Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.3
edited by Xiaoling
on 2022/06/07 11:28
Change comment: There is no comment for this version
To version 67.1
edited by Xiaoling
on 2022/07/08 17:11
Change comment: Uploaded new attachment "1657271519014-786.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,713 +12,710 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 61  
62 -== 1.3 Specification ==
63 63  
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 65  
66 -[[image:image-20220606162220-5.png]]
75 +== 1.3  Specification ==
67 67  
68 68  
78 +(% style="color:#037691" %)**Common DC Characteristics:**
69 69  
70 -== ​1.4 Applications ==
80 +* Supply Voltage: 2.1v ~~ 3.6v
81 +* Operating Temperature: -40 ~~ 85°C
71 71  
72 -* Smart Agriculture
83 +(% style="color:#037691" %)**NB-IoT Spec:**
73 73  
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
85 +* - B1 @H-FDD: 2100MHz
86 +* - B3 @H-FDD: 1800MHz
87 +* - B8 @H-FDD: 900MHz
88 +* - B5 @H-FDD: 850MHz
89 +* - B20 @H-FDD: 800MHz
90 +* - B28 @H-FDD: 700MHz
76 76  
77 -== 1.5 Firmware Change log ==
92 +Probe(% style="color:#037691" %)** Specification:**
78 78  
94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -**LSE01 v1.0 :**  Release
96 +[[image:image-20220708101224-1.png]]
81 81  
82 82  
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +== ​1. Applications ==
85 85  
86 -== 2.1 How it works ==
102 +* Smart Agriculture
87 87  
88 -(((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 -)))
107 +== 1.5  Pin Definitions ==
95 95  
96 96  
110 +[[image:1657246476176-652.png]]
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
114 += 2.  Use NSE01 to communicate with IoT Server =
102 102  
103 -[[image:1654503992078-669.png]]
116 +== 2.1  How it works ==
104 104  
105 105  
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 -
108 -
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 -
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== 2.3.1 MOD~=0(Default Mode) ===
147 -
148 -LSE01 will uplink payload via LoRaWAN with below payload format: 
149 -
150 -
151 -Uplink payload includes in total 11 bytes.
152 -
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 -
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>path:#bat]]|(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 -)))
168 -
169 -
170 -
171 -
172 -
173 -=== 2.3.2 MOD~=1(Original value) ===
174 -
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
176 -
177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
178 -|(((
179 -**Size**
180 -
181 -**(bytes)**
182 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 -|**Value**|[[BAT>>path:#bat]]|(((
184 -Temperature
185 -
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
188 -MOD & Digital Interrupt
189 -
190 -(Optional)
191 -)))
192 -
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 -Check the battery voltage for LSE01.
199 -
200 -Ex1: 0x0B45 = 2885mV
201 -
202 -Ex2: 0x0B49 = 2889mV
203 -
204 -
205 -
206 -=== 2.3.4 Soil Moisture ===
207 -
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 -
210 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
211 -
212 -
213 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
214 -
215 -
216 -
217 -=== 2.3.5 Soil Temperature ===
218 -
219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
220 -
221 -**Example**:
222 -
223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
224 -
225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 -
227 -
228 -
229 -=== 2.3.6 Soil Conductivity (EC) ===
230 -
231 231  (((
232 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
233 233  )))
234 234  
235 -(((
236 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
237 -)))
238 238  
239 239  (((
240 -Generally, the EC value of irrigation water is less than 800uS / cm.
125 +The diagram below shows the working flow in default firmware of NSE01:
241 241  )))
242 242  
243 -(((
244 -
245 -)))
128 +[[image:image-20220708101605-2.png]]
246 246  
247 247  (((
248 248  
249 249  )))
250 250  
251 -=== 2.3.7 MOD ===
252 252  
253 -Firmware version at least v2.1 supports changing mode.
254 254  
255 -For example, bytes[10]=90
136 +== 2.2 ​ Configure the NSE01 ==
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
258 258  
139 +=== 2.2.1 Test Requirement ===
259 259  
260 -**Downlink Command:**
261 261  
262 -If payload = 0x0A00, workmode=0
142 +(((
143 +To use NSE01 in your city, make sure meet below requirements:
144 +)))
263 263  
264 -If** **payload =** **0x0A01, workmode=1
146 +* Your local operator has already distributed a NB-IoT Network there.
