Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,1046 +12,793 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 23 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 28 + 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 + 38 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]44 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 48 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 60 60 61 61 62 62 65 +== 1.3 Specification == 63 63 64 -== 1.3 Specification == 65 65 66 - MeasureVolume:Baseonthecentra pin of the probe,aylinderwith 7cm diameter and 10cm height.68 +(% style="color:#037691" %)**Common DC Characteristics:** 67 67 68 -[[image:image-20220606162220-5.png]] 70 +* Supply Voltage: 2.1v ~~ 3.6v 71 +* Operating Temperature: -40 ~~ 85°C 69 69 70 70 74 +(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -== 1.4 Applications == 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 73 73 74 -* Smart Agriculture 75 75 76 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 77 - 84 +Probe(% style="color:#037691" %)** Specification:** 78 78 79 - == 1.5 FirmwareChangelog==86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 80 80 88 +[[image:image-20220708101224-1.png]] 81 81 82 -**LSE01 v1.0 :** Release 83 83 84 84 92 +== 1.4 Applications == 85 85 86 - =2. Configure LSE01toconnectto LoRaWAN network =94 +* Smart Agriculture 87 87 88 -== 2.1 How it works == 96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 + 89 89 90 -((( 91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 92 -))) 99 +== 1.5 Pin Definitions == 93 93 94 -((( 95 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 96 -))) 97 97 102 +[[image:1657246476176-652.png]] 98 98 99 99 100 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.106 += 2. Use NSE01 to communicate with IoT Server = 103 103 108 +== 2.1 How it works == 104 104 105 -[[image:1654503992078-669.png]] 106 106 111 +((( 112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 113 +))) 107 107 108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 109 109 110 - 111 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 - 113 -Each LSE01 is shipped with a sticker with the default device EUI as below: 114 - 115 -[[image:image-20220606163732-6.jpeg]] 116 - 117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 - 119 -**Add APP EUI in the application** 120 - 121 - 122 -[[image:1654504596150-405.png]] 123 - 124 - 125 - 126 -**Add APP KEY and DEV EUI** 127 - 128 -[[image:1654504683289-357.png]] 129 - 130 - 131 - 132 -**Step 2**: Power on LSE01 133 - 134 - 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 - 137 -[[image:image-20220606163915-7.png]] 138 - 139 - 140 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 - 142 -[[image:1654504778294-788.png]] 143 - 144 - 145 - 146 -== 2.3 Uplink Payload == 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 - 153 -Uplink payload includes in total 11 bytes. 154 - 155 - 156 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 157 -|=((( 158 -**Size** 159 - 160 -**(bytes)** 161 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 162 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 163 163 ((( 164 -Temperature 165 - 166 -((( 167 -(Reserve, Ignore now) 117 +The diagram below shows the working flow in default firmware of NSE01: 168 168 ))) 169 169 170 - ~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|120 +[[image:image-20220708101605-2.png]] 171 171 172 -(% style="width:80px" %) 173 173 ((( 174 -((( 175 -MOD & Digital Interrupt 176 - 177 -((( 178 -(Optional) 123 + 179 179 ))) 180 -))) 181 181 182 -[[image:1654504881641-514.png]] 183 183 184 184 128 +== 2.2 Configure the NSE01 == 185 185 186 -=== 2.3.2 MOD~=1(Original value) === 187 187 188 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).131 +=== 2.2.1 Test Requirement === 189 189 190 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 191 -|=((( 192 -**Size** 193 193 194 -**(bytes)** 195 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 197 -((( 198 -Temperature 134 +To use NSE01 in your city, make sure meet below requirements: 199 199 200 -((( 201 -(Reserve, Ignore now) 202 -))) 203 -))) 136 +* Your local operator has already distributed a NB-IoT Network there. 137 +* The local NB-IoT network used the band that NSE01 supports. 