Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 22 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,64 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 62 65 +(% style="color:#037691" %)**Common DC Characteristics:** 63 63 64 -== 1.3 Specification == 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 65 65 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 66 66 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 67 67 68 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 69 69 70 70 71 71 72 -== 1.4 Applications == 87 +== 1.4 Applications == 73 73 74 74 * Smart Agriculture 75 75 ... ... @@ -76,701 +76,551 @@ 76 76 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 77 77 78 78 79 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 80 80 81 81 82 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 83 83 84 84 85 85 86 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 87 87 88 -== 2.1 How it works == 103 +== 2.1 How it works == 89 89 90 -((( 91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 92 -))) 93 93 94 94 ((( 95 - Incaseyoucan’tsettheOTAAkeysintheLoRaWANOTAAserver,andyouhave touse thekeys fromtheserver, youcan[[useATCommands>>||anchor="H3.200BUsingtheATCommands"]].107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 96 96 ))) 97 97 98 98 99 - 100 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 - 102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 - 104 - 105 -[[image:1654503992078-669.png]] 106 - 107 - 108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 109 - 110 - 111 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 - 113 -Each LSE01 is shipped with a sticker with the default device EUI as below: 114 - 115 -[[image:image-20220606163732-6.jpeg]] 116 - 117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 - 119 -**Add APP EUI in the application** 120 - 121 - 122 -[[image:1654504596150-405.png]] 123 - 124 - 125 - 126 -**Add APP KEY and DEV EUI** 127 - 128 -[[image:1654504683289-357.png]] 129 - 130 - 131 - 132 -**Step 2**: Power on LSE01 133 - 134 - 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 - 137 -[[image:image-20220606163915-7.png]] 138 - 139 - 140 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 - 142 -[[image:1654504778294-788.png]] 143 - 144 - 145 - 146 -== 2.3 Uplink Payload == 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 - 153 -Uplink payload includes in total 11 bytes. 154 - 155 - 156 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 157 -|=((( 158 -**Size** 159 - 160 -**(bytes)** 161 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 162 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 163 163 ((( 164 -Temperature 165 - 166 -((( 167 -(Reserve, Ignore now) 112 +The diagram below shows the working flow in default firmware of NSE01: 168 168 ))) 169 169 170 - ~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|115 +[[image:image-20220708101605-2.png]] 171 171 172 -(% style="width:80px" %) 173 173 ((( 174 -((( 175 -MOD & Digital Interrupt 176 - 177 -((( 178 -(Optional) 118 + 179 179 ))) 180 -))) 181 181 182 -[[image:1654504881641-514.png]] 183 183 184 184 123 +== 2.2 Configure the NSE01 == 185 185 186 -=== 2.3.2 MOD~=1(Original value) === 187 187 188 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 189 189 190 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 191 -|=((( 192 -**Size** 193 193 194 -**(bytes)** 195 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 197 -((( 198 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 199 199 200 -((( 201 -(Reserve, Ignore now) 202 -))) 203 -))) 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 204 204 205 -~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]| 206 - 207 207 ((( 208 - [[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 209 209 ))) 210 210 211 -~| 212 212 213 -((( 214 -((( 215 -MOD & Digital Interrupt 216 -))) 140 +[[image:1657249419225-449.png]] 217 217 218 -(Optional) 219 -))) 220 -))) 221 221 222 -[[image:1654504907647-967.png]] 223 223 144 +=== 2.2.2 Insert SIM card === 224 224 146 +Insert the NB-IoT Card get from your provider. 225 225 226 - ===2.3.3BatteryInfo===148 +User need to take out the NB-IoT module and insert the SIM card like below: 227 227 228 -Check the battery voltage for LSE01. 229 229 230 - Ex1:0x0B45=2885mV151 +[[image:1657249468462-536.png]] 231 231 232 -Ex2: 0x0B49 = 2889mV 233 233 234 234 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 235 235 236 -=== 2.3.4 Soil Moisture === 237 - 238 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 239 - 240 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 241 - 242 - 243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 - 245 - 246 - 247 -=== 2.3.5 Soil Temperature === 248 - 249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 - 251 -**Example**: 252 - 253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 - 255 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 256 - 257 - 258 - 259 -=== 2.3.6 Soil Conductivity (EC) === 260 - 261 261 ((( 262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 263 -))) 264 - 265 265 ((( 266 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 267 267 ))) 268 - 269 -((( 270 -Generally, the EC value of irrigation water is less than 800uS / cm. 271 271 ))) 272 272 273 -((( 274 - 275 -))) 276 276 277 -((( 278 - 279 -))) 164 +**Connection:** 280 280 281 -= ==2.3.7MOD===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 282 282 283 - Firmwareversionatst v2.1 supportschanging mode.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 284 284 285 - Forexample,bytes[10]=90170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 286 286 287 -mod=(bytes[10]>>7)&0x01=1. 