Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.2
edited by Xiaoling
on 2022/06/07 11:19
Change comment: There is no comment for this version
To version 65.13
edited by Xiaoling
on 2022/07/08 15:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,64 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
72 +== 1.3  Specification ==
61 61  
62 62  
75 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
64 -== 1.3 Specification ==
77 +* Supply Voltage: 2.1v ~~ 3.6v
78 +* Operating Temperature: -40 ~~ 85°C
65 65  
80 +(% style="color:#037691" %)**NB-IoT Spec:**
81 +
82 +* - B1 @H-FDD: 2100MHz
83 +* - B3 @H-FDD: 1800MHz
84 +* - B8 @H-FDD: 900MHz
85 +* - B5 @H-FDD: 850MHz
86 +* - B20 @H-FDD: 800MHz
87 +* - B28 @H-FDD: 700MHz
88 +
89 +Probe(% style="color:#037691" %)** Specification:**
90 +
66 66  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 67  
68 -[[image:image-20220606162220-5.png]]
93 +[[image:image-20220708101224-1.png]]
69 69  
70 70  
71 71  
72 -== ​1.4 Applications ==
97 +== ​1.4  Applications ==
73 73  
74 74  * Smart Agriculture
75 75  
... ... @@ -76,982 +76,760 @@
76 76  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
77 77  ​
78 78  
79 -== 1.5 Firmware Change log ==
104 +== 1.5  Pin Definitions ==
80 80  
81 81  
82 -**LSE01 v1.0 :**  Release
107 +[[image:1657246476176-652.png]]
83 83  
84 84  
85 85  
86 -= 2. Configure LSE01 to connect to LoRaWAN network =
111 += 2.  Use NSE01 to communicate with IoT Server =
87 87  
88 -== 2.1 How it works ==
113 +== 2.1  How it works ==
89 89  
115 +
90 90  (((
91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
117 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
92 92  )))
93 93  
120 +
94 94  (((
95 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
122 +The diagram below shows the working flow in default firmware of NSE01:
96 96  )))
97 97  
125 +[[image:image-20220708101605-2.png]]
98 98  
127 +(((
128 +
129 +)))
99 99  
100 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 101  
102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 103  
133 +== 2.2 ​ Configure the NSE01 ==
104 104  
105 -[[image:1654503992078-669.png]]
106 106  
136 +=== 2.2.1 Test Requirement ===
107 107  
108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 109  
110 -
111 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
112 -
113 -Each LSE01 is shipped with a sticker with the default device EUI as below:
114 -
115 -[[image:image-20220606163732-6.jpeg]]
116 -
117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
118 -
119 -**Add APP EUI in the application**
120 -
121 -
122 -[[image:1654504596150-405.png]]
123 -
124 -
125 -
126 -**Add APP KEY and DEV EUI**
127 -
128 -[[image:1654504683289-357.png]]
129 -
130 -
131 -
132 -**Step 2**: Power on LSE01
133 -
134 -
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 -
137 -[[image:image-20220606163915-7.png]]
138 -
139 -
140 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
141 -
142 -[[image:1654504778294-788.png]]
143 -
144 -
145 -
146 -== 2.3 Uplink Payload ==
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 -
153 -Uplink payload includes in total 11 bytes.
154 -
155 -
156 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
157 -|=(((
158 -**Size**
159 -
160 -**(bytes)**
161 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
162 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
163 163  (((
164 -Temperature
165 -
166 -(((
167 -(Reserve, Ignore now)
140 +To use NSE01 in your city, make sure meet below requirements:
168 168  )))
169 169  
170 -~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
171 171  
172 -(% style="width:80px" %)
173 173  (((
174 -(((
175 -MOD & Digital Interrupt
176 -
177 -(((
178 -(Optional)
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
179 179  )))
180 -)))
181 181  
182 -[[image:1654504881641-514.png]]
183 183  
152 +[[image:1657249419225-449.png]]
184 184  
185 185  
186 -=== 2.3.2 MOD~=1(Original value) ===
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
156 +=== 2.2.2 Insert SIM card ===
189 189  
190 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
191 -|=(((
192 -**Size**
193 -
194 -**(bytes)**
195 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 197  (((
198 -Temperature
159 +Insert the NB-IoT Card get from your provider.
