Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,64 +12,82 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 61 73 +== 1.3 Specification == 62 62 63 63 64 - ==1.3Specification ==76 +(% style="color:#037691" %)**Common DC Characteristics:** 65 65 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 80 + 81 +(% style="color:#037691" %)**NB-IoT Spec:** 82 + 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 89 + 90 +Probe(% style="color:#037691" %)** Specification:** 91 + 66 66 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 67 67 68 -[[image:image-20220 606162220-5.png]]94 +[[image:image-20220708101224-1.png]] 69 69 70 70 71 71 72 -== 1.4 Applications == 98 +== 1.4 Applications == 73 73 74 74 * Smart Agriculture 75 75 ... ... @@ -76,982 +76,724 @@ 76 76 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 77 77 78 78 79 -== 1.5 Firmware Changelog==105 +== 1.5 Pin Definitions == 80 80 81 81 82 - **LSE01v1.0 :** Release108 +[[image:1657246476176-652.png]] 83 83 84 84 85 85 86 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=112 += 2. Use NSE01 to communicate with IoT Server = 87 87 88 -== 2.1 How it works == 114 +== 2.1 How it works == 89 89 116 + 90 90 ((( 91 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 92 92 ))) 93 93 121 + 94 94 ((( 95 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].123 +The diagram below shows the working flow in default firmware of NSE01: 96 96 ))) 97 97 126 +[[image:image-20220708101605-2.png]] 98 98 128 +((( 129 + 130 +))) 99 99 100 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 103 134 +== 2.2 Configure the NSE01 == 104 104 105 -[[image:1654503992078-669.png]] 106 106 137 +=== 2.2.1 Test Requirement === 107 107 108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 109 109 110 - 111 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 - 113 -Each LSE01 is shipped with a sticker with the default device EUI as below: 114 - 115 -[[image:image-20220606163732-6.jpeg]] 116 - 117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 - 119 -**Add APP EUI in the application** 120 - 121 - 122 -[[image:1654504596150-405.png]] 123 - 124 - 125 - 126 -**Add APP KEY and DEV EUI** 127 - 128 -[[image:1654504683289-357.png]] 129 - 130 - 131 - 132 -**Step 2**: Power on LSE01 133 - 134 - 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 - 137 -[[image:image-20220606163915-7.png]] 138 - 139 - 140 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 - 142 -[[image:1654504778294-788.png]] 143 - 144 - 145 - 146 -== 2.3 Uplink Payload == 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 - 153 -Uplink payload includes in total 11 bytes. 154 - 155 - 156 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 157 -|=((( 158 -**Size** 159 - 160 -**(bytes)** 161 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 162 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 163 163 ((( 164 -Temperature 165 - 166 -((( 167 -(Reserve, Ignore now) 141 +To use NSE01 in your city, make sure meet below requirements: 168 168 ))) 169 169 170 -~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]| 144 +* Your local operator has already distributed a NB-IoT Network there. 145 +* The local NB-IoT network used the band that NSE01 supports. 146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 171 171 172 -(% style="width:80px" %) 173 173 ((( 174 -((( 175 -MOD & Digital Interrupt 176 - 177 -((( 178 -(Optional) 149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 179 179 ))) 180 -))) 181 181 182 -[[image:1654504881641-514.png]] 183 183 153 +[[image:1657249419225-449.png]] 184 184 185 185 186 -=== 2.3.2 MOD~=1(Original value) === 187 187 188 - Thismodecanget the original AD value of moistureand original conductivity(withtemperaturedriftcompensation).157 +=== 2.2.2 Insert SIM card === 189 189 190 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 191 -|=((( 192 -**Size** 193 - 194 -**(bytes)** 195 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 197 197 ((( 198 -Temperature 160 +Insert the NB-IoT Card get from your provider. 