Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.14
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version
To version 65.11
edited by Xiaoling
on 2022/07/08 15:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1065 +12,804 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
90 +Probe(% style="color:#037691" %)** Specification:**
75 75  
76 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
94 +[[image:image-20220708101224-1.png]]
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
81 81  
98 +== ​1.4  Applications ==
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
84 84  
85 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
105 +== 1.5  Pin Definitions ==
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
100 100  
114 +== 2.1  How it works ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
126 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
129 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
134 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
137 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 +To use NSE01 in your city, make sure meet below requirements:
220 220  )))
221 221  
222 -(((
223 -
224 -)))
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
153 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
157 +=== 2.2.2 Insert SIM card ===
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 +Insert the NB-IoT Card get from your provider.
244 244  )))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 +User need to take out the NB-IoT module and insert the SIM card like below:
248 248  )))
249 249  
250 250  
168 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
181 +**Connection:**
277 277  
278 -For example, bytes[10]=90
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
190 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 -)))
202 +[[image:image-20220708110657-3.png]]
305 305  
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
306 306  
307 307  
308 -== 2.4 Uplink Interval ==
309 309  
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
312 312  
313 313  
314 -== 2.5 Downlink Payload ==
213 +**Use below commands:**
315 315  
316 -By default, LSE50 prints the downlink payload to console port.
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
317 317  
318 -[[image:image-20220606165544-8.png]]
219 +For parameter description, please refer to AT command set
319 319  
221 +[[image:1657249793983-486.png]]
320 320  
321 -(((
322 -**Examples:**
323 -)))
324 324  
325 -(((
326 -
327 -)))
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
328 328  
329 -* (((
330 -**Set TDC**
331 -)))
226 +[[image:1657249831934-534.png]]
332 332  
333 -(((
334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
335 -)))
336 336  
337 -(((
338 -Payload:    01 00 00 1E    TDC=30S
339 -)))
340 340  
341 -(((
342 -Payload:    01 00 00 3C    TDC=60S
343 -)))
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
344 344  
345 -(((
346 -
347 -)))
232 +This feature is supported since firmware version v1.0.1
348 348  
349 -* (((
350 -**Reset**
351 -)))
352 352  
353 -(((
354 -If payload = 0x04FF, it will reset the LSE01
355 -)))
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
356 356  
239 +[[image:1657249864775-321.png]]
357 357  
358 -* **CFM**
359 359  
360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
242 +[[image:1657249930215-289.png]]
361 361  
362 362  
363 363  
364 -== 2.6 ​Show Data in DataCake IoT Server ==
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
365 365  
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
248 +This feature is supported since firmware version v110
367 367  
368 368  
369 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
370 370  
371 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
259 +[[image:1657249978444-674.png]]
372 372  
373 373  
374 -[[image:1654505857935-743.png]]
262 +[[image:1657249990869-686.png]]
375 375  
376 376  
377 -[[image:1654505874829-548.png]]
265 +(((
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +)))
378 378  
379 -Step 3: Create an account or log in Datacake.
380 380  
381 -Step 4: Search the LSE01 and add DevEUI.
382 382  
271 +=== 2.2.7 Use TCP protocol to uplink data ===
383 383  
384 -[[image:1654505905236-553.png]]
273 +This feature is supported since firmware version v110
385 385  
386 386  
387 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
388 388  
389 -[[image:1654505925508-181.png]]
279 +[[image:1657250217799-140.png]]
390 390  
391 391  
282 +[[image:1657250255956-604.png]]
392 392  
393 -== 2.7 Frequency Plans ==
394 394  
395 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
396 396  
286 +=== 2.2.8 Change Update Interval ===
397 397  
398 -=== 2.7.1 EU863-870 (EU868) ===
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
399 399  
400 -(% style="color:#037691" %)** Uplink:**
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
401 401  
402 -868.1 - SF7BW125 to SF12BW125
292 +(((
293 +(% style="color:red" %)**NOTE:**
294 +)))
403 403  
404 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
296 +(((
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
298 +)))
405 405  
406 -868.5 - SF7BW125 to SF12BW125
407 407  
408 -867.1 - SF7BW125 to SF12BW125
409 409  
410 -867.3 - SF7BW125 to SF12BW125
302 +== 2.3  Uplink Payload ==
411 411  