147 +* The local NB-IoT network used the band that NSE01 supports.
148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
265 265  
150 +(((
151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
152 +)))
266 266  
267 267  
268 -=== 2.3.8 ​Decode payload in The Things Network ===
155 +[[image:1657249419225-449.png]]
269 269  
270 -While using TTN network, you can add the payload format to decode the payload.
271 271  
272 272  
273 -[[image:1654505570700-128.png]]
159 +=== 2.2.2 Insert SIM card ===
274 274  
275 -The payload decoder function for TTN is here:
161 +(((
162 +Insert the NB-IoT Card get from your provider.
163 +)))
276 276  
277 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
165 +(((
166 +User need to take out the NB-IoT module and insert the SIM card like below:
167 +)))
278 278  
279 279  
170 +[[image:1657249468462-536.png]]
280 280  
281 -== 2.4 Uplink Interval ==
282 282  
283 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 284  
174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
285 285  
176 +(((
177 +(((
178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
179 +)))
180 +)))
286 286  
287 -== 2.5 Downlink Payload ==
288 288  
289 -By default, LSE50 prints the downlink payload to console port.
183 +**Connection:**
290 290  
291 -[[image:image-20220606165544-8.png]]
185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
292 292  
187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
293 293  
294 -**Examples:**
189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
295 295  
296 296  
297 -* **Set TDC**
192 +In the PC, use below serial tool settings:
298 298  
299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
194 +* Baud:  (% style="color:green" %)**9600**
195 +* Data bits:** (% style="color:green" %)8(%%)**
196 +* Stop bits: (% style="color:green" %)**1**
197 +* Parity:  (% style="color:green" %)**None**
198 +* Flow Control: (% style="color:green" %)**None**
300 300  
301 -Payload:    01 00 00 1E    TDC=30S
200 +(((
201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
202 +)))
302 302  
303 -Payload:    01 00 00 3C    TDC=60S
204 +[[image:image-20220708110657-3.png]]
304 304  
206 +(((
207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
208 +)))
305 305  
306 -* **Reset**
307 307  
308 -If payload = 0x04FF, it will reset the LSE01
309 309  
212 +=== 2.2.4 Use CoAP protocol to uplink data ===
310 310  
311 -* **CFM**
214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
312 312  
313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314 314  
217 +**Use below commands:**
315 315  
219 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
316 316  
317 -== 2.6 ​Show Data in DataCake IoT Server ==
223 +For parameter description, please refer to AT command set
318 318  
319 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
225 +[[image:1657249793983-486.png]]
320 320  
321 321  
322 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
323 323  
324 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
230 +[[image:1657249831934-534.png]]
325 325  
326 326  
327 -[[image:1654505857935-743.png]]
328 328  
234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
329 329  
330 -[[image:1654505874829-548.png]]
236 +This feature is supported since firmware version v1.0.1
331 331  
332 -Step 3: Create an account or log in Datacake.
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
239 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
335 335  
243 +[[image:1657249864775-321.png]]
336 336  
337 -[[image:1654505905236-553.png]]
338 338  
246 +[[image:1657249930215-289.png]]
339 339  
340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
341 341  
342 -[[image:1654505925508-181.png]]
343 343  
250 +=== 2.2.6 Use MQTT protocol to uplink data ===
344 344  
252 +This feature is supported since firmware version v110
345 345  
346 -== 2.7 Frequency Plans ==
347 347  
348 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
255 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
258 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
259 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
349 349  
263 +[[image:1657249978444-674.png]]
350 350  
351 -=== 2.7.1 EU863-870 (EU868) ===
352 352  
353 -(% style="color:#037691" %)** Uplink:**
266 +[[image:1657249990869-686.png]]
354 354  
355 -868.1 - SF7BW125 to SF12BW125
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
269 +(((
270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +)))
358 358  
359 -868.5 - SF7BW125 to SF12BW125
360 360  
361 -867.1 - SF7BW125 to SF12BW125
362 362  
363 -867.3 - SF7BW125 to SF12BW125
275 +=== 2.2.7 Use TCP protocol to uplink data ===
364 364  
365 -867.5 - SF7BW125 to SF12BW125
277 +This feature is supported since firmware version v110
366 366  
367 -867.7 - SF7BW125 to SF12BW125
368 368  
369 -867.9 - SF7BW125 to SF12BW125
280 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
370 370  
371 -868.8 - FSK
283 +[[image:1657250217799-140.png]]
372 372  
373 373  
374 -(% style="color:#037691" %)** Downlink:**
286 +[[image:1657250255956-604.png]]
375 375  
376 -Uplink channels 1-9 (RX1)
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
379 379  
290 +=== 2.2.8 Change Update Interval ===
380 380  
292 +User can use below command to change the (% style="color:green" %)**uplink interval**.