161 +))) 199 199 200 200 ((( 201 - (Reserve,Ignore now)164 +User need to take out the NB-IoT module and insert the SIM card like below: 202 202 ))) 203 -))) 204 204 205 -~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]| 206 206 207 -((( 208 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 209 -))) 168 +[[image:1657249468462-536.png]] 210 210 211 -~| 212 212 171 + 172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 173 + 213 213 ((( 214 214 ((( 215 - MOD&DigitalInterrupt176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 216 216 ))) 217 - 218 -(Optional) 219 219 ))) 220 -))) 221 221 222 -[[image:1654504907647-967.png]] 223 223 181 +**Connection:** 224 224 183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 225 225 226 - ===2.3.3Battery Info===185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 227 227 228 - Checkthettery voltage forLSE01.187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 229 229 230 -Ex1: 0x0B45 = 2885mV 231 231 232 - Ex2:0x0B49=2889mV190 +In the PC, use below serial tool settings: 233 233 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 234 234 235 - 236 -=== 2.3.4 Soil Moisture === 237 - 238 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 239 - 240 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 241 - 242 - 243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 - 245 - 246 - 247 -=== 2.3.5 Soil Temperature === 248 - 249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 - 251 -**Example**: 252 - 253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 - 255 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 256 - 257 - 258 - 259 -=== 2.3.6 Soil Conductivity (EC) === 260 - 261 261 ((( 262 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 263 263 ))) 264 264 265 -((( 266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 -))) 202 +[[image:image-20220708110657-3.png]] 268 268 269 269 ((( 270 - Generally,theECvalueofirrigationwaterisless than800uS/205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 271 271 ))) 272 272 273 -((( 274 - 275 -))) 276 276 277 -((( 278 - 279 -))) 280 280 281 -=== 2. 3.7MOD===210 +=== 2.2.4 Use CoAP protocol to uplink data === 282 282 283 - Firmwareversion atleastv2.1supportschangingmode.212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 284 284 285 -For example, bytes[10]=90 286 286 287 - mod=(bytes[10]>>7)&0x01=1.215 +**Use below commands:** 288 288 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 289 289 290 - **DownlinkCommand:**221 +For parameter description, please refer to AT command set 291 291 292 - If payload = 0x0A00, workmode=0223 +[[image:1657249793983-486.png]] 293 293 294 -If** **payload =** **0x0A01, workmode=1 295 295 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 296 296 228 +[[image:1657249831934-534.png]] 297 297 298 -=== 2.3.8 Decode payload in The Things Network === 299 299 300 -While using TTN network, you can add the payload format to decode the payload. 301 301 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 302 302 303 - [[image:1654505570700-128.png]]234 +This feature is supported since firmware version v1.0.1 304 304 305 -The payload decoder function for TTN is here: 306 306 307 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 308 308 241 +[[image:1657249864775-321.png]] 309 309 310 310 311 - ==2.4Uplink Interval ==244 +[[image:1657249930215-289.png]] 312 312 313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 314 314 315 315 248 +=== 2.2.6 Use MQTT protocol to uplink data === 316 316 317 - ==2.5DownlinkPayload==250 +This feature is supported since firmware version v110 318 318 319 -By default, LSE50 prints the downlink payload to console port. 320 320 321 -[[image:image-20220606165544-8.png]] 253 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 322 322 261 +[[image:1657249978444-674.png]] 323 323 324 -**Examples:** 325 325 264 +[[image:1657249990869-686.png]] 326 326 327 -* **Set TDC** 328 328 329 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 267 +((( 268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 +))) 330 330 331 -Payload: 01 00 00 1E TDC=30S 332 332 333 -Payload: 01 00 00 3C TDC=60S 334 334 273 +=== 2.2.7 Use TCP protocol to uplink data === 335 335 336 - ***Reset**275 +This feature is supported since firmware version v110 337 337 338 -If payload = 0x04FF, it will reset the LSE01 339 339 278 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 340 340 341 - * **CFM**281 +[[image:1657250217799-140.png]] 342 342 343 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 344 344 284 +[[image:1657250255956-604.png]] 345 345 346 346 347 -== 2.6 Show Data in DataCake IoT Server == 348 348 349 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:288 +=== 2.2.8 Change Update Interval === 350 350 290 +User can use below command to change the (% style="color:green" %)**uplink interval**. 