160 +)))
199 199  
200 200  (((
201 -(Reserve, Ignore now)
163 +User need to take out the NB-IoT module and insert the SIM card like below:
202 202  )))
203 -)))
204 204  
205 -~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|
206 206  
207 -(((
208 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)
209 -)))
167 +[[image:1657249468462-536.png]]
210 210  
211 -~|
212 212  
170 +
171 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
172 +
213 213  (((
214 214  (((
215 -MOD & Digital Interrupt
175 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
216 216  )))
217 -
218 -(Optional)
219 219  )))
220 -)))
221 221  
222 -[[image:1654504907647-967.png]]
223 223  
180 +**Connection:**
224 224  
182 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
225 225  
226 -=== 2.3.3 Battery Info ===
184 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
227 227  
228 -Check the battery voltage for LSE01.
186 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
229 229  
230 -Ex1: 0x0B45 = 2885mV
231 231  
232 -Ex2: 0x0B49 = 2889mV
189 +In the PC, use below serial tool settings:
233 233  
191 +* Baud:  (% style="color:green" %)**9600**
192 +* Data bits:** (% style="color:green" %)8(%%)**
193 +* Stop bits: (% style="color:green" %)**1**
194 +* Parity:  (% style="color:green" %)**None**
195 +* Flow Control: (% style="color:green" %)**None**
234 234  
235 -
236 -=== 2.3.4 Soil Moisture ===
237 -
238 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
239 -
240 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
241 -
242 -
243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -
245 -
246 -
247 -=== 2.3.5 Soil Temperature ===
248 -
249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
250 -
251 -**Example**:
252 -
253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 -
255 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
256 -
257 -
258 -
259 -=== 2.3.6 Soil Conductivity (EC) ===
260 -
261 261  (((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
198 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
263 263  )))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
201 +[[image:image-20220708110657-3.png]]
268 268  
269 269  (((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
271 271  )))
272 272  
273 -(((
274 -
275 -)))
276 276  
277 -(((
278 -
279 -)))
280 280  
281 -=== 2.3.7 MOD ===
209 +=== 2.2.4 Use CoAP protocol to uplink data ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
211 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
284 284  
285 -For example, bytes[10]=90
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
214 +**Use below commands:**
288 288  
216 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
289 289  
290 -**Downlink Command:**
220 +For parameter description, please refer to AT command set
291 291  
292 -If payload = 0x0A00, workmode=0
222 +[[image:1657249793983-486.png]]
293 293  
294 -If** **payload =** **0x0A01, workmode=1
295 295  
225 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
296 296  
227 +[[image:1657249831934-534.png]]
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
301 301  
231 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
302 302  
303 -[[image:1654505570700-128.png]]
233 +This feature is supported since firmware version v1.0.1
304 304  
305 -The payload decoder function for TTN is here:
306 306  
307 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
236 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
308 308  
240 +[[image:1657249864775-321.png]]
309 309  
310 310  
311 -== 2.4 Uplink Interval ==
243 +[[image:1657249930215-289.png]]
312 312  
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314 314  
315 315  
247 +=== 2.2.6 Use MQTT protocol to uplink data ===
316 316  
317 -== 2.5 Downlink Payload ==
249 +This feature is supported since firmware version v110
318 318  
319 -By default, LSE50 prints the downlink payload to console port.
320 320  
321 -[[image:image-20220606165544-8.png]]
252 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
322 322  
260 +[[image:1657249978444-674.png]]
323 323  
324 -**Examples:**
325 325  
263 +[[image:1657249990869-686.png]]
326 326  
327 -* **Set TDC**
328 328  
329 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
266 +(((
267 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
268 +)))
330 330  
331 -Payload:    01 00 00 1E    TDC=30S
332 332  
333 -Payload:    01 00 00 3C    TDC=60S
334 334  
272 +=== 2.2.7 Use TCP protocol to uplink data ===
335 335  
336 -* **Reset**
274 +This feature is supported since firmware version v110
337 337  
338 -If payload = 0x04FF, it will reset the LSE01
339 339  
277 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
340 340  
341 -* **CFM**
280 +[[image:1657250217799-140.png]]
342 342  
343 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
344 344  
283 +[[image:1657250255956-604.png]]
345 345  
346 346  
347 -== 2.6 ​Show Data in DataCake IoT Server ==
348 348  
349 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
287 +=== 2.2.8 Change Update Interval ===
350 350  
289 +User can use below command to change the (% style="color:green" %)**uplink interval**.