412 -867.5 - SF7BW125 to SF12BW125
304 +In this mode, uplink payload includes in total 18 bytes
413 413  
414 -867.7 - SF7BW125 to SF12BW125
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
415 415  
416 -867.9 - SF7BW125 to SF12BW125
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
417 417  
418 -868.8 - FSK
419 419  
315 +[[image:image-20220708111918-4.png]]
420 420  
421 -(% style="color:#037691" %)** Downlink:**
422 422  
423 -Uplink channels 1-9 (RX1)
318 +The payload is ASCII string, representative same HEX:
424 424  
425 -869.525 - SF9BW125 (RX2 downlink only)
320 +0x72403155615900640c7817075e0a8c02f900 where:
426 426  
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
427 427  
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
428 428  
429 -=== 2.7.2 US902-928(US915) ===
430 430  
431 -Used in USA, Canada and South America. Default use CHE=2
333 +== 2.4  Payload Explanation and Sensor Interface ==
432 432  
433 -(% style="color:#037691" %)**Uplink:**
434 434  
435 -903.9 - SF7BW125 to SF10BW125
336 +=== 2.4.1  Device ID ===
436 436  
437 -904.1 - SF7BW125 to SF10BW125
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
438 438  
439 -904.3 - SF7BW125 to SF10BW125
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
440 440  
441 -904.5 - SF7BW125 to SF10BW125
342 +**Example:**
442 442  
443 -904.7 - SF7BW125 to SF10BW125
344 +AT+DEUI=A84041F15612
444 444  
445 -904.9 - SF7BW125 to SF10BW125
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
446 446  
447 -905.1 - SF7BW125 to SF10BW125
448 448  
449 -905.3 - SF7BW125 to SF10BW125
450 450  
350 +=== 2.4.2  Version Info ===
451 451  
452 -(% style="color:#037691" %)**Downlink:**
352 +Specify the software version: 0x64=100, means firmware version 1.00.
453 453  
454 -923.3 - SF7BW500 to SF12BW500
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
455 455  
456 -923.9 - SF7BW500 to SF12BW500
457 457  
458 -924.5 - SF7BW500 to SF12BW500
459 459  
460 -925.1 - SF7BW500 to SF12BW500
358 +=== 2.4.3  Battery Info ===
461 461  
462 -925.7 - SF7BW500 to SF12BW500
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
463 463  
464 -926.3 - SF7BW500 to SF12BW500
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
465 465  
466 -926.9 - SF7BW500 to SF12BW500
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
467 467  
468 -927.5 - SF7BW500 to SF12BW500
469 469  
470 -923.3 - SF12BW500(RX2 downlink only)
471 471  
374 +=== 2.4.4  Signal Strength ===
472 472  
376 +NB-IoT Network signal Strength.
473 473  
474 -=== 2.7.3 CN470-510 (CN470) ===
378 +**Ex1: 0x1d = 29**
475 475  
476 -Used in China, Default use CHE=1
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
477 477  
478 -(% style="color:#037691" %)**Uplink:**
382 +(% style="color:blue" %)**1**(%%)  -111dBm
479 479  
480 -486.3 - SF7BW125 to SF12BW125
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
481 481  
482 -486.5 - SF7BW125 to SF12BW125
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
483 483  
484 -486.7 - SF7BW125 to SF12BW125
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
485 485  
486 -486.9 - SF7BW125 to SF12BW125
487 487  
488 -487.1 - SF7BW125 to SF12BW125
489 489  
490 -487.3 - SF7BW125 to SF12BW125
392 +=== 2.4. Soil Moisture ===
491 491  
492 -487.5 - SF7BW125 to SF12BW125
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
493 493  
494 -487.7 - SF7BW125 to SF12BW125
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
495 495  
402 +(((
403 +
404 +)))
496 496  
497 -(% style="color:#037691" %)**Downlink:**
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
498 498  
499 -506.7 - SF7BW125 to SF12BW125
500 500  
501 -506.9 - SF7BW125 to SF12BW125
502 502  
503 -507.1 - SF7BW125 to SF12BW125
412 +=== 2.4.6  Soil Temperature ===
504 504  
505 -507.3 - SF7BW125 to SF12BW125
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
506 506  
507 -507.5 - SF7BW125 to SF12BW125
418 +(((
419 +**Example**:
420 +)))
508 508  
509 -507.7 - SF7BW125 to SF12BW125
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
510 510  
511 -507.9 - SF7BW125 to SF12BW125
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
512 512  
513 -508.1 - SF7BW125 to SF12BW125
514 514  
515 -505.3 - SF12BW125 (RX2 downlink only)
516 516  
432 +=== 2.4.7  Soil Conductivity (EC) ===
517 517  
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
518 518  
519 -=== 2.7.4 AU915-928(AU915) ===
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
520 520  
521 -Default use CHE=2
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
522 522  
523 -(% style="color:#037691" %)**Uplink:**
446 +(((
447 +
448 +)))
524 524  
525 -916.8 - SF7BW125 to SF12BW125
450 +(((
451 +
452 +)))
526 526  
527 -917.0 - SF7BW125 to SF12BW125
454 +=== 2.4.8  Digital Interrupt ===
528 528  
529 -917.2 - SF7BW125 to SF12BW125
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
530 530  
531 -917.4 - SF7BW125 to SF12BW125
458 +The command is:
532 532  
533 -917.6 - SF7BW125 to SF12BW125
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
534 534  
535 -917.8 - SF7BW125 to SF12BW125
536 536  
537 -918.0 - SF7BW125 to SF12BW125
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
538 538  
539 -918.2 - SF7BW125 to SF12BW125
540 540  
466 +Example:
541 541  
542 -(% style="color:#037691" %)**Downlink:**
468 +0x(00): Normal uplink packet.