351 351 352 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.292 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 353 353 354 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 294 +((( 295 +(% style="color:red" %)**NOTE:** 296 +))) 355 355 298 +((( 299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 +))) 356 356 357 -[[image:1654505857935-743.png]] 358 358 359 359 360 - [[image:1654505874829-548.png]]304 +== 2.3 Uplink Payload == 361 361 362 - Step3: Createan accountorloginDatacake.306 +In this mode, uplink payload includes in total 18 bytes 363 363 364 -Step 4: Search the LSE01 and add DevEUI. 308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 309 +|=(% style="width: 60px;" %)((( 310 +**Size(bytes)** 311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 365 365 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 366 366 367 -[[image:1654505905236-553.png]] 368 368 317 +[[image:image-20220708111918-4.png]] 369 369 370 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 371 371 372 - [[image:1654505925508-181.png]]320 +The payload is ASCII string, representative same HEX: 373 373 322 +0x72403155615900640c7817075e0a8c02f900 where: 374 374 324 +* Device ID: 0x 724031556159 = 724031556159 325 +* Version: 0x0064=100=1.0.0 375 375 376 -== 2.7 Frequency Plans == 327 +* BAT: 0x0c78 = 3192 mV = 3.192V 328 +* Singal: 0x17 = 23 329 +* Soil Moisture: 0x075e= 1886 = 18.86 % 330 +* Soil Temperature:0x0a8c =2700=27 °C 331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 332 +* Interrupt: 0x00 = 0 377 377 378 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 379 379 335 +== 2.4 Payload Explanation and Sensor Interface == 380 380 381 -=== 2.7.1 EU863-870 (EU868) === 382 382 383 - (%style="color:#037691"%)**Uplink:**338 +=== 2.4.1 Device ID === 384 384 385 - 868.1-SF7BW125toSF12BW125340 +By default, the Device ID equal to the last 6 bytes of IMEI. 386 386 387 - 868.3-SF7BW125toSF12BW125andSF7BW250342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 388 388 389 - 868.5 - SF7BW125 to SF12BW125344 +**Example:** 390 390 391 -8 67.1- SF7BW125to SF12BW125346 +AT+DEUI=A84041F15612 392 392 393 - 867.3-SF7BW125toSF12BW125348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 394 394 395 -867.5 - SF7BW125 to SF12BW125 396 396 397 -867.7 - SF7BW125 to SF12BW125 398 398 399 - 867.9- SF7BW125toSF12BW125352 +=== 2.4.2 Version Info === 400 400 401 - 868.8 -FSK354 +Specify the software version: 0x64=100, means firmware version 1.00. 402 402 356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 403 403 404 -(% style="color:#037691" %)** Downlink:** 405 405 406 -Uplink channels 1-9 (RX1) 407 407 408 - 869.525- SF9BW125(RX2 downlinkonly)360 +=== 2.4.3 Battery Info === 409 409 362 +((( 363 +Check the battery voltage for LSE01. 364 +))) 410 410 366 +((( 367 +Ex1: 0x0B45 = 2885mV 368 +))) 411 411 412 -=== 2.7.2 US902-928(US915) === 370 +((( 371 +Ex2: 0x0B49 = 2889mV 372 +))) 413 413 414 -Used in USA, Canada and South America. Default use CHE=2 415 415 416 -(% style="color:#037691" %)**Uplink:** 417 417 418 - 903.9-SF7BW125toSF10BW125376 +=== 2.4.4 Signal Strength === 419 419 420 - 904.1-SF7BW125to SF10BW125378 +NB-IoT Network signal Strength. 