351 351  
352 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
291 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
353 353  
354 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
293 +(((
294 +(% style="color:red" %)**NOTE:**
295 +)))
355 355  
297 +(((
298 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
299 +)))
356 356  
357 -[[image:1654505857935-743.png]]
358 358  
359 359  
360 -[[image:1654505874829-548.png]]
303 +== 2.3  Uplink Payload ==
361 361  
362 -Step 3: Create an account or log in Datacake.
305 +In this mode, uplink payload includes in total 18 bytes
363 363  
364 -Step 4: Search the LSE01 and add DevEUI.
307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 +|=(% style="width: 60px;" %)(((
309 +**Size(bytes)**
310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
365 365  
313 +(((
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
315 +)))
366 366  
367 -[[image:1654505905236-553.png]]
368 368  
318 +[[image:image-20220708111918-4.png]]
369 369  
370 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
371 371  
372 -[[image:1654505925508-181.png]]
321 +The payload is ASCII string, representative same HEX:
373 373  
323 +0x72403155615900640c7817075e0a8c02f900 where:
374 374  
325 +* Device ID: 0x 724031556159 = 724031556159
326 +* Version: 0x0064=100=1.0.0
375 375  
376 -== 2.7 Frequency Plans ==
328 +* BAT: 0x0c78 = 3192 mV = 3.192V
329 +* Singal: 0x17 = 23
330 +* Soil Moisture: 0x075e= 1886 = 18.86  %
331 +* Soil Temperature:0x0a8c =2700=27 °C
332 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 +* Interrupt: 0x00 = 0
377 377  
378 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
379 379  
380 380  
381 -=== 2.7.1 EU863-870 (EU868) ===
382 382  
383 -(% style="color:#037691" %)** Uplink:**
338 +== 2.4  Payload Explanation and Sensor Interface ==
384 384  
385 -868.1 - SF7BW125 to SF12BW125
386 386  
387 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
341 +=== 2.4.1  Device ID ===
388 388  
389 -868.5 - SF7BW125 to SF12BW125
343 +(((
344 +By default, the Device ID equal to the last 6 bytes of IMEI.
345 +)))
390 390  
391 -867.1 - SF7BW125 to SF12BW125
347 +(((
348 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
349 +)))
392 392  
393 -867.3 - SF7BW125 to SF12BW125
351 +(((
352 +**Example:**
353 +)))
394 394  
395 -867.5 - SF7BW125 to SF12BW125
355 +(((
356 +AT+DEUI=A84041F15612
357 +)))
396 396  
397 -867.7 - SF7BW125 to SF12BW125
359 +(((
360 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 +)))
398 398  
399 -867.9 - SF7BW125 to SF12BW125
400 400  
401 -868.8 - FSK
402 402  
365 +=== 2.4.2  Version Info ===
403 403  
404 -(% style="color:#037691" %)** Downlink:**
367 +(((
368 +Specify the software version: 0x64=100, means firmware version 1.00.
369 +)))
405 405  
406 -Uplink channels 1-9 (RX1)
371 +(((
372 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
373 +)))
407 407  
408 -869.525 - SF9BW125 (RX2 downlink only)
409 409  
410 410  
377 +=== 2.4.3  Battery Info ===
411 411  
412 -=== 2.7.2 US902-928(US915) ===
379 +(((
380 +Check the battery voltage for LSE01.
381 +)))
413 413  
414 -Used in USA, Canada and South America. Default use CHE=2
383 +(((
384 +Ex1: 0x0B45 = 2885mV
385 +)))
415 415  
416 -(% style="color:#037691" %)**Uplink:**
387 +(((
388 +Ex2: 0x0B49 = 2889mV
389 +)))
417 417  
418 -903.9 - SF7BW125 to SF10BW125
419 419  
420 -904.1 - SF7BW125 to SF10BW125
421 421  
422 -904.3 - SF7BW125 to SF10BW125
393 +=== 2.4. Signal Strength ===
423 423  
424 -904.5 - SF7BW125 to SF10BW125
395 +(((
396 +NB-IoT Network signal Strength.