381 381  
382 -=== 2.7.2 US902-928(US915) ===
294 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
296 +(((
297 +(% style="color:red" %)**NOTE:**
298 +)))
385 385  
386 -(% style="color:#037691" %)**Uplink:**
300 +(((
301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
302 +)))
387 387  
388 -903.9 - SF7BW125 to SF10BW125
389 389  
390 -904.1 - SF7BW125 to SF10BW125
391 391  
392 -904.3 - SF7BW125 to SF10BW125
306 +== 2.3  Uplink Payload ==
393 393  
394 -904.5 - SF7BW125 to SF10BW125
308 +In this mode, uplink payload includes in total 18 bytes
395 395  
396 -904.7 - SF7BW125 to SF10BW125
310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
311 +|=(% style="width: 60px;" %)(((
312 +**Size(bytes)**
313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
397 397  
398 -904.9 - SF7BW125 to SF10BW125
316 +(((
317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
318 +)))
399 399  
400 -905.1 - SF7BW125 to SF10BW125
401 401  
402 -905.3 - SF7BW125 to SF10BW125
321 +[[image:image-20220708111918-4.png]]
403 403  
404 404  
405 -(% style="color:#037691" %)**Downlink:**
324 +The payload is ASCII string, representative same HEX:
406 406  
407 -923.3 - SF7BW500 to SF12BW500
326 +0x72403155615900640c7817075e0a8c02f900 where:
408 408  
409 -923.9 - SF7BW500 to SF12BW500
328 +* Device ID: 0x 724031556159 = 724031556159
329 +* Version: 0x0064=100=1.0.0
410 410  
411 -924.5 - SF7BW500 to SF12BW500
331 +* BAT: 0x0c78 = 3192 mV = 3.192V
332 +* Singal: 0x17 = 23
333 +* Soil Moisture: 0x075e= 1886 = 18.86  %
334 +* Soil Temperature:0x0a8c =2700=27 °C
335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
336 +* Interrupt: 0x00 = 0
412 412  
413 -925.1 - SF7BW500 to SF12BW500
414 414  
415 -925.7 - SF7BW500 to SF12BW500
416 416  
417 -926.3 - SF7BW500 to SF12BW500
418 418  
419 -926.9 - SF7BW500 to SF12BW500
341 +== 2. Payload Explanation and Sensor Interface ==
420 420  
421 -927.5 - SF7BW500 to SF12BW500
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
344 +=== 2.4.1  Device ID ===
424 424  
346 +(((
347 +By default, the Device ID equal to the last 6 bytes of IMEI.
348 +)))
425 425  
350 +(((
351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 +)))
426 426  
427 -=== 2.7.3 CN470-510 (CN470) ===
354 +(((
355 +**Example:**
356 +)))
428 428  
429 -Used in China, Default use CHE=1
358 +(((
359 +AT+DEUI=A84041F15612
360 +)))
430 430  
431 -(% style="color:#037691" %)**Uplink:**
362 +(((
363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 +)))
432 432  
433 -486.3 - SF7BW125 to SF12BW125
434 434  
435 -486.5 - SF7BW125 to SF12BW125
436 436  
437 -486.7 - SF7BW125 to SF12BW125
368 +=== 2.4.2  Version Info ===
438 438  
439 -486.9 - SF7BW125 to SF12BW125
370 +(((
371 +Specify the software version: 0x64=100, means firmware version 1.00.