421 421 422 - 904.3 - SF7BW125to SF10BW125380 +**Ex1: 0x1d = 29** 423 423 424 - 904.5-SF7BW125toSF10BW125382 +(% style="color:blue" %)**0**(%%) -113dBm or less 425 425 426 - 904.7-SF7BW125toSF10BW125384 +(% style="color:blue" %)**1**(%%) -111dBm 427 427 428 - 904.9- SF7BW125toSF10BW125386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 429 429 430 - 905.1-SF7BW125toSF10BW125388 +(% style="color:blue" %)**31** (%%) -51dBm or greater 431 431 432 -9 05.3-SF7BW125toSF10BW125390 +(% style="color:blue" %)**99** (%%) Not known or not detectable 433 433 434 434 435 -(% style="color:#037691" %)**Downlink:** 436 436 437 - 923.3-SF7BW500toSF12BW500394 +=== 2.4.5 Soil Moisture === 438 438 439 -923.9 - SF7BW500 to SF12BW500 396 +((( 397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 398 +))) 440 440 441 -924.5 - SF7BW500 to SF12BW500 400 +((( 401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 402 +))) 442 442 443 -925.1 - SF7BW500 to SF12BW500 404 +((( 405 + 406 +))) 444 444 445 -925.7 - SF7BW500 to SF12BW500 408 +((( 409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 410 +))) 446 446 447 -926.3 - SF7BW500 to SF12BW500 448 448 449 -926.9 - SF7BW500 to SF12BW500 450 450 451 - 927.5-SF7BW500toSF12BW500414 +=== 2.4.6 Soil Temperature === 452 452 453 -923.3 - SF12BW500(RX2 downlink only) 416 +((( 417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 418 +))) 454 454 420 +((( 421 +**Example**: 422 +))) 455 455 424 +((( 425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 426 +))) 456 456 457 -=== 2.7.3 CN470-510 (CN470) === 428 +((( 429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 430 +))) 458 458 459 -Used in China, Default use CHE=1 460 460 461 -(% style="color:#037691" %)**Uplink:** 462 462 463 -4 86.3-SF7BW125toSF12BW125434 +=== 2.4.7 Soil Conductivity (EC) === 464 464 465 -486.5 - SF7BW125 to SF12BW125 436 +((( 437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 438 +))) 466 466 467 -486.7 - SF7BW125 to SF12BW125 440 +((( 441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 442 +))) 468 468 469 -486.9 - SF7BW125 to SF12BW125 444 +((( 445 +Generally, the EC value of irrigation water is less than 800uS / cm. 446 +))) 470 470 471 -487.1 - SF7BW125 to SF12BW125 448 +((( 449 + 450 +))) 472 472 473 -487.3 - SF7BW125 to SF12BW125 452 +((( 453 + 454 +))) 474 474 475 -4 87.5-SF7BW125toSF12BW125456 +=== 2.4.8 Digital Interrupt === 476 476 477 - 487.7-SF7BW125toSF12BW125458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 478 478 460 +The command is: 479 479 480 -(% style="color: #037691" %)**Downlink:**462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 481 481 482 -506.7 - SF7BW125 to SF12BW125 483 483 484 - 506.9-SF7BW125toSF12BW125465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 485 485 486 -507.1 - SF7BW125 to SF12BW125 487 487 488 - 507.3 - SF7BW125 to SF12BW125468 +Example: 489 489 490 - 507.5-SF7BW125to SF12BW125470 +0x(00): Normal uplink packet. 491 491 492 - 507.7 - SF7BW125toSF12BW125472 +0x(01): Interrupt Uplink Packet. 493 493 494 -507.9 - SF7BW125 to SF12BW125 495 495 496 -508.1 - SF7BW125 to SF12BW125 497 497 498 - 505.3- SF12BW125(RX2downlink only)476 +=== 2.4.9 +5V Output === 499 499 478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 500 500 501 501 502 - ===2.7.4AU915-928(AU915)===481 +The 5V output time can be controlled by AT Command. 503 503 504 - DefaultuseCHE=2483 +(% style="color:blue" %)**AT+5VT=1000** 505 505 506 - (%style="color:#037691"%)**Uplink:**485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 507 507 508 -916.8 - SF7BW125 to SF12BW125 509 509 510 -917.0 - SF7BW125 to SF12BW125 511 511 512 - 917.2- SF7BW125toSF12BW125489 +== 2.5 Downlink Payload == 513 513 514 - 917.4-SF7BW125toSF12BW125491 +By default, NSE01 prints the downlink payload to console port. 515 515 516 - 917.6-SF7BW125 to SF12BW125493 +[[image:image-20220708133731-5.png]] 517 517 518 -917.8 - SF7BW125 to SF12BW125 519 519 520 -918.0 - SF7BW125 to SF12BW125 496 +((( 497 +(% style="color:blue" %)**Examples:** 498 +))) 521 521 522 -918.2 - SF7BW125 to SF12BW125 500 +((( 501 + 502 +))) 523 523 504 +* ((( 505 +(% style="color:blue" %)**Set TDC** 506 +))) 524 524 525 -(% style="color:#037691" %)**Downlink:** 508 +((( 509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 510 +))) 526 526 527 -923.3 - SF7BW500 to SF12BW500 512 +((( 513 +Payload: 01 00 00 1E TDC=30S 514 +))) 528 528 529 -923.9 - SF7BW500 to SF12BW500 516 +((( 517 +Payload: 01 00 00 3C TDC=60S 518 +))) 530 530 531 -924.5 - SF7BW500 to SF12BW500 520 +((( 521 + 522 +))) 532 532 533 -925.1 - SF7BW500 to SF12BW500 524 +* ((( 525 +(% style="color:blue" %)**Reset** 526 +))) 534 534 535 -925.7 - SF7BW500 to SF12BW500 528 +((( 529 +If payload = 0x04FF, it will reset the NSE01 530 +))) 536 536 537 -926.3 - SF7BW500 to SF12BW500 538 538 539 - 926.9-SF7BW500toSF12BW500533 +* (% style="color:blue" %)**INTMOD** 540 540 541 - 927.5-SF7BW500 toSF12BW500535 +Downlink Payload: 06000003, Set AT+INTMOD=3 542 542 543 -923.3 - SF12BW500(RX2 downlink only) 544 544 545 545 539 +== 2.6 LED Indicator == 546 546 547 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 541 +((( 542 +The NSE01 has an internal LED which is to show the status of different state. 