397 +)))
425 425  
426 -904.7 - SF7BW125 to SF10BW125
399 +(((
400 +**Ex1: 0x1d = 29**
401 +)))
427 427  
428 -904.9 - SF7BW125 to SF10BW125
403 +(((
404 +(% style="color:blue" %)**0**(%%)  -113dBm or less
405 +)))
429 429  
430 -905.1 - SF7BW125 to SF10BW125
407 +(((
408 +(% style="color:blue" %)**1**(%%)  -111dBm
409 +)))
431 431  
432 -905.3 - SF7BW125 to SF10BW125
411 +(((
412 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
413 +)))
433 433  
415 +(((
416 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
417 +)))
434 434  
435 -(% style="color:#037691" %)**Downlink:**
419 +(((
420 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 +)))
436 436  
437 -923.3 - SF7BW500 to SF12BW500
438 438  
439 -923.9 - SF7BW500 to SF12BW500
440 440  
441 -924.5 - SF7BW500 to SF12BW500
425 +=== 2.4.5  Soil Moisture ===
442 442  
443 -925.1 - SF7BW500 to SF12BW500
427 +(((
428 +(((
429 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
430 +)))
431 +)))
444 444  
445 -925.7 - SF7BW500 to SF12BW500
433 +(((
434 +(((
435 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
436 +)))
437 +)))
446 446  
447 -926.3 - SF7BW500 to SF12BW500
439 +(((
440 +
441 +)))
448 448  
449 -926.9 - SF7BW500 to SF12BW500
443 +(((
444 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
445 +)))
450 450  
451 -927.5 - SF7BW500 to SF12BW500
452 452  
453 -923.3 - SF12BW500(RX2 downlink only)
454 454  
449 +=== 2.4.6  Soil Temperature ===
455 455  
451 +(((
452 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 +)))
456 456  
457 -=== 2.7.3 CN470-510 (CN470) ===
455 +(((
456 +**Example**:
457 +)))
458 458  
459 -Used in China, Default use CHE=1
459 +(((
460 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 +)))
460 460  
461 -(% style="color:#037691" %)**Uplink:**
463 +(((
464 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 +)))
462 462  
463 -486.3 - SF7BW125 to SF12BW125
464 464  
465 -486.5 - SF7BW125 to SF12BW125
466 466  
467 -486.7 - SF7BW125 to SF12BW125
469 +=== 2.4.7  Soil Conductivity (EC) ===
468 468  
469 -486.9 - SF7BW125 to SF12BW125
471 +(((
472 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 +)))
470 470  
471 -487.1 - SF7BW125 to SF12BW125
475 +(((
476 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 +)))
472 472  
473 -487.3 - SF7BW125 to SF12BW125
479 +(((
480 +Generally, the EC value of irrigation water is less than 800uS / cm.
481 +)))
474 474  
475 -487.5 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
476 476  
477 -487.7 - SF7BW125 to SF12BW125
487 +(((
488 +
489 +)))
478 478  
491 +=== 2.4.8  Digital Interrupt ===
479 479  
480 -(% style="color:#037691" %)**Downlink:**
493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
481 481  
482 -506.7 - SF7BW125 to SF12BW125
495 +The command is:
483 483  
484 -506.9 - SF7BW125 to SF12BW125
497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
485 485  
486 -507.1 - SF7BW125 to SF12BW125
487 487  
488 -507.3 - SF7BW125 to SF12BW125
500 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
489 489  
490 -507.5 - SF7BW125 to SF12BW125
491 491  
492 -507.7 - SF7BW125 to SF12BW125
503 +Example:
493 493  
494 -507.9 - SF7BW125 to SF12BW125
505 +0x(00): Normal uplink packet.
495 495  
496 -508.1 - SF7BW125 to SF12BW125
507 +0x(01): Interrupt Uplink Packet.
497 497  
498 -505.3 - SF12BW125 (RX2 downlink only)
499 499  
500 500  
511 +=== 2.4.9  ​+5V Output ===
501 501  
502 -=== 2.7.4 AU915-928(AU915) ===
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
503 503  
504 -Default use CHE=2
505 505  
506 -(% style="color:#037691" %)**Uplink:**
516 +The 5V output time can be controlled by AT Command.