372 +)))
440 440  
441 -487.1 - SF7BW125 to SF12BW125
374 +(((
375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 +)))
442 442  
443 -487.3 - SF7BW125 to SF12BW125
444 444  
445 -487.5 - SF7BW125 to SF12BW125
446 446  
447 -487.7 - SF7BW125 to SF12BW125
380 +=== 2.4. Battery Info ===
448 448  
382 +(((
383 +Check the battery voltage for LSE01.
384 +)))
449 449  
450 -(% style="color:#037691" %)**Downlink:**
386 +(((
387 +Ex1: 0x0B45 = 2885mV
388 +)))
451 451  
452 -506.7 - SF7BW125 to SF12BW125
390 +(((
391 +Ex2: 0x0B49 = 2889mV
392 +)))
453 453  
454 -506.9 - SF7BW125 to SF12BW125
455 455  
456 -507.1 - SF7BW125 to SF12BW125
457 457  
458 -507.3 - SF7BW125 to SF12BW125
396 +=== 2.4.4  Signal Strength ===
459 459  
460 -507.5 - SF7BW125 to SF12BW125
398 +(((
399 +NB-IoT Network signal Strength.
400 +)))
461 461  
462 -507.7 - SF7BW125 to SF12BW125
402 +(((
403 +**Ex1: 0x1d = 29**
404 +)))
463 463  
464 -507.9 - SF7BW125 to SF12BW125
406 +(((
407 +(% style="color:blue" %)**0**(%%)  -113dBm or less
408 +)))
465 465  
466 -508.1 - SF7BW125 to SF12BW125
410 +(((
411 +(% style="color:blue" %)**1**(%%)  -111dBm
412 +)))
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
414 +(((
415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 +)))
469 469  
418 +(((
419 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 +)))
470 470  
422 +(((
423 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 +)))
471 471  
472 -=== 2.7.4 AU915-928(AU915) ===
473 473  
474 -Default use CHE=2
475 475  
476 -(% style="color:#037691" %)**Uplink:**
428 +=== 2.4.5  Soil Moisture ===
477 477  
478 -916.8 - SF7BW125 to SF12BW125
430 +(((
431 +(((
432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 +)))
434 +)))
479 479  
480 -917.0 - SF7BW125 to SF12BW125
436 +(((
437 +(((
438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 +)))
440 +)))
481 481  
482 -917.2 - SF7BW125 to SF12BW125
442 +(((
443 +
444 +)))
483 483  
484 -917.4 - SF7BW125 to SF12BW125
446 +(((
447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 +)))
485 485  
486 -917.6 - SF7BW125 to SF12BW125
487 487  
488 -917.8 - SF7BW125 to SF12BW125
489 489  
490 -918.0 - SF7BW125 to SF12BW125
452 +=== 2.4.6  Soil Temperature ===
491 491  
492 -918.2 - SF7BW125 to SF12BW125
454 +(((
455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 +)))
493 493  
458 +(((
459 +**Example**:
460 +)))
494 494  
495 -(% style="color:#037691" %)**Downlink:**
462 +(((
463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 +)))
496 496  
497 -923.3 - SF7BW500 to SF12BW500
466 +(((
467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 +)))
498 498  
499 -923.9 - SF7BW500 to SF12BW500
500 500  
501 -924.5 - SF7BW500 to SF12BW500
502 502  
503 -925.1 - SF7BW500 to SF12BW500
472 +=== 2.4.7  Soil Conductivity (EC) ===
504 504  
505 -925.7 - SF7BW500 to SF12BW500
474 +(((
475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 +)))
506 506  
507 -926.3 - SF7BW500 to SF12BW500
478 +(((
479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 +)))
508 508  
509 -926.9 - SF7BW500 to SF12BW500
482 +(((
483 +Generally, the EC value of irrigation water is less than 800uS / cm.