288 288 173 +In the PC, use below serial tool settings: 289 289 290 -**Downlink Command:** 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 291 291 292 -If payload = 0x0A00, workmode=0 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 293 293 294 - If** **payload =** **0x0A01, workmode=1185 +[[image:image-20220708110657-3.png]] 295 295 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 296 296 297 297 298 -=== 2.3.8 Decode payload in The Things Network === 299 299 300 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.191 +=== 2.2.4 Use CoAP protocol to uplink data === 301 301 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 302 302 303 -[[image:1654505570700-128.png]] 304 304 305 - Thepayloaddecoder function for TTN ishere:196 +**Use below commands:** 306 306 307 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 308 308 202 +For parameter description, please refer to AT command set 309 309 204 +[[image:1657249793983-486.png]] 310 310 311 -== 2.4 Uplink Interval == 312 312 313 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 314 314 209 +[[image:1657249831934-534.png]] 315 315 316 316 317 -== 2.5 Downlink Payload == 318 318 319 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 320 320 321 - [[image:image-20220606165544-8.png]]215 +This feature is supported since firmware version v1.0.1 322 322 323 323 324 -**Examples:** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 325 325 222 +[[image:1657249864775-321.png]] 326 326 327 -* **Set TDC** 328 328 329 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.225 +[[image:1657249930215-289.png]] 330 330 331 -Payload: 01 00 00 1E TDC=30S 332 332 333 -Payload: 01 00 00 3C TDC=60S 334 334 229 +=== 2.2.6 Use MQTT protocol to uplink data === 335 335 336 - ***Reset**231 +This feature is supported since firmware version v110 337 337 338 -If payload = 0x04FF, it will reset the LSE01 339 339 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 340 340 341 - * **CFM**242 +[[image:1657249978444-674.png]] 342 342 343 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 344 344 245 +[[image:1657249990869-686.png]] 345 345 346 346 347 -== 2.6 Show Data in DataCake IoT Server == 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 348 348 349 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 350 350 351 351 352 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.254 +=== 2.2.7 Use TCP protocol to uplink data === 353 353 354 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:256 +This feature is supported since firmware version v110 355 355 356 356 357 -[[image:1654505857935-743.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 358 358 262 +[[image:1657250217799-140.png]] 359 359 360 -[[image:1654505874829-548.png]] 361 361 362 - Step 3: Create an account or login Datacake.265 +[[image:1657250255956-604.png]] 363 363 364 -Step 4: Search the LSE01 and add DevEUI. 365 365 366 366 367 - [[image:1654505905236-553.png]]269 +=== 2.2.8 Change Update Interval === 368 368 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 369 369 370 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 371 371 372 -[[image:1654505925508-181.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 373 373 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 374 374 375 375 376 -== 2.7 Frequency Plans == 377 377 378 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.285 +== 2.3 Uplink Payload == 379 379 287 +In this mode, uplink payload includes in total 18 bytes 380 380 381 -=== 2.7.1 EU863-870 (EU868) === 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 382 382 383 - (%style="color:#037691"%)** Uplink:**295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 384 384 385 -868.1 - SF7BW125 to SF12BW125 386 386 387 - 868.3-SF7BW125 to SF12BW125 and SF7BW250298 +[[image:image-20220708111918-4.png]] 388 388 389 -868.5 - SF7BW125 to SF12BW125 390 390 391 - 867.1-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 392 392 393 - 867.3- SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 394 394 395 -867.5 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 396 396 397 -867.7 - SF7BW125 to SF12BW125 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 398 398 399 - 867.9- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 400 400 401 -868.8 - FSK 402 402 318 +=== 2.4.1 Device ID === 403 403 404 - (% style="color:#037691"%)**Downlink:**320 +By default, the Device ID equal to the last 6 bytes of IMEI. 405 405 406 -U plinkchannels1-9(RX1)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 407 407 408 - 869.525 - SF9BW125 (RX2 downlink only)324 +**Example:** 409 409 326 +AT+DEUI=A84041F15612 410 410 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 411 411 412 -=== 2.7.2 US902-928(US915) === 413 413 414 -Used in USA, Canada and South America. Default use CHE=2 415 415 416 - (%style="color:#037691" %)**Uplink:**332 +=== 2.4.2 Version Info === 417 417 418 - 903.9 -SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 419 419 420 - 904.1-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 421 421 422 -904.3 - SF7BW125 to SF10BW125 423 423 424 -904.5 - SF7BW125 to SF10BW125 425 425 426 - 904.7- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 427 427 428 -904.9 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 429 429 430 -905.1 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 431 431 432 -905.3 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 433 433 434 434 435 -(% style="color:#037691" %)**Downlink:** 436 436 437 - 923.3-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 438 438 439 - 923.9-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 440 440 441 - 924.5- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 