138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 204 204 205 -~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]| 206 - 207 207 ((( 208 - [[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 209 209 ))) 210 210 211 -~| 212 212 213 -((( 214 -((( 215 -MOD & Digital Interrupt 216 -))) 145 +[[image:1657249419225-449.png]] 217 217 218 -(Optional) 219 -))) 220 -))) 221 221 222 -[[image:1654504907647-967.png]] 223 223 149 +=== 2.2.2 Insert SIM card === 224 224 151 +Insert the NB-IoT Card get from your provider. 225 225 226 - ===2.3.3BatteryInfo===153 +User need to take out the NB-IoT module and insert the SIM card like below: 227 227 228 -Check the battery voltage for LSE01. 229 229 230 - Ex1:0x0B45=2885mV156 +[[image:1657249468462-536.png]] 231 231 232 -Ex2: 0x0B49 = 2889mV 233 233 234 234 160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 235 235 236 -=== 2.3.4 Soil Moisture === 237 - 238 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 239 - 240 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 241 - 242 - 243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 - 245 - 246 - 247 -=== 2.3.5 Soil Temperature === 248 - 249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 - 251 -**Example**: 252 - 253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 - 255 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 256 - 257 - 258 - 259 -=== 2.3.6 Soil Conductivity (EC) === 260 - 261 261 ((( 262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 263 -))) 264 - 265 265 ((( 266 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 267 267 ))) 268 - 269 -((( 270 -Generally, the EC value of irrigation water is less than 800uS / cm. 271 271 ))) 272 272 273 -((( 274 - 275 -))) 276 276 277 -((( 278 - 279 -))) 169 +**Connection:** 280 280 281 -= ==2.3.7MOD===171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 282 282 283 - Firmwareversionatst v2.1 supportschanging mode.173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 284 284 285 - Forexample,bytes[10]=90175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 286 286 287 -mod=(bytes[10]>>7)&0x01=1. 288 288 178 +In the PC, use below serial tool settings: 289 289 290 -**Downlink Command:** 180 +* Baud: (% style="color:green" %)**9600** 181 +* Data bits:** (% style="color:green" %)8(%%)** 182 +* Stop bits: (% style="color:green" %)**1** 183 +* Parity: (% style="color:green" %)**None** 184 +* Flow Control: (% style="color:green" %)**None** 291 291 292 -If payload = 0x0A00, workmode=0 186 +((( 187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 188 +))) 293 293 294 - If** **payload =** **0x0A01, workmode=1190 +[[image:image-20220708110657-3.png]] 295 295 192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 296 296 297 297 298 -=== 2.3.8 Decode payload in The Things Network === 299 299 300 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.196 +=== 2.2.4 Use CoAP protocol to uplink data === 301 301 198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 302 302 303 -[[image:1654505570700-128.png]] 304 304 305 - Thepayloaddecoder function for TTN ishere:201 +**Use below commands:** 306 306 307 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 203 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 308 308 207 +For parameter description, please refer to AT command set 309 309 209 +[[image:1657249793983-486.png]] 310 310 311 -== 2.4 Uplink Interval == 312 312 313 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 314 314 214 +[[image:1657249831934-534.png]] 315 315 316 316 317 -== 2.5 Downlink Payload == 318 318 319 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 320 320 321 - [[image:image-20220606165544-8.png]]220 +This feature is supported since firmware version v1.0.1 322 322 323 323 324 -**Examples:** 223 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 325 325 227 +[[image:1657249864775-321.png]] 326 326 327 -* **Set TDC** 328 328 329 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.230 +[[image:1657249930215-289.png]] 330 330 331 -Payload: 01 00 00 1E TDC=30S 332 332 333 -Payload: 01 00 00 3C TDC=60S 334 334 234 +=== 2.2.6 Use MQTT protocol to uplink data === 335 335 336 - ***Reset**236 +This feature is supported since firmware