484 +)))
510 510  
511 -927.5 - SF7BW500 to SF12BW500
486 +(((
487 +
488 +)))
512 512  
513 -923.3 - SF12BW500(RX2 downlink only)
490 +(((
491 +
492 +)))
514 514  
494 +=== 2.4.8  Digital Interrupt ===
515 515  
496 +(((
497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 +)))
516 516  
517 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
500 +(((
501 +The command is:
502 +)))
518 518  
519 -(% style="color:#037691" %)**Default Uplink channel:**
504 +(((
505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 +)))
520 520  
521 -923.2 - SF7BW125 to SF10BW125
522 522  
523 -923.4 - SF7BW125 to SF10BW125
509 +(((
510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 +)))
524 524  
525 525  
526 -(% style="color:#037691" %)**Additional Uplink Channel**:
514 +(((
515 +Example:
516 +)))
527 527  
528 -(OTAA mode, channel added by JoinAccept message)
518 +(((
519 +0x(00): Normal uplink packet.
520 +)))
529 529  
530 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
522 +(((
523 +0x(01): Interrupt Uplink Packet.
524 +)))
531 531  
532 -922.2 - SF7BW125 to SF10BW125
533 533  
534 -922.4 - SF7BW125 to SF10BW125
535 535  
536 -922.6 - SF7BW125 to SF10BW125
528 +=== 2.4.9  ​+5V Output ===
537 537  
538 -922.8 - SF7BW125 to SF10BW125
530 +(((
531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 +)))
539 539  
540 -923.0 - SF7BW125 to SF10BW125
541 541  
542 -922.0 - SF7BW125 to SF10BW125
535 +(((
536 +The 5V output time can be controlled by AT Command.
537 +)))
543 543  
539 +(((
540 +(% style="color:blue" %)**AT+5VT=1000**
541 +)))
544 544  
545 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
543 +(((
544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 +)))
546 546  
547 -923.6 - SF7BW125 to SF10BW125
548 548  
549 -923.8 - SF7BW125 to SF10BW125
550 550  
551 -924.0 - SF7BW125 to SF10BW125
549 +== 2.5  Downlink Payload ==
552 552  
553 -924.2 - SF7BW125 to SF10BW125
551 +By default, NSE01 prints the downlink payload to console port.
554 554  
555 -924.4 - SF7BW125 to SF10BW125
553 +[[image:image-20220708133731-5.png]]
556 556  
557 -924.6 - SF7BW125 to SF10BW125
558 558  
556 +(((
557 +(% style="color:blue" %)**Examples:**
558 +)))
559 559  
560 -(% style="color:#037691" %)** Downlink:**
560 +(((
561 +
562 +)))
561 561  
562 -Uplink channels 1-8 (RX1)
564 +* (((
565 +(% style="color:blue" %)**Set TDC**
566 +)))
563 563  
564 -923.2 - SF10BW125 (RX2)
568 +(((
569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 +)))
565 565  
572 +(((
573 +Payload:    01 00 00 1E    TDC=30S
574 +)))
566 566  
576 +(((
577 +Payload:    01 00 00 3C    TDC=60S
578 +)))
567 567  
568 -=== 2.7.6 KR920-923 (KR920) ===
580 +(((
581 +
582 +)))
569 569  
570 -Default channel:
584 +* (((
585 +(% style="color:blue" %)**Reset**
586 +)))
571 571  
572 -922.1 - SF7BW125 to SF12BW125
588 +(((
589 +If payload = 0x04FF, it will reset the NSE01
590 +)))
573 573  
574 -922.3 - SF7BW125 to SF12BW125
575 575  
576 -922.5 - SF7BW125 to SF12BW125
593 +* (% style="color:blue" %)**INTMOD**
577 577  
595 +(((
596 +Downlink Payload: 06000003, Set AT+INTMOD=3
597 +)))
578 578  
579 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
580 580  
581 -922.1 - SF7BW125 to SF12BW125
582 582  
583 -922.3 - SF7BW125 to SF12BW125
601 +== 2. ​LED Indicator ==
584 584  
585 -922.5 - SF7BW125 to SF12BW125
603 +(((
604 +The NSE01 has an internal LED which is to show the status of different state.
586 586  
587 -922.7 - SF7BW125 to SF12BW125
588 588  
589 -922.9 - SF7BW125 to SF12BW125
607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 +* Then the LED will be on for 1 second means device is boot normally.
609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 +* For each uplink probe, LED will be on for 500ms.