507 507  
508 -916.8 - SF7BW125 to SF12BW125
518 +(% style="color:blue" %)**AT+5VT=1000**
509 509  
510 -917.0 - SF7BW125 to SF12BW125
520 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
511 511  
512 -917.2 - SF7BW125 to SF12BW125
513 513  
514 -917.4 - SF7BW125 to SF12BW125
515 515  
516 -917.6 - SF7BW125 to SF12BW125
524 +== 2.5  Downlink Payload ==
517 517  
518 -917.8 - SF7BW125 to SF12BW125
526 +By default, NSE01 prints the downlink payload to console port.
519 519  
520 -918.0 - SF7BW125 to SF12BW125
528 +[[image:image-20220708133731-5.png]]
521 521  
522 -918.2 - SF7BW125 to SF12BW125
523 523  
531 +(((
532 +(% style="color:blue" %)**Examples:**
533 +)))
524 524  
525 -(% style="color:#037691" %)**Downlink:**
535 +(((
536 +
537 +)))
526 526  
527 -923.3 - SF7BW500 to SF12BW500
539 +* (((
540 +(% style="color:blue" %)**Set TDC**
541 +)))
528 528  
529 -923.9 - SF7BW500 to SF12BW500
543 +(((
544 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
545 +)))
530 530  
531 -924.5 - SF7BW500 to SF12BW500
547 +(((
548 +Payload:    01 00 00 1E    TDC=30S
549 +)))
532 532  
533 -925.1 - SF7BW500 to SF12BW500
551 +(((
552 +Payload:    01 00 00 3C    TDC=60S
553 +)))
534 534  
535 -925.7 - SF7BW500 to SF12BW500
555 +(((
556 +
557 +)))
536 536  
537 -926.3 - SF7BW500 to SF12BW500
559 +* (((
560 +(% style="color:blue" %)**Reset**
561 +)))
538 538  
539 -926.9 - SF7BW500 to SF12BW500
563 +(((
564 +If payload = 0x04FF, it will reset the NSE01
565 +)))
540 540  
541 -927.5 - SF7BW500 to SF12BW500
542 542  
543 -923.3 - SF12BW500(RX2 downlink only)
568 +* (% style="color:blue" %)**INTMOD**
544 544  
570 +Downlink Payload: 06000003, Set AT+INTMOD=3
545 545  
546 546  
547 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
548 548  
549 -(% style="color:#037691" %)**Default Uplink channel:**
574 +== 2.6  ​LED Indicator ==
550 550  
551 -923.2 - SF7BW125 to SF10BW125
576 +(((
577 +The NSE01 has an internal LED which is to show the status of different state.
552 552  
553 -923.4 - SF7BW125 to SF10BW125
554 554  
580 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
581 +* Then the LED will be on for 1 second means device is boot normally.
582 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
583 +* For each uplink probe, LED will be on for 500ms.
584 +)))
555 555  
556 -(% style="color:#037691" %)**Additional Uplink Channel**:
557 557  
558 -(OTAA mode, channel added by JoinAccept message)
559 559  
560 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
561 561  
562 -922.2 - SF7BW125 to SF10BW125
589 +== 2.7  Installation in Soil ==
563 563  
564 -922.4 - SF7BW125 to SF10BW125
591 +__**Measurement the soil surface**__
565 565  
566 -922.6 - SF7BW125 to SF10BW125
593 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
567 567  
568 -922.8 - SF7BW125 to SF10BW125
595 +[[image:1657259653666-883.png]] ​
569 569  
570 -923.0 - SF7BW125 to SF10BW125
571 571  
572 -922.0 - SF7BW125 to SF10BW125
598 +(((
599 +
573 573  
601 +(((
602 +Dig a hole with diameter > 20CM.