543 543  
544 -923.3 - SF7BW500 to SF12BW500
470 +0x(01): Interrupt Uplink Packet.
545 545  
546 -923.9 - SF7BW500 to SF12BW500
547 547  
548 -924.5 - SF7BW500 to SF12BW500
549 549  
550 -925.1 - SF7BW500 to SF12BW500
474 +=== 2.4.9  ​+5V Output ===
551 551  
552 -925.7 - SF7BW500 to SF12BW500
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
553 553  
554 -926.3 - SF7BW500 to SF12BW500
555 555  
556 -926.9 - SF7BW500 to SF12BW500
479 +The 5V output time can be controlled by AT Command.
557 557  
558 -927.5 - SF7BW500 to SF12BW500
481 +(% style="color:blue" %)**AT+5VT=1000**
559 559  
560 -923.3 - SF12BW500(RX2 downlink only)
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
561 561  
562 562  
563 563  
564 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
487 +== 2.5  Downlink Payload ==
565 565  
566 -(% style="color:#037691" %)**Default Uplink channel:**
489 +By default, NSE01 prints the downlink payload to console port.
567 567  
568 -923.2 - SF7BW125 to SF10BW125
491 +[[image:image-20220708133731-5.png]]
569 569  
570 -923.4 - SF7BW125 to SF10BW125
571 571  
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
572 572  
573 -(% style="color:#037691" %)**Additional Uplink Channel**:
498 +(((
499 +
500 +)))
574 574  
575 -(OTAA mode, channel added by JoinAccept message)
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
576 576  
577 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
578 578  
579 -922.2 - SF7BW125 to SF10BW125
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
580 580  
581 -922.4 - SF7BW125 to SF10BW125
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
582 582  
583 -922.6 - SF7BW125 to SF10BW125
518 +(((
519 +
520 +)))
584 584  
585 -922.8 - SF7BW125 to SF10BW125
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
586 586  
587 -923.0 - SF7BW125 to SF10BW125
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
588 588  
589 -922.0 - SF7BW125 to SF10BW125
590 590  
531 +* (% style="color:blue" %)**INTMOD**
591 591  
592 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
593 593  
594 -923.6 - SF7BW125 to SF10BW125
595 595  
596 -923.8 - SF7BW125 to SF10BW125
597 597  
598 -924.0 - SF7BW125 to SF10BW125
537 +== 2. ​LED Indicator ==
599 599  
600 -924.2 - SF7BW125 to SF10BW125
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
601 601  
602 -924.4 - SF7BW125 to SF10BW125
603 603  
604 -924.6 - SF7BW125 to SF10BW125
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
605 605  
606 606  
607 -(% style="color:#037691" %)** Downlink:**
608 608  
609 -Uplink channels 1-8 (RX1)
610 610  
611 -923.2 - SF10BW125 (RX2)
552 +== 2. Installation in Soil ==
612 612  
554 +__**Measurement the soil surface**__
613 613  
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
614 614  
615 -=== 2.7.6 KR920-923 (KR920) ===
558 +[[image:1657259653666-883.png]]
616 616  
617 -Default channel:
618 618  
619 -922.1 - SF7BW125 to SF12BW125
561 +(((
562 +
620 620  
621 -922.3 - SF7BW125 to SF12BW125
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
622 622  
623 -922.5 - SF7BW125 to SF12BW125
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
624 624  
573 +[[image:1654506665940-119.png]]
625 625  
626 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
575 +(((
576 +
577 +)))
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 629  
630 -922.3 - SF7BW125 to SF12BW125
580 +== 2. Firmware Change Log ==
631 631  
632 -922.5 - SF7BW125 to SF12BW125
633 633  
634 -922.7 - SF7BW125 to SF12BW125
583 +Download URL & Firmware Change log
635 635  
636 -922.9 - SF7BW125 to SF12BW125
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
637 637  
638 -923.1 - SF7BW125 to SF12BW125
639 639  
640 -923.3 - SF7BW125 to SF12BW125