611 +)))
590 590  
591 -923.1 - SF7BW125 to SF12BW125
592 592  
593 -923.3 - SF7BW125 to SF12BW125
594 594  
595 595  
596 -(% style="color:#037691" %)**Downlink:**
616 +== 2.7  Installation in Soil ==
597 597  
598 -Uplink channels 1-7(RX1)
618 +__**Measurement the soil surface**__
599 599  
600 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
620 +(((
621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 +)))
601 601  
624 +[[image:1657259653666-883.png]] ​
602 602  
603 603  
604 -=== 2.7.7 IN865-867 (IN865) ===
627 +(((
628 +
605 605  
606 -(% style="color:#037691" %)** Uplink:**
630 +(((
631 +Dig a hole with diameter > 20CM.
632 +)))
607 607  
608 -865.0625 - SF7BW125 to SF12BW125
634 +(((
635 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 +)))
637 +)))
609 609  
610 -865.4025 - SF7BW125 to SF12BW125
639 +[[image:1654506665940-119.png]]
611 611  
612 -865.9850 - SF7BW125 to SF12BW125
641 +(((
642 +
643 +)))
613 613  
614 614  
615 -(% style="color:#037691" %) **Downlink:**
646 +== 2.8  ​Firmware Change Log ==
616 616  
617 -Uplink channels 1-3 (RX1)
618 618  
619 -866.550 - SF10BW125 (RX2)
649 +Download URL & Firmware Change log
620 620  
651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
621 621  
622 622  
654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
623 623  
624 -== 2.8 LED Indicator ==
625 625  
626 -The LSE01 has an internal LED which is to show the status of different state.
627 627  
628 -* Blink once when device power on.
629 -* Solid ON for 5 seconds once device successful Join the network.
630 -* Blink once when device transmit a packet.
658 +== 2.9  ​Battery Analysis ==
631 631  
632 -== 2.9 Installation in Soil ==
660 +=== 2.9.1  ​Battery Type ===
633 633  
634 -**Measurement the soil surface**
635 635  
636 -
637 -[[image:1654506634463-199.png]] ​
638 -
639 639  (((
640 -(((
641 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 642  )))
643 -)))
644 644  
645 645  
646 -[[image:1654506665940-119.png]]
647 -
648 648  (((
649 -Dig a hole with diameter > 20CM.
669 +The battery is designed to last for several years depends on the actually use environment and update interval. 
650 650  )))
651 651  
652 -(((
653 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
654 -)))
655 655  
656 -
657 -== 2.10 ​Firmware Change Log ==
658 -
659 659  (((
660 -**Firmware download link:**
674 +The battery related documents as below:
661 661  )))
662 662  
663 -(((
664 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
665 -)))
677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
666 666  
667 667  (((
668 -
682 +[[image:image-20220708140453-6.png]]
669 669  )))
670 670  
671 -(((
672 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
673 -)))
674 674  
675 -(((
676 -
677 -)))
678 678  
679 -(((
680 -**V1.0.**
681 -)))
687 +=== 2.9.2  Power consumption Analyze ===
682 682  
683 683  (((
684 -Release
690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
685 685  )))
686 686  
687 687  
688 -== 2.11 ​Battery Analysis ==
689 -
690 -=== 2.11.1 ​Battery Type ===
691 -
692 692  (((
693 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 +Instruction to use as below:
694 694  )))
695 695  
696 696  (((
697 -The battery is designed to last for more than 5 years for the LSN50.
699 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
698 698  )))
699 699  
702 +
700 700  (((
701 -(((
702 -The battery-related documents are as below:
704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
703 703  )))
704 -)))
705 705  
706 706  * (((
707 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
708 +Product Model
708 708  )))
709 709  * (((
710 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
711 +Uplink Interval
711 711  )))
712 712  * (((
713 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714 +Working Mode
714 714  )))
715 715  
716 - [[image:image-20220606171726-9.png]]
717 +(((
718 +And the Life expectation in difference case will be shown on the right.
