Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.16
edited by Xiaoling
on 2022/06/07 11:41
Change comment: There is no comment for this version
To version 65.12
edited by Xiaoling
on 2022/07/08 15:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1074 +12,806 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
90 +Probe(% style="color:#037691" %)** Specification:**
75 75  
76 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
94 +[[image:image-20220708101224-1.png]]
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
81 81  
98 +== ​1.4  Applications ==
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
84 84  
85 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
105 +== 1.5  Pin Definitions ==
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
100 100  
114 +== 2.1  How it works ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
126 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
129 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
134 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
137 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 +To use NSE01 in your city, make sure meet below requirements:
220 220  )))
221 221  
222 -(((
223 -
224 -)))
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
153 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
157 +=== 2.2.2 Insert SIM card ===
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 +Insert the NB-IoT Card get from your provider.
244 244  )))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 +User need to take out the NB-IoT module and insert the SIM card like below:
248 248  )))
249 249  
250 250  
168 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
181 +**Connection:**
277 277  
278 -For example, bytes[10]=90
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
190 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 -)))
202 +[[image:image-20220708110657-3.png]]
305 305  
306 -
307 -
308 -== 2.4 Uplink Interval ==
309 -
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
311 -
312 -
313 -
314 -== 2.5 Downlink Payload ==
315 -
316 -By default, LSE50 prints the downlink payload to console port.
317 -
318 -[[image:image-20220606165544-8.png]]
319 -
320 -
321 321  (((
322 -**Examples:**
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
323 323  )))
324 324  
325 -(((
326 -
327 -)))
328 328  
329 -* (((
330 -**Set TDC**
331 -)))
332 332  
333 -(((
334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
335 -)))
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
336 336  
337 -(((
338 -Payload:    01 00 00 1E    TDC=30S
339 -)))
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
340 340  
341 -(((
342 -Payload:    01 00 00 3C    TDC=60S
343 -)))
344 344  
345 -(((
346 -
347 -)))
215 +**Use below commands:**
348 348  
349 -* (((
350 -**Reset**
351 -)))
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
352 352  
353 -(((
354 -If payload = 0x04FF, it will reset the LSE01
355 -)))
221 +For parameter description, please refer to AT command set
356 356  
223 +[[image:1657249793983-486.png]]
357 357  
358 -* **CFM**
359 359  
360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
361 361  
228 +[[image:1657249831934-534.png]]
362 362  
363 363  
364 -== 2.6 ​Show Data in DataCake IoT Server ==
365 365  
366 -(((
367 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
368 -)))
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
369 369  
370 -(((
371 -
372 -)))
234 +This feature is supported since firmware version v1.0.1
373 373  
374 -(((
375 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
376 -)))
377 377  
378 -(((
379 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
380 -)))
237 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
381 381  
241 +[[image:1657249864775-321.png]]
382 382  
383 -[[image:1654505857935-743.png]]
384 384  
244 +[[image:1657249930215-289.png]]
385 385  
386 -[[image:1654505874829-548.png]]
387 387  
388 -Step 3: Create an account or log in Datacake.
389 389  
390 -Step 4: Search the LSE01 and add DevEUI.
248 +=== 2.2.6 Use MQTT protocol to uplink data ===
391 391  
250 +This feature is supported since firmware version v110
392 392  
393 -[[image:1654505905236-553.png]]
394 394  
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
261 +[[image:1657249978444-674.png]]
397 397  
398 -[[image:1654505925508-181.png]]
399 399  
264 +[[image:1657249990869-686.png]]
400 400  
401 401  
402 -== 2.7 Frequency Plans ==
267 +(((
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
269 +)))
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
405 405  
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
273 +=== 2.2.7 Use TCP protocol to uplink data ===
408 408  
409 -(% style="color:#037691" %)** Uplink:**
275 +This feature is supported since firmware version v110
410 410  
411 -868.1 - SF7BW125 to SF12BW125
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
278 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
414 414  
415 -868.5 - SF7BW125 to SF12BW125
281 +[[image:1657250217799-140.png]]
416 416  
417 -867.1 - SF7BW125 to SF12BW125
418 418  
419 -867.3 - SF7BW125 to SF12BW125
284 +[[image:1657250255956-604.png]]
420 420  
421 -867.5 - SF7BW125 to SF12BW125
422 422  
423 -867.7 - SF7BW125 to SF12BW125
424 424  
425 -867.9 - SF7BW125 to SF12BW125
288 +=== 2.2.8 Change Update Interval ===
426 426  
427 -868.8 - FSK
290 +User can use below command to change the (% style="color:green" %)**uplink interval**.