442 442 443 - 925.1-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 444 444 445 - 925.7- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 446 446 447 - 926.3- SF7BW500to SF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 448 448 449 - 926.9- SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 450 450 451 -9 27.5-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 452 452 453 -923.3 - SF12BW500(RX2 downlink only) 454 454 455 455 374 +=== 2.4.5 Soil Moisture === 456 456 457 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 458 458 459 -Used in China, Default use CHE=1 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 460 460 461 -(% style="color:#037691" %)**Uplink:** 384 +((( 385 + 386 +))) 462 462 463 -486.3 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 464 464 465 -486.5 - SF7BW125 to SF12BW125 466 466 467 -486.7 - SF7BW125 to SF12BW125 468 468 469 -4 86.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 470 470 471 -487.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 472 472 473 -487.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 474 474 475 -487.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 476 476 477 -487.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 478 478 479 479 480 -(% style="color:#037691" %)**Downlink:** 481 481 482 - 506.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 483 483 484 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 485 485 486 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 487 487 488 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 489 489 490 -507.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 491 491 492 -507.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 493 493 494 - 507.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 495 495 496 - 508.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 497 498 - 505.3- SF12BW125 (RX2 downlinkonly)440 +The command is: 499 499 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 500 500 501 501 502 - ===2.7.4AU915-928(AU915)===445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 503 503 504 -Default use CHE=2 505 505 506 - (% style="color:#037691" %)**Uplink:**448 +Example: 507 507 508 - 916.8-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 509 509 510 - 917.0- SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 511 511 512 -917.2 - SF7BW125 to SF12BW125 513 513 514 -917.4 - SF7BW125 to SF12BW125 515 515 516 - 917.6- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 517 517 518 - 917.8-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 519 519 520 -918.0 - SF7BW125 to SF12BW125 521 521 522 - 918.2- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 523 523 463 +(% style="color:blue" %)**AT+5VT=1000** 524 524 525 - (%style="color:#037691"%)**Downlink:**465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 526 526 527 -923.3 - SF7BW500 to SF12BW500 528 528 529 -923.9 - SF7BW500 to SF12BW500 530 530 531 - 924.5-SF7BW500 toSF12BW500469 +== 2.5 Downlink Payload == 532 532 533 - 925.1-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 534 534 535 - 925.7-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 536 536 537 -926.3 - SF7BW500 to SF12BW500 538 538 539 -926.9 - SF7BW500 to SF12BW500 540 540 541 -927.5 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 542 542 543 -923.3 - SF12BW500(RX2 downlink only) 481 +((( 482 + 483 +))) 544 544 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 545 545 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 546 546 547 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 548 548 549 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 550 550 551 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 552 552 553 -923.4 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 554 554 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 555 555 556 -(% style="color:#037691" %)**Additional Uplink Channel**: 557 557 558 -( OTAAmode,channeladded by JoinAcceptmessage)514 +* (% style="color:blue" %)**INTMOD** 559 559 560 - (%style="color:#037691" %)**AS920~~AS923for Japan,Malaysia,Singapore**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 561 561 562 -922.2 - SF7BW125 to SF10BW125 563 563 564 -922.4 - SF7BW125 to SF10BW125 565 565 566 - 922.6-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 567 567 568 -922.8 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 569 569 570 -923.0 - SF7BW125 to SF10BW125 571 571 572 -922.0 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 573 573 574 574 575 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 576 576 577 -923.6 - SF7BW125 to SF10BW125 578 578 579 - 923.8 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 580 580 581 - 924.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 582 582 583 - 924.2-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 584 584 585 - 924.4 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 586 586 587 -924.6 - SF7BW125 to SF10BW125 588 588 544 +((( 545 + 589 589 590 -(% style="color:#037691" %)** Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 591 591 592 -Uplink channels 1-8 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 593 593 594 -9 23.2-SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 595 595 558 +((( 559 + 560 +))) 596 596 597 597 598 -== =2.7.6KR920-923(KR920)===563 +== 2.8 Firmware Change Log == 599 599 600 -Default channel: 601 601 602 - 922.1-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 603 603 604 - 922.3-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 605 605 606 -922.5 - SF7BW125 to SF12BW125 607 607 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 608 608 609 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 610 611 -922.1 - SF7BW125 to SF12BW125 612 612 613 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 614 614 615 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 616 616 617 -922.7 - SF7BW125 to SF12BW125 618 618 619 - 922.9-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 620 620 621 -923.1 - SF7BW125 to SF12BW125 622 622 623 - 923.