version v110 337 337 338 -If payload = 0x04FF, it will reset the LSE01 339 339 239 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 340 340 341 - * **CFM**247 +[[image:1657249978444-674.png]] 342 342 343 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 344 344 250 +[[image:1657249990869-686.png]] 345 345 346 346 347 -== 2.6 Show Data in DataCake IoT Server == 253 +((( 254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 +))) 348 348 349 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 350 350 351 351 352 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.259 +=== 2.2.7 Use TCP protocol to uplink data === 353 353 354 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:261 +This feature is supported since firmware version v110 355 355 356 356 357 -[[image:1654505857935-743.png]] 264 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 358 358 267 +[[image:1657250217799-140.png]] 359 359 360 -[[image:1654505874829-548.png]] 361 361 362 - Step 3: Create an account or login Datacake.270 +[[image:1657250255956-604.png]] 363 363 364 -Step 4: Search the LSE01 and add DevEUI. 365 365 366 366 367 - [[image:1654505905236-553.png]]274 +=== 2.2.8 Change Update Interval === 368 368 276 +User can use below command to change the (% style="color:green" %)**uplink interval**. 369 369 370 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.278 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 371 371 372 -[[image:1654505925508-181.png]] 280 +((( 281 +(% style="color:red" %)**NOTE:** 282 +))) 373 373 284 +((( 285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 +))) 374 374 375 375 376 -== 2.7 Frequency Plans == 377 377 378 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.290 +== 2.3 Uplink Payload == 379 379 292 +In this mode, uplink payload includes in total 18 bytes 380 380 381 -=== 2.7.1 EU863-870 (EU868) === 294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 +|=(% style="width: 50px;" %)((( 296 +**Size(bytes)** 297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 382 382 383 - (%style="color:#037691"%)** Uplink:**300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 384 384 385 -868.1 - SF7BW125 to SF12BW125 386 386 387 - 868.3-SF7BW125 to SF12BW125 and SF7BW250303 +[[image:image-20220708111918-4.png]] 388 388 389 -868.5 - SF7BW125 to SF12BW125 390 390 391 - 867.1-SF7BW125toSF12BW125306 +The payload is ASCII string, representative same HEX: 392 392 393 - 867.3- SF7BW125to SF12BW125308 +0x72403155615900640c7817075e0a8c02f900 where: 394 394 395 -867.5 - SF7BW125 to SF12BW125 310 +* Device ID: 0x 724031556159 = 724031556159 311 +* Version: 0x0064=100=1.0.0 396 396 397 -867.7 - SF7BW125 to SF12BW125 313 +* BAT: 0x0c78 = 3192 mV = 3.192V 314 +* Singal: 0x17 = 23 315 +* Soil Moisture: 0x075e= 1886 = 18.86 % 316 +* Soil Temperature:0x0a8c =2700=27 °C 317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 +* Interrupt: 0x00 = 0 398 398 399 -867.9 - SF7BW125 to SF12BW125 400 400 401 -868.8 - FSK 402 402 322 +== 2.4 Payload Explanation and Sensor Interface == 403 403 404 -(% style="color:#037691" %)** Downlink:** 405 405 406 - Uplinkchannels1-9(RX1)325 +=== 2.4.1 Device ID === 407 407 408 - 869.525 - SF9BW125(RX2downlinkonly)327 +By default, the Device ID equal to the last 6 bytes of IMEI. 409 409 329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 410 410 331 +**Example:** 411 411 412 - === 2.7.2US902-928(US915) ===333 +AT+DEUI=A84041F15612 413 413 414 - Used inUSA, Canada andSouthAmerica.DefaultuseCHE=2335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 415 415 416 -(% style="color:#037691" %)**Uplink:** 417 417 418 -903.9 - SF7BW125 to SF10BW125 419 419 420 - 904.1 - SF7BW125toSF10BW125339 +=== 2.4.2 Version Info === 421 421 422 - 904.3-SF7BW125toSF10BW125341 +Specify the software version: 0x64=100, means firmware version 1.00. 423 423 424 - 904.5-SF7BW125toSF10BW125343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 425 425 426 -904.7 - SF7BW125 to SF10BW125 427 427 428 -904.9 - SF7BW125 to SF10BW125 429 429 430 - 905.1- SF7BW125toSF10BW125347 +=== 2.4.3 Battery Info === 431 431 432 -905.3 - SF7BW125 to SF10BW125 349 +((( 350 +Check the battery voltage for LSE01. 