428 428  
292 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
429 429  
430 -(% style="color:#037691" %)** Downlink:**
294 +(((
295 +(% style="color:red" %)**NOTE:**
296 +)))
431 431  
432 -Uplink channels 1-9 (RX1)
298 +(((
299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
300 +)))
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
435 435  
436 436  
304 +== 2.3  Uplink Payload ==
437 437  
438 -=== 2.7.2 US902-928(US915) ===
306 +In this mode, uplink payload includes in total 18 bytes
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 +|=(% style="width: 60px;" %)(((
310 +**Size(bytes)**
311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
441 441  
442 -(% style="color:#037691" %)**Uplink:**
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
443 443  
444 -903.9 - SF7BW125 to SF10BW125
445 445  
446 -904.1 - SF7BW125 to SF10BW125
317 +[[image:image-20220708111918-4.png]]
447 447  
448 -904.3 - SF7BW125 to SF10BW125
449 449  
450 -904.5 - SF7BW125 to SF10BW125
320 +The payload is ASCII string, representative same HEX:
451 451  
452 -904.7 - SF7BW125 to SF10BW125
322 +0x72403155615900640c7817075e0a8c02f900 where:
453 453  
454 -904.9 - SF7BW125 to SF10BW125
324 +* Device ID: 0x 724031556159 = 724031556159
325 +* Version: 0x0064=100=1.0.0
455 455  
456 -905.1 - SF7BW125 to SF10BW125
327 +* BAT: 0x0c78 = 3192 mV = 3.192V
328 +* Singal: 0x17 = 23
329 +* Soil Moisture: 0x075e= 1886 = 18.86  %
330 +* Soil Temperature:0x0a8c =2700=27 °C
331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 +* Interrupt: 0x00 = 0
457 457  
458 -905.3 - SF7BW125 to SF10BW125
459 459  
335 +== 2.4  Payload Explanation and Sensor Interface ==
460 460  
461 -(% style="color:#037691" %)**Downlink:**
462 462  
463 -923.3 - SF7BW500 to SF12BW500
338 +=== 2.4.1  Device ID ===
464 464  
465 -923.9 - SF7BW500 to SF12BW500
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
466 466  
467 -924.5 - SF7BW500 to SF12BW500
342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
468 468  
469 -925.1 - SF7BW500 to SF12BW500
344 +**Example:**
470 470  
471 -925.7 - SF7BW500 to SF12BW500
346 +AT+DEUI=A84041F15612
472 472  
473 -926.3 - SF7BW500 to SF12BW500
348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
474 474  
475 -926.9 - SF7BW500 to SF12BW500
476 476  
477 -927.5 - SF7BW500 to SF12BW500
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
352 +=== 2.4.2  Version Info ===
480 480  
354 +Specify the software version: 0x64=100, means firmware version 1.00.
481 481  
356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
484 484  
485 -Used in China, Default use CHE=1
486 486  
487 -(% style="color:#037691" %)**Uplink:**
360 +=== 2.4.3  Battery Info ===
488 488  
489 -486.3 - SF7BW125 to SF12BW125
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
492 492  
493 -486.7 - SF7BW125 to SF12BW125
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
494 494  
495 -486.9 - SF7BW125 to SF12BW125
496 496  
497 -487.1 - SF7BW125 to SF12BW125
498 498  
499 -487.3 - SF7BW125 to SF12BW125
376 +=== 2.4. Signal Strength ===
500 500  
501 -487.5 - SF7BW125 to SF12BW125
378 +NB-IoT Network signal Strength.