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
641 641  
642 642  
643 -(% style="color:#037691" %)**Downlink:**
644 644  
645 -Uplink channels 1-7(RX1)
592 +== 2.9  ​Battery Analysis ==
646 646  
647 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +=== 2.9.1  Battery Type ===
648 648  
649 649  
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
650 650  
651 -=== 2.7.7 IN865-867 (IN865) ===
652 652  
653 -(% style="color:#037691" %)** Uplink:**
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
654 654  
655 -865.0625 - SF7BW125 to SF12BW125
656 656  
657 -865.4025 - SF7BW125 to SF12BW125
603 +The battery related documents as below:
658 658  
659 -865.9850 - SF7BW125 to SF12BW125
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 660  
661 -
662 -(% style="color:#037691" %) **Downlink:**
663 -
664 -Uplink channels 1-3 (RX1)
665 -
666 -866.550 - SF10BW125 (RX2)
667 -
668 -
669 -
670 -
671 -== 2.8 LED Indicator ==
672 -
673 -The LSE01 has an internal LED which is to show the status of different state.
674 -
675 -* Blink once when device power on.
676 -* Solid ON for 5 seconds once device successful Join the network.
677 -* Blink once when device transmit a packet.
678 -
679 -
680 -
681 -== 2.9 Installation in Soil ==
682 -
683 -**Measurement the soil surface**
684 -
685 -
686 -[[image:1654506634463-199.png]] ​
687 -
688 688  (((
689 -(((
690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
610 +[[image:image-20220708140453-6.png]]
691 691  )))
692 -)))
693 693  
694 694  
695 -[[image:1654506665940-119.png]]
696 696  
697 -(((
698 -Dig a hole with diameter > 20CM.
699 -)))
615 +=== 2.9.2  Power consumption Analyze ===
700 700  
701 701  (((
702 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
703 703  )))
704 704  
705 705  
706 -== 2.10 ​Firmware Change Log ==
707 -
708 708  (((
709 -**Firmware download link:**
623 +Instruction to use as below:
710 710  )))
711 711  
712 712  (((
713 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
714 714  )))
715 715  
716 -(((
717 -
718 -)))
719 719  
720 720  (((
721 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
722 722  )))
723 723  
724 -(((
725 -
635 +* (((
636 +Product Model
726 726  )))
727 -
728 -(((
729 -**V1.0.**
638 +* (((
639 +Uplink Interval
730 730  )))
641 +* (((
642 +Working Mode
643 +)))
731 731  
732 732  (((
733 -Release
646 +And the Life expectation in difference case will be shown on the right.
734 734  )))
735 735  
649 +[[image:image-20220708141352-7.jpeg]]
736 736  
737 -== 2.11 ​Battery Analysis ==
738 738  
739 -=== 2.11.1 ​Battery Type ===
740 740  
741 -(((
742 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
743 -)))
653 +=== 2.9.3  ​Battery Note ===
744 744  
745 745  (((
746 -The battery is designed to last for more than 5 years for the LSN50.
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
747 747  )))
748 748  
749 -(((
750 -(((
751 -The battery-related documents are as below:
752 -)))
753 -)))
754 754  
755 -* (((
756 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
757 -)))
758 -* (((
759 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
760 -)))
761 -* (((
762 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
763 -)))
764 764  
765 - [[image:image-20220606171726-9.png]]
661 +=== 2.9.4  Replace the battery ===
766 766  
767 -
768 -
769 -=== 2.11.2 ​Battery Note ===
770 -
771 771  (((
772 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
773 773  )))
774 774  
775 775  
776 776  
777 -=== 2.11.3 Replace the battery ===
669 += 3. ​ Access NB-IoT Module =
778 778  
779 779  (((
780 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
672 +Users can directly access the AT command set of the NB-IoT module.