603 +)))
574 574  
575 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
605 +(((
606 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +)))
608 +)))
576 576  
577 -923.6 - SF7BW125 to SF10BW125
610 +[[image:1654506665940-119.png]]
578 578  
579 -923.8 - SF7BW125 to SF10BW125
612 +(((
613 +
614 +)))
580 580  
581 -924.0 - SF7BW125 to SF10BW125
582 582  
583 -924.2 - SF7BW125 to SF10BW125
617 +== 2. Firmware Change Log ==
584 584  
585 -924.4 - SF7BW125 to SF10BW125
586 586  
587 -924.6 - SF7BW125 to SF10BW125
620 +Download URL & Firmware Change log
588 588  
622 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
589 589  
590 -(% style="color:#037691" %)** Downlink:**
591 591  
592 -Uplink channels 1-8 (RX1)
625 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
593 593  
594 -923.2 - SF10BW125 (RX2)
595 595  
596 596  
629 +== 2.9  ​Battery Analysis ==
597 597  
598 -=== 2.7.6 KR920-923 (KR920) ===
631 +=== 2.9. ​Battery Type ===
599 599  
600 -Default channel:
601 601  
602 -922.1 - SF7BW125 to SF12BW125
634 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
603 603  
604 -922.3 - SF7BW125 to SF12BW125
605 605  
606 -922.5 - SF7BW125 to SF12BW125
637 +The battery is designed to last for several years depends on the actually use environment and update interval. 
607 607  
608 608  
609 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 +The battery related documents as below:
610 610  
611 -922.1 - SF7BW125 to SF12BW125
642 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
644 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
612 612  
613 -922.3 - SF7BW125 to SF12BW125
614 -
615 -922.5 - SF7BW125 to SF12BW125
616 -
617 -922.7 - SF7BW125 to SF12BW125
618 -
619 -922.9 - SF7BW125 to SF12BW125
620 -
621 -923.1 - SF7BW125 to SF12BW125
622 -
623 -923.3 - SF7BW125 to SF12BW125
624 -
625 -
626 -(% style="color:#037691" %)**Downlink:**
627 -
628 -Uplink channels 1-7(RX1)
629 -
630 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
631 -
632 -
633 -
634 -=== 2.7.7 IN865-867 (IN865) ===
635 -
636 -(% style="color:#037691" %)** Uplink:**
637 -
638 -865.0625 - SF7BW125 to SF12BW125
639 -
640 -865.4025 - SF7BW125 to SF12BW125
641 -
642 -865.9850 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %) **Downlink:**
646 -
647 -Uplink channels 1-3 (RX1)
648 -
649 -866.550 - SF10BW125 (RX2)
650 -
651 -
652 -
653 -
654 -== 2.8 LED Indicator ==
655 -
656 -The LSE01 has an internal LED which is to show the status of different state.
657 -
658 -* Blink once when device power on.
659 -* Solid ON for 5 seconds once device successful Join the network.
660 -* Blink once when device transmit a packet.
661 -
662 -== 2.9 Installation in Soil ==
663 -
664 -**Measurement the soil surface**
665 -
666 -
667 -[[image:1654506634463-199.png]] ​
668 -
669 669  (((
670 -(((
671 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 +[[image:image-20220708140453-6.png]]
672 672  )))
673 -)))
674 674  
675 675  
676 -[[image:1654506665940-119.png]]
677 677  
678 -(((
679 -Dig a hole with diameter > 20CM.
680 -)))
652 +=== 2.9.2  Power consumption Analyze ===
681 681  
682 682  (((
683 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
655 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
684 684  )))
685 685  
686 686  
687 -== 2.10 ​Firmware Change Log ==
688 -
689 689  (((
690 -**Firmware download link:**
660 +Instruction to use as below:
691 691  )))
692 692  
693 693  (((
694 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
664 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
695 695  )))
696 696  
697 -(((
698 -
699 -)))
700 700  
701 701  (((
702 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
669 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
703 703  )))
704 704  
705 -(((
706 -
672 +* (((
673 +Product Model
707 707  )))
708 -
709 -(((
710 -**V1.0.**
675 +* (((
676 +Uplink Interval
711 711  )))
678 +* (((
679 +Working Mode
680 +)))
712 712  
713 713  (((
714 -Release
683 +And the Life expectation in difference case will be shown on the right.
715 715  )))
716 716  
686 +[[image:image-20220708141352-7.jpeg]]
717 717  
718 -== 2.11 ​Battery Analysis ==
719 719  
720 -=== 2.11.1 ​Battery Type ===
721 721  
722 -(((
723 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
724 -)))
690 +=== 2.9.3  ​Battery Note ===
725 725  
726 726  (((
727 -The battery is designed to last for more than 5 years for the LSN50.