502 502  
503 -487.7 - SF7BW125 to SF12BW125
380 +**Ex1: 0x1d = 29**
504 504  
382 +(% style="color:blue" %)**0**(%%)  -113dBm or less
505 505  
506 -(% style="color:#037691" %)**Downlink:**
384 +(% style="color:blue" %)**1**(%%)  -111dBm
507 507  
508 -506.7 - SF7BW125 to SF12BW125
386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
509 509  
510 -506.9 - SF7BW125 to SF12BW125
388 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
511 511  
512 -507.1 - SF7BW125 to SF12BW125
390 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
513 513  
514 -507.3 - SF7BW125 to SF12BW125
515 515  
516 -507.5 - SF7BW125 to SF12BW125
517 517  
518 -507.7 - SF7BW125 to SF12BW125
394 +=== 2.4.5  Soil Moisture ===
519 519  
520 -507.9 - SF7BW125 to SF12BW125
396 +(((
397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 +)))
521 521  
522 -508.1 - SF7BW125 to SF12BW125
400 +(((
401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 +)))
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
404 +(((
405 +
406 +)))
525 525  
408 +(((
409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 +)))
526 526  
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
529 529  
530 -Default use CHE=2
414 +=== 2.4.6  Soil Temperature ===
531 531  
532 -(% style="color:#037691" %)**Uplink:**
416 +(((
417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 +)))
533 533  
534 -916.8 - SF7BW125 to SF12BW125
420 +(((
421 +**Example**:
422 +)))
535 535  
536 -917.0 - SF7BW125 to SF12BW125
424 +(((
425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 +)))
537 537  
538 -917.2 - SF7BW125 to SF12BW125
428 +(((
429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 +)))
539 539  
540 -917.4 - SF7BW125 to SF12BW125
541 541  
542 -917.6 - SF7BW125 to SF12BW125
543 543  
544 -917.8 - SF7BW125 to SF12BW125
434 +=== 2.4.7  Soil Conductivity (EC) ===
545 545  
546 -918.0 - SF7BW125 to SF12BW125
436 +(((
437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
440 +(((
441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 +)))
549 549  
444 +(((
445 +Generally, the EC value of irrigation water is less than 800uS / cm.
446 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
448 +(((
449 +
450 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
452 +(((
453 +
454 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
456 +=== 2.4.8  Digital Interrupt ===
556 556  
557 -924.5 - SF7BW500 to SF12BW500
458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
558 558  
559 -925.1 - SF7BW500 to SF12BW500
460 +The command is:
560 560  
561 -925.7 - SF7BW500 to SF12BW500
462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
562 562  
563 -926.3 - SF7BW500 to SF12BW500
564 564  
565 -926.9 - SF7BW500 to SF12BW500
465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
566 566  
567 -927.5 - SF7BW500 to SF12BW500
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
468 +Example:
570 570  
470 +0x(00): Normal uplink packet.
571 571  
472 +0x(01): Interrupt Uplink Packet.
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 576  
577 -923.2 - SF7BW125 to SF10BW125
476 +=== 2.4.9  ​+5V Output ===
578 578  
579 -923.4 - SF7BW125 to SF10BW125
478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
580 580  
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
481 +The 5V output time can be controlled by AT Command.
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
483 +(% style="color:blue" %)**AT+5VT=1000**
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
587 587  
588 -922.2 - SF7BW125 to SF10BW125
589 589  
590 -922.4 - SF7BW125 to SF10BW125
591 591  
592 -922.6 - SF7BW125 to SF10BW125
489 +== 2.5  Downlink Payload ==
593 593  
594 -922.8 - SF7BW125 to SF10BW125
491 +By default, NSE01 prints the downlink payload to console port.
595 595  
596 -923.0 - SF7BW125 to SF10BW125
493 +[[image:image-20220708133731-5.png]]
597 597  
598 -922.0 - SF7BW125 to SF10BW125
599 599  
496 +(((
497 +(% style="color:blue" %)**Examples:**
498 +)))
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
500 +(((
501 +
502 +)))
602 602  
603 -923.6 - SF7BW125 to SF10BW125
504 +* (((
505 +(% style="color:blue" %)**Set TDC**
506 +)))
604 604  
605 -923.8 - SF7BW125 to SF10BW125
508 +(((
509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 +)))
606 606  
607 -924.0 - SF7BW125 to SF10BW125
512 +(((
513 +Payload:    01 00 00 1E    TDC=30S
514 +)))
608 608  
609 -924.2 - SF7BW125 to SF10BW125
516 +(((
517 +Payload:    01 00 00 3C    TDC=60S
518 +)))
610 610  
611 -924.4 - SF7BW125 to SF10BW125
520 +(((
521 +
522 +)))
612 612  
613 -924.6 - SF7BW125 to SF10BW125
524 +* (((
525 +(% style="color:blue" %)**Reset**
526 +)))
614 614  
528 +(((
529 +If payload = 0x04FF, it will reset the NSE01
530 +)))
615 615  
616 -(% style="color:#037691" %)** Downlink:**
617 617  
618 -Uplink channels 1-8 (RX1)
533 +* (% style="color:blue" %)**INTMOD**
619 619  
620 -923.2 - SF10BW125 (RX2)
535 +Downlink Payload: 06000003, Set AT+INTMOD=3
621 621  
622 622  
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
539 +== 2.6  ​LED Indicator ==
625 625  
626 -Default channel:
541 +(((
542 +The NSE01 has an internal LED which is to show the status of different state.