548 548 549 -(% style="color:#037691" %)**Default Uplink channel:** 550 550 551 -923.2 - SF7BW125 to SF10BW125 545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 546 +* Then the LED will be on for 1 second means device is boot normally. 547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 548 +* For each uplink probe, LED will be on for 500ms. 549 +))) 552 552 553 -923.4 - SF7BW125 to SF10BW125 554 554 555 555 556 -(% style="color:#037691" %)**Additional Uplink Channel**: 557 557 558 - (OTAAmode,channelddedbyJoinAcceptmessage)554 +== 2.7 Installation in Soil == 559 559 560 - (% style="color:#037691" %)**AS920~~AS923 for Japan,Malaysia,Singapore**:556 +__**Measurement the soil surface**__ 561 561 562 - 922.2-SF7BW125SF10BW125558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 563 563 564 - 922.4 - SF7BW125to SF10BW125560 +[[image:1657259653666-883.png]] 565 565 566 -922.6 - SF7BW125 to SF10BW125 567 567 568 -922.8 - SF7BW125 to SF10BW125 563 +((( 564 + 569 569 570 -923.0 - SF7BW125 to SF10BW125 566 +((( 567 +Dig a hole with diameter > 20CM. 568 +))) 571 571 572 -922.0 - SF7BW125 to SF10BW125 570 +((( 571 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 572 +))) 573 +))) 573 573 575 +[[image:1654506665940-119.png]] 574 574 575 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 577 +((( 578 + 579 +))) 576 576 577 -923.6 - SF7BW125 to SF10BW125 578 578 579 - 923.8- SF7BW125toSF10BW125582 +== 2.8 Firmware Change Log == 580 580 581 -924.0 - SF7BW125 to SF10BW125 582 582 583 - 924.2-SF7BW125toSF10BW125585 +Download URL & Firmware Change log 584 584 585 - 924.4-F7BW125toSF10BW125587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 586 586 587 -924.6 - SF7BW125 to SF10BW125 588 588 590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 589 589 590 -(% style="color:#037691" %)** Downlink:** 591 591 592 -Uplink channels 1-8 (RX1) 593 593 594 - 923.2- SF10BW125(RX2)594 +== 2.9 Battery Analysis == 595 595 596 +=== 2.9.1 Battery Type === 596 596 597 597 598 - ===2.7.6KR920-923(KR920)===599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 599 599 600 -Default channel: 601 601 602 - 922.1-SF7BW125toSF12BW125602 +The battery is designed to last for several years depends on the actually use environment and update interval. 603 603 604 -922.3 - SF7BW125 to SF12BW125 605 605 606 - 922.5-SF7BW125toSF12BW125605 +The battery related documents as below: 607 607 607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 608 608 609 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 - 611 -922.1 - SF7BW125 to SF12BW125 612 - 613 -922.3 - SF7BW125 to SF12BW125 614 - 615 -922.5 - SF7BW125 to SF12BW125 616 - 617 -922.7 - SF7BW125 to SF12BW125 618 - 619 -922.9 - SF7BW125 to SF12BW125 620 - 621 -923.1 - SF7BW125 to SF12BW125 622 - 623 -923.3 - SF7BW125 to SF12BW125 624 - 625 - 626 -(% style="color:#037691" %)**Downlink:** 627 - 628 -Uplink channels 1-7(RX1) 629 - 630 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 631 - 632 - 633 - 634 -=== 2.7.7 IN865-867 (IN865) === 635 - 636 -(% style="color:#037691" %)** Uplink:** 637 - 638 -865.0625 - SF7BW125 to SF12BW125 639 - 640 -865.4025 - SF7BW125 to SF12BW125 641 - 642 -865.9850 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %) **Downlink:** 646 - 647 -Uplink channels 1-3 (RX1) 648 - 649 -866.550 - SF10BW125 (RX2) 650 - 651 - 652 - 653 - 654 -== 2.8 LED Indicator == 655 - 656 -The LSE01 has an internal LED which is to show the status of different state. 657 - 658 -* Blink once when device power on. 659 -* Solid ON for 5 seconds once device successful Join the network. 660 -* Blink once when device transmit a packet. 