693 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
729 729  
730 -(((
731 -(((
732 -The battery-related documents are as below:
733 -)))
734 -)))
735 735  
736 -* (((
737 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
738 -)))
739 -* (((
740 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
741 -)))
742 -* (((
743 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
744 -)))
745 745  
746 - [[image:image-20220606171726-9.png]]
698 +=== 2.9.4  Replace the battery ===
747 747  
748 -
749 -
750 -=== 2.11.2 ​Battery Note ===
751 -
752 752  (((
753 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
701 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
754 754  )))
755 755  
756 756  
757 757  
758 -=== 2.11.3 Replace the battery ===
706 += 3. ​ Access NB-IoT Module =
759 759  
760 760  (((
761 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
709 +Users can directly access the AT command set of the NB-IoT module.
762 762  )))
763 763  
764 764  (((
765 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
713 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
766 766  )))
767 767  
768 -(((
769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
770 -)))
716 +[[image:1657261278785-153.png]]
771 771  
772 772  
773 773  
774 -= 3. Using the AT Commands =
720 += 4.  Using the AT Commands =
775 775  
776 -== 3.1 Access AT Commands ==
722 +== 4.1  Access AT Commands ==
777 777  
724 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
778 778  
779 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
780 780  
781 -[[image:1654501986557-872.png||height="391" width="800"]]
727 +AT+<CMD>?  : Help on <CMD>
782 782  
729 +AT+<CMD>         : Run <CMD>
783 783  
784 -Or if you have below board, use below connection:
731 +AT+<CMD>=<value> : Set the value
785 785  
733 +AT+<CMD>=?  : Get the value
786 786  
787 -[[image:1654502005655-729.png||height="503" width="801"]]
788 788  
789 -
790 -
791 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
792 -
793 -
794 - [[image:1654502050864-459.png||height="564" width="806"]]
795 -
796 -
797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
798 -
799 -
800 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
801 -
802 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
803 -
804 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
805 -
806 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
807 -
808 -
809 809  (% style="color:#037691" %)**General Commands**(%%)      
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
738 +AT  : Attention       
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
740 +AT?  : Short Help     
814 814  
815 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
742 +ATZ  : MCU Reset    
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
744 +AT+TDC  : Application Data Transmission Interval
818 818  
746 +AT+CFG  : Print all configurations
819 819  
820 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
748 +AT+CFGMOD           : Working mode selection
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
750 +AT+INTMOD            : Set the trigger interrupt mode
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
752 +AT+5VT  : Set extend the time of 5V power  
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
754 +AT+PRO  : Choose agreement
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
756 +AT+WEIGRE  : Get weight or set weight to 0
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
758 +AT+WEIGAP  : Get or Set the GapValue of weight
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
760 +AT+RXDL  : Extend the sending and receiving time
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
762 +AT+CNTFAC  : Get or set counting parameters
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
764 +AT+SERVADDR  : Server Address
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
767 +(% style="color:#037691" %)**COAP Management**      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
769 +AT+URI            : Resource parameters
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
772 +(% style="color:#037691" %)**UDP Management**
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
774 +AT+CFM          : Upload confirmation mode (only valid for UDP)
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
777 +(% style="color:#037691" %)**MQTT Management**
853 853  
779 +AT+CLIENT               : Get or Set MQTT client
854 854  
855 -(% style="color:#037691" %)**LoRa Network Management**
781 +AT+UNAME  : Get or Set MQTT Username
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
783 +AT+PWD                  : Get or Set MQTT password
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
785 +AT+PUBTOPI : Get or Set MQTT publish topic
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
787 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
790 +(% style="color:#037691" %)**Information**          
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
792 +AT+FDR  : Factory Data Reset
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
794 +AT+PWOR : Serial Access Password
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
798 += ​5.  FAQ =
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
800 +== 5.1 How to Upgrade Firmware ==
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
882 -
883 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
884 -
885 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
886 -
887 -
888 -(% style="color:#037691" %)**Information** 
889 -