351 +))) 433 433 353 +((( 354 +Ex1: 0x0B45 = 2885mV 355 +))) 434 434 435 -(% style="color:#037691" %)**Downlink:** 357 +((( 358 +Ex2: 0x0B49 = 2889mV 359 +))) 436 436 437 -923.3 - SF7BW500 to SF12BW500 438 438 439 -923.9 - SF7BW500 to SF12BW500 440 440 441 - 924.5-SF7BW500toSF12BW500363 +=== 2.4.4 Signal Strength === 442 442 443 - 925.1-SF7BW500to SF12BW500365 +NB-IoT Network signal Strength. 444 444 445 - 925.7- SF7BW500toSF12BW500367 +**Ex1: 0x1d = 29** 446 446 447 - 926.3-SF7BW500toSF12BW500369 +(% style="color:blue" %)**0**(%%) -113dBm or less 448 448 449 - 926.9- SF7BW500toSF12BW500371 +(% style="color:blue" %)**1**(%%) -111dBm 450 450 451 - 927.5- SF7BW500toSF12BW500373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 452 452 453 - 923.3-SF12BW500(RX2downlinkonly)375 +(% style="color:blue" %)**31** (%%) -51dBm or greater 454 454 377 +(% style="color:blue" %)**99** (%%) Not known or not detectable 455 455 456 456 457 -=== 2.7.3 CN470-510 (CN470) === 458 458 459 - UsedinChina, DefaultuseCHE=1381 +=== 2.4.5 Soil Moisture === 460 460 461 -(% style="color:#037691" %)**Uplink:** 383 +((( 384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 +))) 462 462 463 -486.3 - SF7BW125 to SF12BW125 387 +((( 388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 +))) 464 464 465 -486.5 - SF7BW125 to SF12BW125 391 +((( 392 + 393 +))) 466 466 467 -486.7 - SF7BW125 to SF12BW125 395 +((( 396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 +))) 468 468 469 -486.9 - SF7BW125 to SF12BW125 470 470 471 -487.1 - SF7BW125 to SF12BW125 472 472 473 -4 87.3-SF7BW125toSF12BW125401 +=== 2.4.6 Soil Temperature === 474 474 475 -487.5 - SF7BW125 to SF12BW125 403 +((( 404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 +))) 476 476 477 -487.7 - SF7BW125 to SF12BW125 407 +((( 408 +**Example**: 409 +))) 478 478 411 +((( 412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 +))) 479 479 480 -(% style="color:#037691" %)**Downlink:** 415 +((( 416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 +))) 481 481 482 -506.7 - SF7BW125 to SF12BW125 483 483 484 -506.9 - SF7BW125 to SF12BW125 485 485 486 - 507.1-SF7BW125toSF12BW125421 +=== 2.4.7 Soil Conductivity (EC) === 487 487 488 -507.3 - SF7BW125 to SF12BW125 423 +((( 424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 +))) 489 489 490 -507.5 - SF7BW125 to SF12BW125 427 +((( 428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 +))) 491 491 492 -507.7 - SF7BW125 to SF12BW125 431 +((( 432 +Generally, the EC value of irrigation water is less than 800uS / cm. 433 +))) 493 493 494 -507.9 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 495 495 496 -508.1 - SF7BW125 to SF12BW125 439 +((( 440 + 441 +))) 497 497 498 - 505.3- SF12BW125(RX2 downlinkonly)443 +=== 2.4.8 Digital Interrupt === 499 499 445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 500 447 +The command is: 501 501 502 -== =2.7.4AU915-928(AU915)===449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 503 503 504 -Default use CHE=2 505 505 506 - (%style="color:#037691"%)**Uplink:**452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 507 508 -916.8 - SF7BW125 to SF12BW125 509 509 510 - 917.0 - SF7BW125 to SF12BW125455 +Example: 511 511 512 - 917.2-SF7BW125to SF12BW125457 +0x(00): Normal uplink packet. 513 513 514 - 917.4-SF7BW125to SF12BW125459 +0x(01): Interrupt Uplink Packet. 515 515 516 -917.6 - SF7BW125 to SF12BW125 517 517 518 -917.8 - SF7BW125 to SF12BW125 519 519 520 - 918.0- SF7BW125 toSF12BW125463 +=== 2.4.9 +5V Output === 521 521 522 - 918.2-SF7BW125 toSF12BW125465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 523 523 524 524 525 - (%style="color:#037691"%)**Downlink:**468 +The 5V output time can be controlled by AT Command. 