661 - 662 -== 2.9 Installation in Soil == 663 - 664 -**Measurement the soil surface** 665 - 666 - 667 -[[image:1654506634463-199.png]] 668 - 669 669 ((( 670 -((( 671 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 612 +[[image:image-20220708140453-6.png]] 672 672 ))) 673 -))) 674 674 675 675 676 -[[image:1654506665940-119.png]] 677 677 678 -((( 679 -Dig a hole with diameter > 20CM. 680 -))) 617 +=== 2.9.2 Power consumption Analyze === 681 681 682 682 ((( 683 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 684 ))) 685 685 686 686 687 -== 2.10 Firmware Change Log == 688 - 689 689 ((( 690 - **Firmware downloadlink:**625 +Instruction to use as below: 691 691 ))) 692 692 693 693 ((( 694 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]629 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 695 695 ))) 696 696 697 -((( 698 - 699 -))) 700 700 701 701 ((( 702 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 703 ))) 704 704 705 -((( 706 - 637 +* ((( 638 +Product Model 707 707 ))) 708 - 709 -((( 710 -**V1.0.** 640 +* ((( 641 +Uplink Interval 711 711 ))) 643 +* ((( 644 +Working Mode 645 +))) 712 712 713 713 ((( 714 - Release648 +And the Life expectation in difference case will be shown on the right. 715 715 ))) 716 716 651 +[[image:image-20220708141352-7.jpeg]] 717 717 718 -== 2.11 Battery Analysis == 719 719 720 -=== 2.11.1 Battery Type === 721 721 722 -((( 723 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 724 -))) 655 +=== 2.9.3 Battery Note === 725 725 726 726 ((( 727 -The battery is designed to last for more than5 yearsfor theLSN50.658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) 729 729 730 -((( 731 -((( 732 -The battery-related documents are as below: 733 -))) 734 -))) 735 735 736 -* ((( 737 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 738 -))) 739 -* ((( 740 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 741 -))) 742 -* ((( 743 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 744 -))) 745 745 746 - [[image:image-20220606171726-9.png]]663 +=== 2.9.4 Replace the battery === 747 747 748 - 749 - 750 -=== 2.11.2 Battery Note === 751 - 752 752 ((( 753 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 754 754 ))) 755 755 756 756 757 757 758 -= ==2.11.3Replacethebattery===671 += 3. Access NB-IoT Module = 759 759 760 760 ((( 761 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.674 +Users can directly access the AT command set of the NB-IoT module. 762 762 ))) 763 763 764 764 ((( 765 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 766 766 ))) 767 767 768 -((( 769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 770 -))) 681 +[[image:1657261278785-153.png]] 771 771 772 772 773 773 774 -= 3.Using the AT Commands =685 += 4. Using the AT Commands = 775 775 776 -== 3.1 Access AT Commands ==687 +== 4.1 Access AT Commands == 777 777 689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 778 778 779 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 780 780 781 - [[image:1654501986557-872.png||height="391"width="800"]]692 +AT+<CMD>? : Help on <CMD> 782 782 694 +AT+<CMD> : Run <CMD> 783 783 784 - Orifyouhavebelowboard,usebelowconnection:696 +AT+<CMD>=<value> : Set the value 785 785 698 +AT+<CMD>=? : Get the value 786 786 787 -[[image:1654502005655-729.png||height="503" width="801"]] 788 788 789 - 790 - 791 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 792 - 793 - 794 - [[image:1654502050864-459.png||height="564" width="806"]] 795 - 796 - 797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 798 - 799 - 800 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 801 - 802 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 803 - 804 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 805 - 806 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 807 - 808 - 809 809 (% style="color:#037691" %)**General Commands**(%%) 810 810 811 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention703 +AT : Attention 812 812 813 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help705 +AT? : Short Help 814 814 815 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset707 +ATZ : MCU Reset 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval709 +AT+TDC : Application Data