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 629  
630 -922.3 - SF7BW125 to SF12BW125
545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 +* Then the LED will be on for 1 second means device is boot normally.
547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 +* For each uplink probe, LED will be on for 500ms.
549 +)))
631 631  
632 -922.5 - SF7BW125 to SF12BW125
633 633  
634 634  
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 636  
637 -922.1 - SF7BW125 to SF12BW125
554 +== 2.7  Installation in Soil ==
638 638  
639 -922.3 - SF7BW125 to SF12BW125
556 +__**Measurement the soil surface**__
640 640  
641 -922.5 - SF7BW125 to SF12BW125
558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
642 642  
643 -922.7 - SF7BW125 to SF12BW125
560 +[[image:1657259653666-883.png]] ​
644 644  
645 -922.9 - SF7BW125 to SF12BW125
646 646  
647 -923.1 - SF7BW125 to SF12BW125
563 +(((
564 +
648 648  
649 -923.3 - SF7BW125 to SF12BW125
566 +(((
567 +Dig a hole with diameter > 20CM.
568 +)))
650 650  
570 +(((
571 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 +)))
573 +)))
651 651  
652 -(% style="color:#037691" %)**Downlink:**
575 +[[image:1654506665940-119.png]]
653 653  
654 -Uplink channels 1-7(RX1)
577 +(((
578 +
579 +)))
655 655  
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 657  
582 +== 2.8  ​Firmware Change Log ==
658 658  
659 659  
660 -=== 2.7.7 IN865-867 (IN865) ===
585 +Download URL & Firmware Change log
661 661  
662 -(% style="color:#037691" %)** Uplink:**
587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
663 663  
664 -865.0625 - SF7BW125 to SF12BW125
665 665  
666 -865.4025 - SF7BW125 to SF12BW125
590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
667 667  
668 -865.9850 - SF7BW125 to SF12BW125
669 669  
670 670  
671 -(% style="color:#037691" %) **Downlink:**
594 +== 2.9  ​Battery Analysis ==
672 672  
673 -Uplink channels 1-3 (RX1)
596 +=== 2.9.1  ​Battery Type ===
674 674  
675 -866.550 - SF10BW125 (RX2)
676 676  
599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 677  
678 678  
602 +The battery is designed to last for several years depends on the actually use environment and update interval. 
679 679  
680 -== 2.8 LED Indicator ==
681 681  
682 -The LSE01 has an internal LED which is to show the status of different state.
605 +The battery related documents as below:
683 683  
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
687 687  
688 -
689 -
690 -== 2.9 Installation in Soil ==
691 -
692 -**Measurement the soil surface**
693 -
694 -
695 -[[image:1654506634463-199.png]] ​
696 -
697 697  (((
698 -(((
699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
612 +[[image:image-20220708140453-6.png]]
700 700  )))
701 -)))
702 702  
703 703  
704 -[[image:1654506665940-119.png]]
705 705  
706 -(((
707 -Dig a hole with diameter > 20CM.
708 -)))
617 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 710  (((
711 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
712 712  )))
713 713  
714 714  
715 -== 2.10 ​Firmware Change Log ==
716 -
717 717  (((
718 -**Firmware download link:**
625 +Instruction to use as below:
719 719  )))
720 720  
721 721  (((
722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
629 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
723 723  )))
724 724  
725 -(((
726 -
727 -)))
728 728  
729 729  (((
730 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
731 731  )))
732 732  
733 -(((
734 -
637 +* (((
638 +Product Model
735 735  )))
736 -
737 -(((
738 -**V1.0.**
640 +* (((
641 +Uplink Interval
739 739  )))
643 +* (((
644 +Working Mode
645 +)))
740 740  
741 741  (((
742 -Release
648 +And the Life expectation in difference case will be shown on the right.