526 526 527 - 923.3- SF7BW500toSF12BW500470 +(% style="color:blue" %)**AT+5VT=1000** 528 528 529 - 923.9-SF7BW500 toSF12BW500472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 530 530 531 -924.5 - SF7BW500 to SF12BW500 532 532 533 -925.1 - SF7BW500 to SF12BW500 534 534 535 - 925.7 - SF7BW500toSF12BW500476 +== 2.5 Downlink Payload == 536 536 537 - 926.3-SF7BW500toSF12BW500478 +By default, NSE01 prints the downlink payload to console port. 538 538 539 - 926.9-SF7BW500 to SF12BW500480 +[[image:image-20220708133731-5.png]] 540 540 541 -927.5 - SF7BW500 to SF12BW500 542 542 543 -923.3 - SF12BW500(RX2 downlink only) 483 +((( 484 +(% style="color:blue" %)**Examples:** 485 +))) 544 544 487 +((( 488 + 489 +))) 545 545 491 +* ((( 492 +(% style="color:blue" %)**Set TDC** 493 +))) 546 546 547 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 495 +((( 496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 +))) 548 548 549 -(% style="color:#037691" %)**Default Uplink channel:** 499 +((( 500 +Payload: 01 00 00 1E TDC=30S 501 +))) 550 550 551 -923.2 - SF7BW125 to SF10BW125 503 +((( 504 +Payload: 01 00 00 3C TDC=60S 505 +))) 552 552 553 -923.4 - SF7BW125 to SF10BW125 507 +((( 508 + 509 +))) 554 554 511 +* ((( 512 +(% style="color:blue" %)**Reset** 513 +))) 555 555 556 -(% style="color:#037691" %)**Additional Uplink Channel**: 515 +((( 516 +If payload = 0x04FF, it will reset the NSE01 517 +))) 557 557 558 -(OTAA mode, channel added by JoinAccept message) 559 559 560 -(% style="color: #037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:520 +* (% style="color:blue" %)**INTMOD** 561 561 562 - 922.2-SF7BW125toSF10BW125522 +Downlink Payload: 06000003, Set AT+INTMOD=3 563 563 564 -922.4 - SF7BW125 to SF10BW125 565 565 566 -922.6 - SF7BW125 to SF10BW125 567 567 568 - 922.8-SF7BW125toSF10BW125526 +== 2.6 LED Indicator == 569 569 570 -923.0 - SF7BW125 to SF10BW125 528 +((( 529 +The NSE01 has an internal LED which is to show the status of different state. 571 571 572 -922.0 - SF7BW125 to SF10BW125 573 573 532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 +* Then the LED will be on for 1 second means device is boot normally. 534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 +* For each uplink probe, LED will be on for 500ms. 536 +))) 574 574 575 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 576 576 577 -923.6 - SF7BW125 to SF10BW125 578 578 579 -923.8 - SF7BW125 to SF10BW125 580 580 581 - 924.0 - SF7BW125to SF10BW125541 +== 2.7 Installation in Soil == 582 582 583 - 924.2- SF7BW125toSF10BW125543 +__**Measurement the soil surface**__ 584 584 585 - 924.4-SF7BW125SF10BW125545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 586 586 587 - 924.6- SF7BW125to SF10BW125547 +[[image:1657259653666-883.png]] 588 588 589 589 590 -(% style="color:#037691" %)** Downlink:** 550 +((( 551 + 591 591 592 -Uplink channels 1-8 (RX1) 553 +((( 554 +Dig a hole with diameter > 20CM. 555 +))) 593 593 594 -923.2 - SF10BW125 (RX2) 557 +((( 558 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 +))) 560 +))) 595 595 562 +[[image:1654506665940-119.png]] 596 596 564 +((( 565 + 566 +))) 597 597 598 -=== 2.7.6 KR920-923 (KR920) === 599 599 600 - Defaultchannel:569 +== 2.8 Firmware Change Log == 601 601 602 -922.1 - SF7BW125 to SF12BW125 603 603 604 - 922.3-SF7BW125toSF12BW125572 +Download URL & Firmware Change log 605 605 606 - 922.5-F7BW125toSF12BW125574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 607 607 608 608 609 - (%style="color:#037691"%)**Uplink: (OTAAmode,channel added by JoinAcceptmessage)**577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 610 610 611 -922.1 - SF7BW125 to SF12BW125 612 612 613 -922.3 - SF7BW125 to SF12BW125 614 614 615 - 922.5- SF7BW125toSF12BW125581 +== 2.9 Battery Analysis == 616 616 617 - 922.7 - SF7BW125toSF12BW125583 +=== 2.9.1 Battery Type === 618 618 619 -922.9 - SF7BW125 to SF12BW125 620 620 621 - 923.1-SF7BW125to SF12BW125586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 622 622 623 -923.3 - SF7BW125 to SF12BW125 624 624 589 +The battery is designed to last for several years depends on the actually use environment and update interval. 625 625 626 -(% style="color:#037691" %)**Downlink:** 627 627 628 - Uplink channels1-7(RX1)592 +The battery related documents as below: 629 629 630 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 631 631 632 - 633 - 634 -=== 2.7.7 IN865-867 (IN865) === 635 - 636 -(% style="color:#037691" %)** Uplink:** 637 - 638 -865.0625 - SF7BW125 to SF12BW125 639 - 640 -865.4025 - SF7BW125 to SF12BW125 641 - 642 -865.9850 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %) **Downlink:** 646 - 647 -Uplink channels 1-3 (RX1) 648 - 649 -866.550 - SF10BW125 (RX2) 650 - 651 - 652 - 653 - 654 -== 2.8 LED Indicator == 655 - 656 -The LSE01 has an internal LED which is to show the status of different state. 