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 624 624 625 625 626 - (%style="color:#037691"%)**Downlink:**586 +The battery related documents as below: 627 627 628 -Uplink channels 1-7(RX1) 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 629 629 630 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 631 - 632 - 633 - 634 -=== 2.7.7 IN865-867 (IN865) === 635 - 636 -(% style="color:#037691" %)** Uplink:** 637 - 638 -865.0625 - SF7BW125 to SF12BW125 639 - 640 -865.4025 - SF7BW125 to SF12BW125 641 - 642 -865.9850 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %) **Downlink:** 646 - 647 -Uplink channels 1-3 (RX1) 648 - 649 -866.550 - SF10BW125 (RX2) 650 - 651 - 652 - 653 - 654 -== 2.8 LED Indicator == 655 - 656 -The LSE01 has an internal LED which is to show the status of different state. 657 - 658 -* Blink once when device power on. 659 -* Solid ON for 5 seconds once device successful Join the network. 660 -* Blink once when device transmit a packet. 661 - 662 -== 2.9 Installation in Soil == 663 - 664 -**Measurement the soil surface** 665 - 666 - 667 -[[image:1654506634463-199.png]] 668 - 669 669 ((( 670 -((( 671 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 672 672 ))) 673 -))) 674 674 675 675 676 -[[image:1654506665940-119.png]] 677 677 678 -((( 679 -Dig a hole with diameter > 20CM. 680 -))) 598 +=== 2.9.2 Power consumption Analyze === 681 681 682 -((( 683 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 684 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 685 685 686 686 687 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 688 688 689 -((( 690 -**Firmware download link:** 691 -))) 692 692 693 -((( 694 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 695 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 696 696 697 -((( 698 - 699 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 700 700 701 -((( 702 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 703 -))) 704 704 705 -((( 706 - 707 -))) 611 +Step 2: Open it and choose 708 708 709 - (((710 -* *V1.0.**711 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 712 712 713 -((( 714 -Release 715 -))) 617 +And the Life expectation in difference case will be shown on the right. 716 716 619 +[[image:image-20220708141352-7.jpeg]] 717 717 718 -== 2.11 Battery Analysis == 719 719 720 -=== 2.11.1 Battery Type === 721 721 722 -((( 723 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 724 -))) 623 +=== 2.9.3 Battery Note === 725 725 726 726 ((( 727 -The battery is designed to last for more than 5 years for the LSN50. 728 -))) 729 - 730 -((( 731 -((( 732 -The battery-related documents are as below: 733 -))) 734 -))) 735 - 736 -* ((( 737 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 738 -))) 739 -* ((( 740 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 741 -))) 742 -* ((( 743 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 744 -))) 745 - 746 - [[image:image-20220606171726-9.png]] 747 - 748 - 749 - 750 -=== 2.11.2 Battery Note === 751 - 752 -((( 753 753 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 754 754 ))) 755 755 756 756 757 757 758 -=== 2. 11.3Replace the battery ===631 +=== 2.9.4 Replace the battery === 759 759 760 760 ((( 761 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 762 762 ))) 763 763 764 -((( 765 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 766 -))) 767 767 768 -((( 769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 770 -))) 771 771 772 - 773 - 774 774 = 3. Using the AT Commands = 775 775 776 776 == 3.1 Access AT Commands == ... ... @@ -794,7 +794,7 @@ 794 794 [[image:1654502050864-459.png||height="564" width="806"]] 795 795 796 796 797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 798 798 799 799 800 800 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -952,19 +952,14 @@ 952 952 953 953 ((( 954 954 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 955 -))) 956 956 957 -(% class="box infomessage" %) 958 -((( 959 -**AT+CHE=2** 821 +* (% style="color:#037691" %)**AT+CHE=2** 822 +* (% style="color:#037691" %)**ATZ** 960 960 ))) 961 961 962 -(% class="box infomessage" %) 963 963 ((( 964 -**ATZ** 965 -))) 826 + 966 966 967 -((( 968 968 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 969 969 ))) 970 970 ... ... @@ -979,18 +979,22 @@ 979 979 [[image:image-20220606154825-4.png]] 980 980 981 981 842 +== 4.2 Can I calibrate LSE01 to different soil types? == 982 982 844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 845 + 846 + 983 983 = 5. Trouble Shooting = 984 984 985 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==849 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 986 986 987 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 988 988 989 989 990 -== 5.2 AT Command input doesn ’t work ==854 +== 5.2 AT Command input doesn't work == 991 991 992 992 ((( 993 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 994 ))) 995 995 996 996 ... ... @@ -1072,7 +1072,6 @@ 1072 1072 * ((( 1073 1073 Weight / pcs : g 1074 1074 1075 - 1076 1076 1077 1077 ))) 1078 1078 ... ... @@ -1080,8 +1080,3 @@ 1080 1080 1081 1081 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1082 1082 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1083 - 1084 - 1085 -))) 1086 -))) 1087 -)))
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content