Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.2
edited by Xiaoling
on 2022/06/07 11:19
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,64 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
62 +== 1.3  Specification ==
61 61  
62 62  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
64 -== 1.3 Specification ==
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
65 65  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
66 66  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 67  
68 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
69 69  
70 70  
71 71  
72 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
73 73  
74 74  * Smart Agriculture
75 75  
... ... @@ -76,701 +76,547 @@
76 76  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
77 77  ​
78 78  
79 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
80 80  
81 81  
82 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
83 83  
84 84  
85 85  
86 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
87 87  
88 -== 2.1 How it works ==
103 +== 2.1  How it works ==
89 89  
90 -(((
91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
92 -)))
93 93  
94 94  (((
95 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
96 96  )))
97 97  
98 98  
99 -
100 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 -
102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 -
104 -
105 -[[image:1654503992078-669.png]]
106 -
107 -
108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 -
110 -
111 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
112 -
113 -Each LSE01 is shipped with a sticker with the default device EUI as below:
114 -
115 -[[image:image-20220606163732-6.jpeg]]
116 -
117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
118 -
119 -**Add APP EUI in the application**
120 -
121 -
122 -[[image:1654504596150-405.png]]
123 -
124 -
125 -
126 -**Add APP KEY and DEV EUI**
127 -
128 -[[image:1654504683289-357.png]]
129 -
130 -
131 -
132 -**Step 2**: Power on LSE01
133 -
134 -
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 -
137 -[[image:image-20220606163915-7.png]]
138 -
139 -
140 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
141 -
142 -[[image:1654504778294-788.png]]
143 -
144 -
145 -
146 -== 2.3 Uplink Payload ==
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 -
153 -Uplink payload includes in total 11 bytes.
154 -
155 -
156 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
157 -|=(((
158 -**Size**
159 -
160 -**(bytes)**
161 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**
162 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)(((
163 163  (((
164 -Temperature
165 -
166 -(((
167 -(Reserve, Ignore now)
112 +The diagram below shows the working flow in default firmware of NSE01:
168 168  )))
169 169  
170 -~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|
115 +[[image:image-20220708101605-2.png]]
171 171  
172 -(% style="width:80px" %)
173 173  (((
174 -(((
175 -MOD & Digital Interrupt
176 -
177 -(((
178 -(Optional)
118 +
179 179  )))
180 -)))
181 181  
182 -[[image:1654504881641-514.png]]
183 183  
184 184  
123 +== 2.2 ​ Configure the NSE01 ==
185 185  
186 -=== 2.3.2 MOD~=1(Original value) ===
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
189 189  
190 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
191 -|=(((
192 -**Size**
193 193  
194 -**(bytes)**
195 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 -(((
198 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
199 199  
200 -(((
201 -(Reserve, Ignore now)
202 -)))
203 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
204 204  
205 -~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|
206 -
207 207  (((
208 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
209 209  )))
210 210  
211 -~|
212 212  
213 -(((
214 -(((
215 -MOD & Digital Interrupt
216 -)))
140 +[[image:1657249419225-449.png]]
217 217  
218 -(Optional)
219 -)))
220 -)))
221 221  
222 -[[image:1654504907647-967.png]]
223 223  
144 +=== 2.2.2 Insert SIM card ===
224 224  
146 +Insert the NB-IoT Card get from your provider.
225 225  
226 -=== 2.3.3 Battery Info ===
148 +User need to take out the NB-IoT module and insert the SIM card like below:
227 227  
228 -Check the battery voltage for LSE01.