657 - 658 -* Blink once when device power on. 659 -* Solid ON for 5 seconds once device successful Join the network. 660 -* Blink once when device transmit a packet. 661 - 662 -== 2.9 Installation in Soil == 663 - 664 -**Measurement the soil surface** 665 - 666 - 667 -[[image:1654506634463-199.png]] 668 - 669 669 ((( 670 -((( 671 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 599 +[[image:image-20220708140453-6.png]] 672 672 ))) 673 -))) 674 674 675 675 676 -[[image:1654506665940-119.png]] 677 677 678 -((( 679 -Dig a hole with diameter > 20CM. 680 -))) 604 +=== 2.9.2 Power consumption Analyze === 681 681 682 682 ((( 683 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 684 ))) 685 685 686 686 687 -== 2.10 Firmware Change Log == 688 - 689 689 ((( 690 - **Firmware downloadlink:**612 +Instruction to use as below: 691 691 ))) 692 692 693 693 ((( 694 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]616 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 695 695 ))) 696 696 697 -((( 698 - 699 -))) 700 700 701 701 ((( 702 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 703 ))) 704 704 705 -((( 706 - 624 +* ((( 625 +Product Model 707 707 ))) 708 - 709 -((( 710 -**V1.0.** 627 +* ((( 628 +Uplink Interval 711 711 ))) 630 +* ((( 631 +Working Mode 632 +))) 712 712 713 713 ((( 714 - Release635 +And the Life expectation in difference case will be shown on the right. 715 715 ))) 716 716 638 +[[image:image-20220708141352-7.jpeg]] 717 717 718 -== 2.11 Battery Analysis == 719 719 720 -=== 2.11.1 Battery Type === 721 721 722 -((( 723 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 724 -))) 642 +=== 2.9.3 Battery Note === 725 725 726 726 ((( 727 -The battery is designed to last for more than5 yearsfor theLSN50.645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) 729 729 730 -((( 731 -((( 732 -The battery-related documents are as below: 733 -))) 734 -))) 735 735 736 -* ((( 737 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 738 -))) 739 -* ((( 740 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 741 -))) 742 -* ((( 743 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 744 -))) 745 745 746 - [[image:image-20220606171726-9.png]]650 +=== 2.9.4 Replace the battery === 747 747 748 - 749 - 750 -=== 2.11.2 Battery Note === 751 - 752 752 ((( 753 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 754 754 ))) 755 755 756 756 757 757 758 -= ==2.11.3Replacethebattery===658 += 3. Access NB-IoT Module = 759 759 760 760 ((( 761 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.661 +Users can directly access the AT command set of the NB-IoT module. 762 762 ))) 763 763 764 764 ((( 765 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 766 766 ))) 767 767 768 -((( 769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 770 -))) 668 +[[image:1657261278785-153.png]] 771 771 772 772 773 773 774 -= 3.Using the AT Commands =672 += 4. Using the AT Commands = 775 775 776 -== 3.1 Access AT Commands ==674 +== 4.1 Access AT Commands == 777 777 676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 778 778 779 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 780 780 781 - [[image:1654501986557-872.png||height="391"width="800"]]679 +AT+<CMD>? : Help on <CMD> 782 782 681 +AT+<CMD> : Run <CMD> 783 783 784 - Orifyouhavebelowboard,usebelowconnection:683 +AT+<CMD>=<value> : Set the value 785 785 685 +AT+<CMD>=? : Get the value 786 786 787 -[[image:1654502005655-729.png||height="503" width="801"]] 788 788 789 - 790 - 791 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 792 - 793 - 794 - [[image:1654502050864-459.png||height="564" width="806"]] 795 - 796 - 797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 798 - 799 - 800 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 801 - 802 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 803 - 804 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 805 - 806 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 807 - 808 - 809 809 (% style="color:#037691" %)**General Commands**(%%) 810 810 811 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention690 +AT : Attention 812 812 813 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help692 +AT? : Short Help 814 814 815 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset694 +ATZ : MCU Reset 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval696 +AT+TDC : Application Data Transmission Interval 818 818 698 +AT+CFG : Print all configurations 819 819 820 - (%style="color:#037691"%)**Keys,IDsand EUIs management**700 +AT+CFGMOD : Working mode selection 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI702 +AT+INTMOD : Set the trigger interrupt mode 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey704 +AT+5VT : Set extend the time of 5V power 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key706 +AT+PRO : Choose agreement 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress708 +AT+WEIGRE : Get weight or set weight to 0 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI710 +AT+WEIGAP : Get or Set the GapValue of weight 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)712 +AT+RXDL : Extend the sending and receiving time 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network714 +AT+CNTFAC : Get or set counting parameters 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode716 +AT+SERVADDR : Server Address 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 839 839 840 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network719 +(% style="color:#037691" %)**COAP Management** 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode721 +AT+URI : Resource parameters 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 845 845 846 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format724 +(% style="color:#037691" %)**UDP Management** 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat726 +AT+CFM : Upload confirmation mode (only valid for UDP) 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 851 851 852 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data729 +(% style="color:#037691" %)**MQTT Management** 853 853 731 +AT+CLIENT : Get or Set MQTT client 854 854 855 - (%style="color:#037691"%)**LoRaNetworkManagement**733 +AT+UNAME : Get or Set MQTT Username 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate735 +AT+PWD : Get or Set MQTT password 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA737 +AT+PUBTOPIC : Get or Set MQTT publish topic 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting739 +AT+SUBTOPIC : Get or Set MQTT subscription topic 862 862 863 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 864 864 865 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink742 +(% style="color:#037691" %)**Information** 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink744 +AT+FDR : Factory Data Reset 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1746 +AT+PWORD : Serial Access Password 870 870 871 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 874 874 875 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1750 += 5. FAQ = 876 876 877 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2752 +== 5.1 How to Upgrade Firmware == 878 878 879 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 880 880 881 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 882 - 883 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 886 - 887 - 888 -(% style="color:#037691" %)**Information** 889 - 890 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 891 - 892 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 893 - 894 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 895 - 896 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 897 - 898 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 899 - 900 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 901 - 902 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 903 - 904 - 905 -= 4. FAQ = 906 - 907 -== 4.1 How to change the LoRa Frequency Bands/Region? == 908 - 909 909 ((( 910 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 911 -When downloading the images, choose the required image file for download. 