743 743  )))
744 744  
651 +[[image:image-20220708141352-7.jpeg]]
745 745  
746 -== 2.11 ​Battery Analysis ==
747 747  
748 -=== 2.11.1 ​Battery Type ===
749 749  
750 -(((
751 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
752 -)))
655 +=== 2.9.3  ​Battery Note ===
753 753  
754 754  (((
755 -The battery is designed to last for more than 5 years for the LSN50.
658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
756 756  )))
757 757  
758 -(((
759 -(((
760 -The battery-related documents are as below:
761 -)))
762 -)))
763 763  
764 -* (((
765 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
766 -)))
767 -* (((
768 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
769 -)))
770 -* (((
771 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
772 -)))
773 773  
774 - [[image:image-20220606171726-9.png]]
663 +=== 2.9.4  Replace the battery ===
775 775  
776 -
777 -
778 -=== 2.11.2 ​Battery Note ===
779 -
780 780  (((
781 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
784 784  
785 785  
786 -=== 2.11.3 Replace the battery ===
671 += 3. ​ Access NB-IoT Module =
787 787  
788 788  (((
789 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
674 +Users can directly access the AT command set of the NB-IoT module.
790 790  )))
791 791  
792 792  (((
793 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
794 794  )))
795 795  
796 -(((
797 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
798 -)))
681 +[[image:1657261278785-153.png]]
799 799  
800 800  
801 801  
802 -= 3. Using the AT Commands =
685 += 4.  Using the AT Commands =
803 803  
804 -== 3.1 Access AT Commands ==
687 +== 4.1  Access AT Commands ==
805 805  
689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
806 806  
807 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
808 808  
809 -[[image:1654501986557-872.png||height="391" width="800"]]
692 +AT+<CMD>?  : Help on <CMD>
810 810  
694 +AT+<CMD>         : Run <CMD>
811 811  
812 -Or if you have below board, use below connection:
696 +AT+<CMD>=<value> : Set the value
813 813  
698 +AT+<CMD>=?  : Get the value
814 814  
815 -[[image:1654502005655-729.png||height="503" width="801"]]
816 816  
817 -
818 -
819 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
820 -
821 -
822 - [[image:1654502050864-459.png||height="564" width="806"]]
823 -
824 -
825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
826 -
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
835 -
836 -
837 837  (% style="color:#037691" %)**General Commands**(%%)      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 +AT  : Attention       
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 +AT?  : Short Help     
842 842  
843 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 +ATZ  : MCU Reset    
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 +AT+TDC  : Application Data Transmission Interval
846 846  
711 +AT+CFG  : Print all configurations
847 847  
848 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 +AT+CFGMOD           : Working mode selection
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 +AT+INTMOD            : Set the trigger interrupt mode
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 +AT+5VT  : Set extend the time of 5V power  
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 +AT+PRO  : Choose agreement
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 +AT+WEIGRE  : Get weight or set weight to 0
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 +AT+WEIGAP  : Get or Set the GapValue of weight
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
725 +AT+RXDL  : Extend the sending and receiving time
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 +AT+CNTFAC  : Get or set counting parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 +AT+SERVADDR  : Server Address
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 +(% style="color:#037691" %)**COAP Management**      
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 +AT+URI            : Resource parameters
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 +(% style="color:#037691" %)**UDP Management**
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 +AT+CFM          : Upload confirmation mode (only valid for UDP)
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 +(% style="color:#037691" %)**MQTT Management**
881 881  
744 +AT+CLIENT               : Get or Set MQTT client
882 882  
883 -(% style="color:#037691" %)**LoRa Network Management**
746 +AT+UNAME  : Get or Set MQTT Username
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 +AT+PWD                  : Get or Set MQTT password
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 +AT+PUBTOPI : Get or Set MQTT publish topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 +(% style="color:#037691" %)**Information**          
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 +AT+FDR  : Factory Data Reset
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 +AT+PWOR : Serial Access Password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 += ​5.  FAQ =
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 +== 5.1 How to Upgrade Firmware ==
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