719 +)))
717 717  
721 +[[image:image-20220708141352-7.jpeg]]
718 718  
719 719  
720 -=== 2.11.2 ​Battery Note ===
721 721  
725 +=== 2.9.3  ​Battery Note ===
726 +
722 722  (((
723 723  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
724 724  )))
... ... @@ -725,303 +725,176 @@
725 725  
726 726  
727 727  
728 -=== 2.11.3 Replace the battery ===
733 +=== 2.9. Replace the battery ===
729 729  
730 730  (((
731 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
732 732  )))
733 733  
739 +
740 +
741 += 3. ​ Access NB-IoT Module =
742 +
734 734  (((
735 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
744 +Users can directly access the AT command set of the NB-IoT module.
736 736  )))
737 737  
738 738  (((
739 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
740 740  )))
741 741  
751 +[[image:1657261278785-153.png]]
742 742  
743 743  
744 -= 3. ​Using the AT Commands =
745 745  
746 -== 3.1 Access AT Commands ==
755 += 4.  Using the AT Commands =
747 747  
757 +== 4.1  Access AT Commands ==
748 748  
749 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
750 750  
751 -[[image:1654501986557-872.png||height="391" width="800"]]
752 752  
762 +AT+<CMD>?  : Help on <CMD>
753 753  
754 -Or if you have below board, use below connection:
764 +AT+<CMD>         : Run <CMD>
755 755  
766 +AT+<CMD>=<value> : Set the value
756 756  
757 -[[image:1654502005655-729.png||height="503" width="801"]]
768 +AT+<CMD>=?  : Get the value
758 758  
759 759  
760 -
761 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
762 -
763 -
764 - [[image:1654502050864-459.png||height="564" width="806"]]
765 -
766 -
767 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
768 -
769 -
770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
771 -
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
773 -
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
775 -
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
777 -
778 -
779 779  (% style="color:#037691" %)**General Commands**(%%)      
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
773 +AT  : Attention       
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
775 +AT?  : Short Help     
784 784  
785 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
777 +ATZ  : MCU Reset    
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
779 +AT+TDC  : Application Data Transmission Interval
788 788  
781 +AT+CFG  : Print all configurations
789 789  
790 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
783 +AT+CFGMOD           : Working mode selection
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
785 +AT+INTMOD            : Set the trigger interrupt mode
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
787 +AT+5VT  : Set extend the time of 5V power  
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
789 +AT+PRO  : Choose agreement
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
791 +AT+WEIGRE  : Get weight or set weight to 0
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
793 +AT+WEIGAP  : Get or Set the GapValue of weight
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
795 +AT+RXDL  : Extend the sending and receiving time
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
797 +AT+CNTFAC  : Get or set counting parameters
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
799 +AT+SERVADDR  : Server Address
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
802 +(% style="color:#037691" %)**COAP Management**      
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
804 +AT+URI            : Resource parameters
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
807 +(% style="color:#037691" %)**UDP Management**
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
809 +AT+CFM          : Upload confirmation mode (only valid for UDP)
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
812 +(% style="color:#037691" %)**MQTT Management**
823 823  
814 +AT+CLIENT               : Get or Set MQTT client
824 824  
825 -(% style="color:#037691" %)**LoRa Network Management**
816 +AT+UNAME  : Get or Set MQTT Username
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
818 +AT+PWD                  : Get or Set MQTT password
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
820 +AT+PUBTOPI : Get or Set MQTT publish topic
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
822 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
825 +(% style="color:#037691" %)**Information**          
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
827 +AT+FDR  : Factory Data Reset
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
829 +AT+PWOR : Serial Access Password
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
833 += ​5.  FAQ =
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
835 +== 5.1 How to Upgrade Firmware ==
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
856 -
857 -
858 -(% style="color:#037691" %)**Information** 
859 -
860 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
871 -
872 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
873 -
874 -
875 -= ​4. FAQ =
876 -
877 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