229 229  
230 -Ex1: 0x0B45 = 2885mV
151 +[[image:1657249468462-536.png]]
231 231  
232 -Ex2: 0x0B49 = 2889mV
233 233  
234 234  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
235 235  
236 -=== 2.3.4 Soil Moisture ===
237 -
238 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
239 -
240 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
241 -
242 -
243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -
245 -
246 -
247 -=== 2.3.5 Soil Temperature ===
248 -
249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
250 -
251 -**Example**:
252 -
253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 -
255 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
256 -
257 -
258 -
259 -=== 2.3.6 Soil Conductivity (EC) ===
260 -
261 261  (((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 -)))
264 -
265 265  (((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
267 267  )))
268 -
269 -(((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 271  )))
272 272  
273 -(((
274 -
275 -)))
276 276  
277 -(((
278 -
279 -)))
164 +**Connection:**
280 280  
281 -=== 2.3.7 MOD ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
282 282  
283 -Firmware version at least v2.1 supports changing mode.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
284 284  
285 -For example, bytes[10]=90
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
288 288  
173 +In the PC, use below serial tool settings:
289 289  
290 -**Downlink Command:**
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
291 291  
292 -If payload = 0x0A00, workmode=0
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
293 293  
294 -If** **payload =** **0x0A01, workmode=1
185 +[[image:image-20220708110657-3.png]]
295 295  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
296 296  
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
301 301  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
302 302  
303 -[[image:1654505570700-128.png]]
304 304  
305 -The payload decoder function for TTN is here:
196 +**Use below commands:**
306 306  
307 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
308 308  
202 +For parameter description, please refer to AT command set
309 309  
204 +[[image:1657249793983-486.png]]
310 310  
311 -== 2.4 Uplink Interval ==
312 312  
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
314 314  
209 +[[image:1657249831934-534.png]]
315 315  
316 316  
317 -== 2.5 Downlink Payload ==
318 318  
319 -By default, LSE50 prints the downlink payload to console port.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
320 320  
321 -[[image:image-20220606165544-8.png]]
215 +This feature is supported since firmware version v1.0.1
322 322  
323 323  
324 -**Examples:**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
325 325  
222 +[[image:1657249864775-321.png]]
326 326  
327 -* **Set TDC**
328 328  
329 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
225 +[[image:1657249930215-289.png]]
330 330  
331 -Payload:    01 00 00 1E    TDC=30S
332 332  
333 -Payload:    01 00 00 3C    TDC=60S
334 334  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
335 335  
336 -* **Reset**
231 +This feature is supported since firmware version v110
337 337  
338 -If payload = 0x04FF, it will reset the LSE01
339 339  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
340 340  
341 -* **CFM**
242 +[[image:1657249978444-674.png]]
342 342  
343 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
344 344  
245 +[[image:1657249990869-686.png]]
345 345  
346 346  
347 -== 2.6 ​Show Data in DataCake IoT Server ==
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
348 348  
349 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
350 350  
351 351  
352 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
254 +=== 2.2.7 Use TCP protocol to uplink data ===
353 353  
354 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
256 +This feature is supported since firmware version v110
355 355  
356 356  
357 -[[image:1654505857935-743.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
358 358  
262 +[[image:1657250217799-140.png]]
359 359  
360 -[[image:1654505874829-548.png]]
361 361  
362 -Step 3: Create an account or log in Datacake.
265 +[[image:1657250255956-604.png]]
363 363  
364 -Step 4: Search the LSE01 and add DevEUI.
365 365  
366 366  
367 -[[image:1654505905236-553.png]]
269 +=== 2.2.8 Change Update Interval ===
368 368  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
369 369  
370 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
371 371  
372 -[[image:1654505925508-181.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
373 373  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
374 374  
375 375  
376 -== 2.7 Frequency Plans ==
377 377  
378 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
285 +== 2.3  Uplink Payload ==
379 379  
287 +In this mode, uplink payload includes in total 18 bytes
380 380  
381 -=== 2.7.1 EU863-870 (EU868) ===
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
382 382  
383 -(% style="color:#037691" %)** Uplink:**
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
384 384  
385 -868.1 - SF7BW125 to SF12BW125
386 386  
387 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
298 +[[image:image-20220708111918-4.png]]
388 388  
389 -868.5 - SF7BW125 to SF12BW125
390 390  
391 -867.1 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
392 392  
393 -867.3 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
394 394  
395 -867.5 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
396 396  
397 -867.7 - SF7BW125 to SF12BW125
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
398 398  
399 -867.9 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
400 400  
401 -868.8 - FSK
402 402  
318 +=== 2.4.1  Device ID ===
403 403  
404 -(% style="color:#037691" %)** Downlink:**
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
405 405  
406 -Uplink channels 1-9 (RX1)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
407 407  
408 -869.525 - SF9BW125 (RX2 downlink only)
324 +**Example:**
409 409  
326 +AT+DEUI=A84041F15612
410 410  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
411 411  
412 -=== 2.7.2 US902-928(US915) ===
413 413  
414 -Used in USA, Canada and South America. Default use CHE=2
415 415  
416 -(% style="color:#037691" %)**Uplink:**
332 +=== 2.4.2  Version Info ===
417 417  
418 -903.9 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
419 419  
420 -904.1 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
421 421  
422 -904.3 - SF7BW125 to SF10BW125
423 423  
424 -904.5 - SF7BW125 to SF10BW125
425 425  
426 -904.7 - SF7BW125 to SF10BW125
340 +=== 2.4. Battery Info ===
427 427  
428 -904.9 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
429 429  
430 -905.1 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
431 431  
432 -905.3 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
433 433  
434 434  
435 -(% style="color:#037691" %)**Downlink:**
436 436  
437 -923.3 - SF7BW500 to SF12BW500
356 +=== 2.4.4  Signal Strength ===
438 438  
439 -923.9 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