756 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 912 912 ))) 913 913 914 914 ((( 915 - 760 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 916 916 ))) 917 917 918 918 ((( 919 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 920 920 ))) 921 921 922 -((( 923 - 924 -))) 925 925 926 -((( 927 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 928 -))) 929 929 930 -((( 931 - 932 -))) 769 += 6. Trouble Shooting = 933 933 934 -((( 935 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 936 -))) 771 +== 6.1 Connection problem when uploading firmware == 937 937 938 -[[image:image-20220606154726-3.png]] 939 939 940 - 941 -When you use the TTN network, the US915 frequency bands use are: 942 - 943 -* 903.9 - SF7BW125 to SF10BW125 944 -* 904.1 - SF7BW125 to SF10BW125 945 -* 904.3 - SF7BW125 to SF10BW125 946 -* 904.5 - SF7BW125 to SF10BW125 947 -* 904.7 - SF7BW125 to SF10BW125 948 -* 904.9 - SF7BW125 to SF10BW125 949 -* 905.1 - SF7BW125 to SF10BW125 950 -* 905.3 - SF7BW125 to SF10BW125 951 -* 904.6 - SF8BW500 952 - 774 +(% class="wikigeneratedid" %) 953 953 ((( 954 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 955 955 ))) 956 956 957 -(% class="box infomessage" %) 958 -((( 959 -**AT+CHE=2** 960 -))) 961 961 962 -(% class="box infomessage" %) 963 -((( 964 -**ATZ** 965 -))) 966 966 967 -((( 968 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 969 -))) 781 +== 6.2 AT Command input doesn't work == 970 970 971 971 ((( 972 - 784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 973 973 ))) 974 974 975 -((( 976 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 977 -))) 978 978 979 -[[image:image-20220606154825-4.png]] 980 980 789 += 7. Order Info = 981 981 982 982 983 - = 5. TroubleShooting=792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 984 984 985 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 986 986 987 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 988 - 989 - 990 -== 5.2 AT Command input doesn’t work == 991 - 992 -((( 993 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 -))) 995 - 996 - 997 -== 5.3 Device rejoin in at the second uplink packet == 998 - 999 -(% style="color:#4f81bd" %)**Issue describe as below:** 1000 - 1001 -[[image:1654500909990-784.png]] 1002 - 1003 - 1004 -(% style="color:#4f81bd" %)**Cause for this issue:** 1005 - 1006 -((( 1007 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1008 -))) 1009 - 1010 - 1011 -(% style="color:#4f81bd" %)**Solution: ** 1012 - 1013 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1014 - 1015 -[[image:1654500929571-736.png||height="458" width="832"]] 1016 - 1017 - 1018 -= 6. Order Info = 1019 - 1020 - 1021 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1022 - 1023 - 1024 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1025 - 1026 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1027 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1028 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1029 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1030 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1031 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1032 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1033 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1034 - 1035 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1036 - 1037 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1038 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1039 - 1040 1040 (% class="wikigeneratedid" %) 1041 1041 ((( 1042 1042 1043 1043 ))) 1044 1044 1045 -= 7. Packing Info =800 += 8. Packing Info = 1046 1046 1047 1047 ((( 1048 1048 1049 1049 1050 1050 (% style="color:#037691" %)**Package Includes**: 1051 -))) 1052 1052 1053 -* ((( 1054 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 807 + 808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 +* External antenna x 1 1055 1055 ))) 1056 1056 1057 1057 ((( ... ... @@ -1058,30 +1058,20 @@ 1058 1058 1059 1059 1060 1060 (% style="color:#037691" %)**Dimension and weight**: 1061 -))) 1062 1062 1063 -* ((( 1064 -Device Size: cm 817 + 818 +* Size: 195 x 125 x 55 mm 819 +* Weight: 420g 1065 1065 ))) 1066 -* ((( 1067 -Device Weight: g 1068 -))) 1069 -* ((( 1070 -Package Size / pcs : cm 1071 -))) 1072 -* ((( 1073 -Weight / pcs : g 1074 1074 822 +((( 823 + 1075 1075 825 + 1076 1076 1077 1077 ))) 1078 1078 1079 -= 8. Support =829 += 9. Support = 1080 1080 1081 1081 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1082 1082 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1083 - 1084 - 1085 -))) 1086 -))) 1087 -)))
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content