878 -
879 879  (((
880 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
881 -When downloading the images, choose the required image file for download. ​
839 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
882 882  )))
883 883  
884 884  (((
885 -
843 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
886 886  )))
887 887  
888 888  (((
889 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
890 890  )))
891 891  
892 -(((
893 -
894 -)))
895 895  
896 -(((
897 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
898 -)))
899 899  
900 -(((
901 -
902 -)))
852 +== 5.2  Can I calibrate NSE01 to different soil types? ==
903 903  
904 904  (((
905 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
855 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
906 906  )))
907 907  
908 -[[image:image-20220606154726-3.png]]
909 909  
859 += 6.  Trouble Shooting =
910 910  
911 -When you use the TTN network, the US915 frequency bands use are:
861 +== 6.1  ​Connection problem when uploading firmware ==
912 912  
913 -* 903.9 - SF7BW125 to SF10BW125
914 -* 904.1 - SF7BW125 to SF10BW125
915 -* 904.3 - SF7BW125 to SF10BW125
916 -* 904.5 - SF7BW125 to SF10BW125
917 -* 904.7 - SF7BW125 to SF10BW125
918 -* 904.9 - SF7BW125 to SF10BW125
919 -* 905.1 - SF7BW125 to SF10BW125
920 -* 905.3 - SF7BW125 to SF10BW125
921 -* 904.6 - SF8BW500
922 922  
923 923  (((
924 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
865 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
925 925  )))
926 926  
927 -(% class="box infomessage" %)
868 +(% class="wikigeneratedid" %)
928 928  (((
929 -**AT+CHE=2**
930 -)))
931 -
932 -(% class="box infomessage" %)
933 -(((
934 -**ATZ**
935 -)))
936 -
937 -(((
938 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
939 -)))
940 -
941 -(((
942 942  
943 943  )))
944 944  
945 -(((
946 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
947 -)))
948 948  
949 -[[image:image-20220606154825-4.png]]
874 +== 6.2  AT Command input doesn't work ==
950 950  
951 -
952 -
953 -= 5. Trouble Shooting =
954 -
955 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
956 -
957 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
958 -
959 -
960 -== 5.2 AT Command input doesn’t work ==
961 -
962 962  (((
963 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
964 -)))
877 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
965 965  
966 -
967 -== 5.3 Device rejoin in at the second uplink packet ==
968 -
969 -(% style="color:#4f81bd" %)**Issue describe as below:**
970 -
971 -[[image:1654500909990-784.png]]
972 -
973 -
974 -(% style="color:#4f81bd" %)**Cause for this issue:**
975 -
976 -(((
977 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
879 +
978 978  )))
979 979  
980 980  
981 -(% style="color:#4f81bd" %)**Solution: **
883 += 7. ​ Order Info =
982 982  
983 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
984 984  
985 -[[image:1654500929571-736.png||height="458" width="832"]]
886 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
986 986  
987 987  
988 -= 6. ​Order Info =
989 -
990 -
991 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
992 -
993 -
994 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
995 -
996 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
997 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
998 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
999 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1000 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1001 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1002 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1003 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1004 -
1005 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1006 -
1007 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1008 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1009 -
1010 1010  (% class="wikigeneratedid" %)
1011 1011  (((
1012 1012  
1013 1013  )))
1014 1014  
1015 -= 7. Packing Info =
894 += 8.  Packing Info =
1016 1016  
1017 1017  (((
1018 1018  
1019 1019  
1020 1020  (% style="color:#037691" %)**Package Includes**:
1021 -)))
1022 1022  
1023 -* (((
1024 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
901 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
902 +* External antenna x 1
1025 1025  )))
1026 1026  
1027 1027  (((
... ... @@ -1028,30 +1028,19 @@
1028 1028  
1029 1029  
1030 1030  (% style="color:#037691" %)**Dimension and weight**:
1031 -)))
1032 1032  
1033 -* (((
1034 -Device Size: cm
910 +* Size: 195 x 125 x 55 mm
911 +* Weight:   420g
1035 1035  )))
1036 -* (((
1037 -Device Weight: g
1038 -)))
1039 -* (((
1040 -Package Size / pcs : cm
1041 -)))
1042 -* (((
1043 -Weight / pcs : g
1044 1044  
914 +(((
915 +
1045 1045  
917 +
1046 1046  
1047 1047  )))
1048 1048  
1049 -= 8. Support =
921 += 9.  Support =
1050 1050  
1051 1051  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1052 1052  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1053 -
1054 -
1055 -~)~)~)
1056 -~)~)~)
1057 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content