440 440  
441 -924.5 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
442 442  
443 -925.1 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
444 444  
445 -925.7 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
446 446  
447 -926.3 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
448 448  
449 -926.9 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
450 450  
451 -927.5 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
452 452  
453 -923.3 - SF12BW500(RX2 downlink only)
454 454  
455 455  
374 +=== 2.4.5  Soil Moisture ===
456 456  
457 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
458 458  
459 -Used in China, Default use CHE=1
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
460 460  
461 -(% style="color:#037691" %)**Uplink:**
384 +(((
385 +
386 +)))
462 462  
463 -486.3 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
464 464  
465 -486.5 - SF7BW125 to SF12BW125
466 466  
467 -486.7 - SF7BW125 to SF12BW125
468 468  
469 -486.9 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
470 470  
471 -487.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
472 472  
473 -487.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
474 474  
475 -487.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
476 476  
477 -487.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
478 478  
479 479  
480 -(% style="color:#037691" %)**Downlink:**
481 481  
482 -506.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
483 483  
484 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
485 485  
486 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
487 487  
488 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
489 489  
490 -507.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
491 491  
492 -507.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
493 493  
494 -507.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
495 495  
496 -508.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
497 497  
498 -505.3 - SF12BW125 (RX2 downlink only)
440 +The command is:
499 499  
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
500 500  
501 501  
502 -=== 2.7.4 AU915-928(AU915) ===
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
503 503  
504 -Default use CHE=2
505 505  
506 -(% style="color:#037691" %)**Uplink:**
448 +Example:
507 507  
508 -916.8 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
509 509  
510 -917.0 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
511 511  
512 -917.2 - SF7BW125 to SF12BW125
513 513  
514 -917.4 - SF7BW125 to SF12BW125
515 515  
516 -917.6 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
517 517  
518 -917.8 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
519 519  
520 -918.0 - SF7BW125 to SF12BW125
521 521  
522 -918.2 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
523 523  
463 +(% style="color:blue" %)**AT+5VT=1000**
524 524  
525 -(% style="color:#037691" %)**Downlink:**
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
526 526  
527 -923.3 - SF7BW500 to SF12BW500
528 528  
529 -923.9 - SF7BW500 to SF12BW500
530 530  
531 -924.5 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
532 532  
533 -925.1 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
534 534  
535 -925.7 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
536 536  
537 -926.3 - SF7BW500 to SF12BW500
538 538  
539 -926.9 - SF7BW500 to SF12BW500
540 540  
541 -927.5 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
542 542  
543 -923.3 - SF12BW500(RX2 downlink only)
481 +(((
482 +
483 +)))
544 544  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
545 545  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
546 546  
547 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
548 548  
549 -(% style="color:#037691" %)**Default Uplink channel:**
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
550 550  
551 -923.2 - SF7BW125 to SF10BW125
501 +(((
502 +
503 +)))
552 552  
553 -923.4 - SF7BW125 to SF10BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
554 554  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
555 555  
556 -(% style="color:#037691" %)**Additional Uplink Channel**:
557 557  
558 -(OTAA mode, channel added by JoinAccept message)
514 +* (% style="color:blue" %)**INTMOD**
559 559  
560 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
561 561  
562 -922.2 - SF7BW125 to SF10BW125
563 563  
564 -922.4 - SF7BW125 to SF10BW125
565 565  
566 -922.6 - SF7BW125 to SF10BW125
520 +== 2.6  ​LED Indicator ==
567 567  
568 -922.8 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
569 569  
570 -923.0 - SF7BW125 to SF10BW125
571 571  
572 -922.0 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
573 573  
574 574  
575 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
576 576  
577 -923.6 - SF7BW125 to SF10BW125
578 578  
579 -923.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
580 580  
581 -924.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
582 582  
583 -924.2 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
584 584  
585 -924.4 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
586 586  
587 -924.6 - SF7BW125 to SF10BW125
588 588  
544 +(((
545 +
589 589  
590 -(% style="color:#037691" %)** Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
591 591  
592 -Uplink channels 1-8 (RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
593 593  
594 -923.2 - SF10BW125 (RX2)
556 +[[image:1654506665940-119.png]]
595 595  
558 +(((
559 +
560 +)))
596 596  
597 597  
598 -=== 2.7.6 KR920-923 (KR920) ===
563 +== 2. ​Firmware Change Log ==
599 599  
600 -Default channel:
601 601  
602 -922.1 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
603 603  
604 -922.3 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
605 605  
606 -922.5 - SF7BW125 to SF12BW125
607 607  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
608 608  
609 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
610 610  
611 -922.1 - SF7BW125 to SF12BW125
612 612  
613 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
614 614  
615 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
616 616  
617 -922.7 - SF7BW125 to SF12BW125
618 618  
619 -922.9 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
620 620  
621 -923.1 - SF7BW125 to SF12BW125
622 622  
623 -923.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
624 624  
625 625  
626 -(% style="color:#037691" %)**Downlink:**
586 +The battery related documents as below:
627 627  
628 -Uplink channels 1-7(RX1)
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
630 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
631 -
632 -
633 -
634 -=== 2.7.7 IN865-867 (IN865) ===
635 -
636 -(% style="color:#037691" %)** Uplink:**
637 -
638 -865.0625 - SF7BW125 to SF12BW125
639 -
640 -865.4025 - SF7BW125 to SF12BW125
641 -
642 -865.9850 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %) **Downlink:**
646 -
647 -Uplink channels 1-3 (RX1)
648 -
649 -866.550 - SF10BW125 (RX2)
650 -
651 -
652 -
653 -
654 -== 2.8 LED Indicator ==
655 -
656 -The LSE01 has an internal LED which is to show the status of different state.