890 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
891 -
892 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
893 -
894 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
895 -
896 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
897 -
898 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
899 -
900 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
901 -
902 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
903 -
904 -
905 -= ​4. FAQ =
906 -
907 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
908 -
909 909  (((
910 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
911 -When downloading the images, choose the required image file for download. ​
804 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
912 912  )))
913 913  
914 914  (((
915 -
808 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
916 916  )))
917 917  
918 918  (((
919 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
812 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
920 920  )))
921 921  
922 -(((
923 -
924 -)))
925 925  
926 -(((
927 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
928 -)))
929 929  
930 -(((
931 -
932 -)))
817 += 6.  Trouble Shooting =
933 933  
934 -(((
935 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
936 -)))
819 +== 6.1  ​Connection problem when uploading firmware ==
937 937  
938 -[[image:image-20220606154726-3.png]]
939 939  
940 -
941 -When you use the TTN network, the US915 frequency bands use are:
942 -
943 -* 903.9 - SF7BW125 to SF10BW125
944 -* 904.1 - SF7BW125 to SF10BW125
945 -* 904.3 - SF7BW125 to SF10BW125
946 -* 904.5 - SF7BW125 to SF10BW125
947 -* 904.7 - SF7BW125 to SF10BW125
948 -* 904.9 - SF7BW125 to SF10BW125
949 -* 905.1 - SF7BW125 to SF10BW125
950 -* 905.3 - SF7BW125 to SF10BW125
951 -* 904.6 - SF8BW500
952 -
822 +(% class="wikigeneratedid" %)
953 953  (((
954 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
824 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
955 955  )))
956 956  
957 -(% class="box infomessage" %)
958 -(((
959 -**AT+CHE=2**
960 -)))
961 961  
962 -(% class="box infomessage" %)
963 -(((
964 -**ATZ**
965 -)))
966 966  
967 -(((
968 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
969 -)))
829 +== 6.2  AT Command input doesn't work ==
970 970  
971 971  (((
972 -
832 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
973 973  )))
974 974  
975 -(((
976 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
977 -)))
978 978  
979 -[[image:image-20220606154825-4.png]]
980 980  
837 += 7. ​ Order Info =
981 981  
982 982  
983 -= 5. Trouble Shooting =
840 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
984 984  
985 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
986 986  
987 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
988 -
989 -
990 -== 5.2 AT Command input doesn’t work ==
991 -
992 -(((
993 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
994 -)))
995 -
996 -
997 -== 5.3 Device rejoin in at the second uplink packet ==
998 -
999 -(% style="color:#4f81bd" %)**Issue describe as below:**
1000 -
1001 -[[image:1654500909990-784.png]]
1002 -
1003 -
1004 -(% style="color:#4f81bd" %)**Cause for this issue:**
1005 -
1006 -(((
1007 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1008 -)))
1009 -
1010 -
1011 -(% style="color:#4f81bd" %)**Solution: **
1012 -
1013 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1014 -
1015 -[[image:1654500929571-736.png||height="458" width="832"]]
1016 -
1017 -
1018 -= 6. ​Order Info =
1019 -
1020 -
1021 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1022 -
1023 -
1024 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1025 -
1026 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1027 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1028 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1029 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1030 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1031 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1032 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1033 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1034 -
1035 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1036 -
1037 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1038 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1039 -
1040 1040  (% class="wikigeneratedid" %)
1041 1041  (((
1042 1042  
1043 1043  )))
1044 1044  
1045 -= 7. Packing Info =
848 += 8.  Packing Info =
1046 1046  
1047 1047  (((
1048 1048  
1049 1049  
1050 1050  (% style="color:#037691" %)**Package Includes**:
1051 -)))
1052 1052  
1053 -* (((
1054 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
855 +
856 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
857 +* External antenna x 1
1055 1055  )))
1056 1056  
1057 1057  (((
... ... @@ -1058,30 +1058,20 @@
1058 1058  
1059 1059  
1060 1060  (% style="color:#037691" %)**Dimension and weight**:
1061 -)))
1062 1062  
1063 -* (((
1064 -Device Size: cm
865 +
866 +* Size: 195 x 125 x 55 mm
867 +* Weight:   420g
1065 1065  )))
1066 -* (((
1067 -Device Weight: g
1068 -)))
1069 -* (((
1070 -Package Size / pcs : cm
1071 -)))
1072 -* (((
1073 -Weight / pcs : g
1074 1074  
870 +(((
871 +
1075 1075  
873 +
1076 1076  
1077 1077  )))
1078 1078  
1079 -= 8. Support =
877 += 9.  Support =
1080 1080  
1081 1081  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1082 1082  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1083 -
1084 -
1085 -)))
1086 -)))
1087 -)))
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content