914 -
915 -
916 -(% style="color:#037691" %)**Information** 
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
929 -
930 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
931 -
932 -
933 -= ​4. FAQ =
934 -
935 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
936 -
937 937  (((
938 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
939 -When downloading the images, choose the required image file for download. ​
769 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
940 940  )))
941 941  
942 942  (((
943 -
773 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
944 944  )))
945 945  
946 946  (((
947 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
948 948  )))
949 949  
950 -(((
951 -
952 -)))
953 953  
954 -(((
955 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
956 -)))
957 957  
958 -(((
959 -
960 -)))
782 += 6.  Trouble Shooting =
961 961  
962 -(((
963 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
964 -)))
784 +== 6.1  ​Connection problem when uploading firmware ==
965 965  
966 -[[image:image-20220606154726-3.png]]
967 967  
968 -
969 -When you use the TTN network, the US915 frequency bands use are:
970 -
971 -* 903.9 - SF7BW125 to SF10BW125
972 -* 904.1 - SF7BW125 to SF10BW125
973 -* 904.3 - SF7BW125 to SF10BW125
974 -* 904.5 - SF7BW125 to SF10BW125
975 -* 904.7 - SF7BW125 to SF10BW125
976 -* 904.9 - SF7BW125 to SF10BW125
977 -* 905.1 - SF7BW125 to SF10BW125
978 -* 905.3 - SF7BW125 to SF10BW125
979 -* 904.6 - SF8BW500
980 -
787 +(% class="wikigeneratedid" %)
981 981  (((
982 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
983 983  )))
984 984  
985 -(% class="box infomessage" %)
986 -(((
987 -**AT+CHE=2**
988 -)))
989 989  
990 -(% class="box infomessage" %)
991 -(((
992 -**ATZ**
993 -)))
994 994  
995 -(((
996 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
997 -)))
794 +== 6.2  AT Command input doesn't work ==
998 998  
999 999  (((
1000 -
797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1001 1001  )))
1002 1002  
1003 -(((
1004 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1005 -)))
1006 1006  
1007 -[[image:image-20220606154825-4.png]]
1008 1008  
802 += 7. ​ Order Info =
1009 1009  
1010 1010  
1011 -= 5. Trouble Shooting =
805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1012 1012  
1013 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1014 1014  
1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1016 -
1017 -
1018 -== 5.2 AT Command input doesn’t work ==
1019 -
1020 -(((
1021 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1022 -)))
1023 -
1024 -
1025 -== 5.3 Device rejoin in at the second uplink packet ==
1026 -
1027 -(% style="color:#4f81bd" %)**Issue describe as below:**
1028 -
1029 -[[image:1654500909990-784.png]]
1030 -
1031 -
1032 -(% style="color:#4f81bd" %)**Cause for this issue:**
1033 -
1034 -(((
1035 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1036 -)))
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Solution: **
1040 -
1041 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1042 -
1043 -[[image:1654500929571-736.png||height="458" width="832"]]
1044 -
1045 -
1046 -= 6. ​Order Info =
1047 -
1048 -
1049 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1050 -
1051 -
1052 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1053 -
1054 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1055 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1056 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1057 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1058 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1059 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1060 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1061 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1062 -
1063 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1064 -
1065 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1066 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1067 -
1068 1068  (% class="wikigeneratedid" %)
1069 1069  (((
1070 1070  
1071 1071  )))
1072 1072  
1073 -= 7. Packing Info =
813 += 8.  Packing Info =
1074 1074  
1075 1075  (((
1076 1076  
1077 1077  
1078 1078  (% style="color:#037691" %)**Package Includes**:
1079 -)))
1080 1080  
1081 -* (((
1082 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
820 +
821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 +* External antenna x 1
1083 1083  )))
1084 1084  
1085 1085  (((
... ... @@ -1086,26 +1086,20 @@
1086 1086  
1087 1087  
1088 1088  (% style="color:#037691" %)**Dimension and weight**:
1089 -)))
1090 1090  
1091 -* (((
1092 -Device Size: cm
830 +
831 +* Size: 195 x 125 x 55 mm
832 +* Weight:   420g
1093 1093  )))
1094 -* (((
1095 -Device Weight: g
1096 -)))
1097 -* (((
1098 -Package Size / pcs : cm
1099 -)))
1100 -* (((
1101 -Weight / pcs : g
1102 1102  
835 +(((
1103 1103  
837 +
838 +
839 +
1104 1104  )))
1105 1105  
1106 -= 8. Support =
842 += 9.  Support =
1107 1107  
1108 1108  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109 1109  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1110 -
1111 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content