Transmission Interval 818 818 711 +AT+CFG : Print all configurations 819 819 820 - (%style="color:#037691"%)**Keys,IDsand EUIs management**713 +AT+CFGMOD : Working mode selection 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI715 +AT+INTMOD : Set the trigger interrupt mode 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey717 +AT+5VT : Set extend the time of 5V power 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key719 +AT+PRO : Choose agreement 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress721 +AT+WEIGRE : Get weight or set weight to 0 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI723 +AT+WEIGAP : Get or Set the GapValue of weight 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)725 +AT+RXDL : Extend the sending and receiving time 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network727 +AT+CNTFAC : Get or set counting parameters 835 835 836 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode729 +AT+SERVADDR : Server Address 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 839 839 840 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network732 +(% style="color:#037691" %)**COAP Management** 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode734 +AT+URI : Resource parameters 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 845 845 846 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format737 +(% style="color:#037691" %)**UDP Management** 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat739 +AT+CFM : Upload confirmation mode (only valid for UDP) 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 851 851 852 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data742 +(% style="color:#037691" %)**MQTT Management** 853 853 744 +AT+CLIENT : Get or Set MQTT client 854 854 855 - (%style="color:#037691"%)**LoRaNetworkManagement**746 +AT+UNAME : Get or Set MQTT Username 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate748 +AT+PWD : Get or Set MQTT password 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA750 +AT+PUBTOPIC : Get or Set MQTT publish topic 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting752 +AT+SUBTOPIC : Get or Set MQTT subscription topic 862 862 863 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 864 864 865 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink755 +(% style="color:#037691" %)**Information** 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink757 +AT+FDR : Factory Data Reset 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1759 +AT+PWORD : Serial Access Password 870 870 871 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 874 874 875 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1763 += 5. FAQ = 876 876 877 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2765 +== 5.1 How to Upgrade Firmware == 878 878 879 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 880 880 881 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 882 - 883 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 886 - 887 - 888 -(% style="color:#037691" %)**Information** 889 - 890 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 891 - 892 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 893 - 894 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 895 - 896 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 897 - 898 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 899 - 900 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 901 - 902 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 903 - 904 - 905 -= 4. FAQ = 906 - 907 -== 4.1 How to change the LoRa Frequency Bands/Region? == 908 - 909 909 ((( 910 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 911 -When downloading the images, choose the required image file for download. 