 946 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 947 -))) 948 948 949 - [[image:image-20220606154825-4.png]]876 +== 6.2 AT Command input doesn't work == 950 950 951 - 952 - 953 -= 5. Trouble Shooting = 954 - 955 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 956 - 957 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 958 - 959 - 960 -== 5.2 AT Command input doesn’t work == 961 - 962 962 ((( 963 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 964 -))) 879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 965 965 966 - 967 -== 5.3 Device rejoin in at the second uplink packet == 968 - 969 -(% style="color:#4f81bd" %)**Issue describe as below:** 970 - 971 -[[image:1654500909990-784.png]] 972 - 973 - 974 -(% style="color:#4f81bd" %)**Cause for this issue:** 975 - 976 -((( 977 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 881 + 978 978 ))) 979 979 980 980 981 - (% style="color:#4f81bd"%)**Solution:**885 += 7. Order Info = 982 982 983 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 984 984 985 - [[image:1654500929571-736.png||height="458" width="832"]]888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 986 986 987 987 988 -= 6. Order Info = 989 - 990 - 991 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 992 - 993 - 994 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 995 - 996 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 997 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 998 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 999 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1000 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1001 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1002 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1003 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1004 - 1005 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1006 - 1007 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1008 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1009 - 1010 1010 (% class="wikigeneratedid" %) 1011 1011 ((( 1012 1012 1013 1013 ))) 1014 1014 1015 -= 7. Packing Info =896 += 8. Packing Info = 1016 1016 1017 1017 ((( 1018 1018 1019 1019 1020 1020 (% style="color:#037691" %)**Package Includes**: 1021 -))) 1022 1022 1023 -* (((1024 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 904 +* External antenna x 1 1025 1025 ))) 1026 1026 1027 1027 ((( ... ... @@ -1028,30 +1028,19 @@ 1028 1028 1029 1029 1030 1030 (% style="color:#037691" %)**Dimension and weight**: 1031 -))) 1032 1032 1033 -* (((1034 - DeviceSize:cm912 +* Size: 195 x 125 x 55 mm 913 +* Weight: 420g 1035 1035 ))) 1036 -* ((( 1037 -Device Weight: g 1038 -))) 1039 -* ((( 1040 -Package Size / pcs : cm 1041 -))) 1042 -* ((( 1043 -Weight / pcs : g 1044 1044 916 +((( 917 + 1045 1045 919 + 1046 1046 1047 1047 ))) 1048 1048 1049 -= 8. Support =923 += 9. Support = 1050 1050 1051 1051 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1052 1052 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1053 - 1054 - 1055 -~)~)~) 1056 -~)~)~) 1057 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content