657 -
658 -* Blink once when device power on.
659 -* Solid ON for 5 seconds once device successful Join the network.
660 -* Blink once when device transmit a packet.
661 -
662 -== 2.9 Installation in Soil ==
663 -
664 -**Measurement the soil surface**
665 -
666 -
667 -[[image:1654506634463-199.png]] ​
668 -
669 669  (((
670 -(((
671 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
672 672  )))
673 -)))
674 674  
675 675  
676 -[[image:1654506665940-119.png]]
677 677  
678 -(((
679 -Dig a hole with diameter > 20CM.
680 -)))
598 +2.9.2 
681 681  
682 -(((
683 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
684 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
685 685  
686 686  
687 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
688 688  
689 -(((
690 -**Firmware download link:**
691 -)))
692 692  
693 -(((
694 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
695 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
696 696  
697 -(((
698 -
699 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
700 700  
701 -(((
702 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
703 -)))
704 704  
705 -(((
706 -
707 -)))
611 +Step 2: Open it and choose
708 708  
709 -(((
710 -**V1.0.**
711 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
712 712  
713 -(((
714 -Release
715 -)))
617 +And the Life expectation in difference case will be shown on the right.
716 716  
717 717  
718 -== 2.11 ​Battery Analysis ==
719 719  
720 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
721 721  
722 722  (((
723 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
724 -)))
725 -
726 -(((
727 -The battery is designed to last for more than 5 years for the LSN50.
728 -)))
729 -
730 -(((
731 -(((
732 -The battery-related documents are as below:
733 -)))
734 -)))
735 -
736 -* (((
737 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
738 -)))
739 -* (((
740 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
741 -)))
742 -* (((
743 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
744 -)))
745 -
746 - [[image:image-20220606171726-9.png]]
747 -
748 -
749 -
750 -=== 2.11.2 ​Battery Note ===
751 -
752 -(((
753 753  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
754 754  )))
755 755  
756 756  
757 757  
758 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
759 759  
760 -(((
761 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
762 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
763 763  
764 -(((
765 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
766 -)))
767 767  
768 -(((
769 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
770 -)))
771 771  
772 -
773 -
774 774  = 3. ​Using the AT Commands =
775 775  
776 776  == 3.1 Access AT Commands ==
... ... @@ -794,7 +794,7 @@
794 794   [[image:1654502050864-459.png||height="564" width="806"]]
795 795  
796 796  
797 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
798 798  
799 799  
800 800  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -952,19 +952,14 @@
952 952  
953 953  (((
954 954  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
955 -)))
956 956  
957 -(% class="box infomessage" %)
958 -(((
959 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
960 960  )))
961 961  
962 -(% class="box infomessage" %)
963 963  (((
964 -**ATZ**
965 -)))
822 +
966 966  
967 -(((
968 968  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
969 969  )))
970 970  
... ... @@ -979,18 +979,22 @@
979 979  [[image:image-20220606154825-4.png]]
980 980  
981 981  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
982 982  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
983 983  = 5. Trouble Shooting =
984 984  
985 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
986 986  
987 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
988 988  
989 989  
990 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
991 991  
992 992  (((
993 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
994 994  )))
995 995  
996 996  
... ... @@ -1072,7 +1072,6 @@
1072 1072  * (((
1073 1073  Weight / pcs : g
1074 1074  
1075 -
1076 1076  
1077 1077  )))
1078 1078  
... ... @@ -1080,8 +1080,3 @@
1080 1080  
1081 1081  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1082 1082  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1083 -
1084 -
1085 -)))
1086 -)))
1087 -)))
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content