769 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 912 912 ))) 913 913 914 914 ((( 915 - 773 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 916 916 ))) 917 917 918 918 ((( 919 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 920 920 ))) 921 921 922 -((( 923 - 924 -))) 925 925 926 -((( 927 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 928 -))) 929 929 930 -((( 931 - 932 -))) 782 += 6. Trouble Shooting = 933 933 934 -((( 935 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 936 -))) 784 +== 6.1 Connection problem when uploading firmware == 937 937 938 -[[image:image-20220606154726-3.png]] 939 939 940 - 941 -When you use the TTN network, the US915 frequency bands use are: 942 - 943 -* 903.9 - SF7BW125 to SF10BW125 944 -* 904.1 - SF7BW125 to SF10BW125 945 -* 904.3 - SF7BW125 to SF10BW125 946 -* 904.5 - SF7BW125 to SF10BW125 947 -* 904.7 - SF7BW125 to SF10BW125 948 -* 904.9 - SF7BW125 to SF10BW125 949 -* 905.1 - SF7BW125 to SF10BW125 950 -* 905.3 - SF7BW125 to SF10BW125 951 -* 904.6 - SF8BW500 952 - 787 +(% class="wikigeneratedid" %) 953 953 ((( 954 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 955 955 ))) 956 956 957 -(% class="box infomessage" %) 958 -((( 959 -**AT+CHE=2** 960 -))) 961 961 962 -(% class="box infomessage" %) 963 -((( 964 -**ATZ** 965 -))) 966 966 967 -((( 968 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 969 -))) 794 +== 6.2 AT Command input doesn't work == 970 970 971 971 ((( 972 - 797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 973 973 ))) 974 974 975 -((( 976 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 977 -))) 978 978 979 -[[image:image-20220606154825-4.png]] 980 980 802 += 7. Order Info = 981 981 982 982 983 - = 5. TroubleShooting=805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 984 984 985 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 986 986 987 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 988 - 989 - 990 -== 5.2 AT Command input doesn’t work == 991 - 992 -((( 993 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 -))) 995 - 996 - 997 -== 5.3 Device rejoin in at the second uplink packet == 998 - 999 -(% style="color:#4f81bd" %)**Issue describe as below:** 1000 - 1001 -[[image:1654500909990-784.png]] 1002 - 1003 - 1004 -(% style="color:#4f81bd" %)**Cause for this issue:** 1005 - 1006 -((( 1007 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1008 -))) 1009 - 1010 - 1011 -(% style="color:#4f81bd" %)**Solution: ** 1012 - 1013 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1014 - 1015 -[[image:1654500929571-736.png||height="458" width="832"]] 1016 - 1017 - 1018 -= 6. Order Info = 1019 - 1020 - 1021 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1022 - 1023 - 1024 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1025 - 1026 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1027 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1028 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1029 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1030 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1031 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1032 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1033 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1034 - 1035 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1036 - 1037 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1038 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1039 - 1040 1040 (% class="wikigeneratedid" %) 1041 1041 ((( 1042 1042 1043 1043 ))) 1044 1044 1045 -= 7. Packing Info =813 += 8. Packing Info = 1046 1046 1047 1047 ((( 1048 1048 1049 1049 1050 1050 (% style="color:#037691" %)**Package Includes**: 1051 -))) 1052 1052 1053 -* ((( 1054 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 820 + 821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 822 +* External antenna x 1 1055 1055 ))) 1056 1056 1057 1057 ((( ... ... @@ -1058,30 +1058,20 @@ 1058 1058 1059 1059 1060 1060 (% style="color:#037691" %)**Dimension and weight**: 1061 -))) 1062 1062 1063 -* ((( 1064 -Device Size: cm 830 + 831 +* Size: 195 x 125 x 55 mm 832 +* Weight: 420g 1065 1065 ))) 1066 -* ((( 1067 -Device Weight: g 1068 -))) 1069 -* ((( 1070 -Package Size / pcs : cm 1071 -))) 1072 -* ((( 1073 -Weight / pcs : g 1074 1074 835 +((( 836 + 1075 1075 838 + 1076 1076 1077 1077 ))) 1078 1078 1079 -= 8. Support =842 += 9. Support = 1080 1080 1081 1081 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1082 1082 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1083 - 1084 - 1085 -))) 1086 -))) 1087 -)))
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content