781 781  )))
782 782  
783 783  (((
784 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
785 785  )))
786 786  
787 -(((
788 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
789 -)))
679 +[[image:1657261278785-153.png]]
790 790  
791 791  
792 792  
793 -= 3. Using the AT Commands =
683 += 4.  Using the AT Commands =
794 794  
795 -== 3.1 Access AT Commands ==
685 +== 4.1  Access AT Commands ==
796 796  
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
797 797  
798 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
799 799  
800 -[[image:1654501986557-872.png||height="391" width="800"]]
690 +AT+<CMD>?  : Help on <CMD>
801 801  
692 +AT+<CMD>         : Run <CMD>
802 802  
803 -Or if you have below board, use below connection:
694 +AT+<CMD>=<value> : Set the value
804 804  
696 +AT+<CMD>=?  : Get the value
805 805  
806 -[[image:1654502005655-729.png||height="503" width="801"]]
807 807  
808 -
809 -
810 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
811 -
812 -
813 - [[image:1654502050864-459.png||height="564" width="806"]]
814 -
815 -
816 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
817 -
818 -
819 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
820 -
821 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
822 -
823 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
824 -
825 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
826 -
827 -
828 828  (% style="color:#037691" %)**General Commands**(%%)      
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
833 833  
834 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
837 837  
709 +AT+CFG  : Print all configurations
838 838  
839 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
872 872  
742 +AT+CLIENT               : Get or Set MQTT client
873 873  
874 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
901 -
902 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
903 -
904 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
905 -
906 -
907 -(% style="color:#037691" %)**Information** 
908 -
909 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
920 -
921 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
922 -
923 -
924 -= ​4. FAQ =
925 -
926 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
927 -
928 928  (((
929 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
930 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
931 931  )))
932 932  
933 933  (((
934 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
935 935  )))
936 936  
937 937  (((
938 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
939 939  )))
940 940  
941 -(((
942 -
943 -)))
944 944  
945 -(((
946 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
947 -)))
948 948  
949 -(((
950 -
951 -)))
780 += 6.  Trouble Shooting =
952 952  
953 -(((
954 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
955 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
956 956  
957 -[[image:image-20220606154726-3.png]]
958 958  
959 -
960 -When you use the TTN network, the US915 frequency bands use are:
961 -
962 -* 903.9 - SF7BW125 to SF10BW125
963 -* 904.1 - SF7BW125 to SF10BW125
964 -* 904.3 - SF7BW125 to SF10BW125
965 -* 904.5 - SF7BW125 to SF10BW125
966 -* 904.7 - SF7BW125 to SF10BW125
967 -* 904.9 - SF7BW125 to SF10BW125
968 -* 905.1 - SF7BW125 to SF10BW125
969 -* 905.3 - SF7BW125 to SF10BW125
970 -* 904.6 - SF8BW500
971 -
785 +(% class="wikigeneratedid" %)
972 972  (((
973 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
974 974  )))
975 975  
976 -(% class="box infomessage" %)
977 -(((
978 -**AT+CHE=2**
979 -)))
980 980  
981 -(% class="box infomessage" %)
982 -(((
983 -**ATZ**
984 -)))
985 985  
986 -(((
987 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
988 -)))
792 +== 6.2  AT Command input doesn't work ==
989 989  
990 990  (((
991 -
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
992 992  )))
993 993  
994 -(((
995 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
996 -)))
997 997  
998 -[[image:image-20220606154825-4.png]]
999 999  
800 += 7. ​ Order Info =
1000 1000  
1001 1001  
1002 -= 5. Trouble Shooting =
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1003 1003  
1004 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1005 1005  
1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1007 -
1008 -
1009 -== 5.2 AT Command input doesn’t work ==
1010 -
1011 -(((
1012 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 -)))
1014 -
1015 -
1016 -== 5.3 Device rejoin in at the second uplink packet ==
1017 -
1018 -(% style="color:#4f81bd" %)**Issue describe as below:**
1019 -
1020 -[[image:1654500909990-784.png]]
1021 -
1022 -
1023 -(% style="color:#4f81bd" %)**Cause for this issue:**
1024 -
1025 -(((
1026 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1027 -)))
1028 -
1029 -
1030 -(% style="color:#4f81bd" %)**Solution: **
1031 -
1032 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1033 -
1034 -[[image:1654500929571-736.png||height="458" width="832"]]
1035 -
1036 -
1037 -= 6. ​Order Info =
1038 -
1039 -
1040 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 -
1042 -
1043 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 -
1045 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 -
1054 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 -
1056 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 -
1059 1059  (% class="wikigeneratedid" %)
1060 1060  (((
1061 1061  
1062 1062  )))
1063 1063  
1064 -= 7. Packing Info =
811 += 8.  Packing Info =
1065 1065  
1066 1066  (((
1067 1067  
1068 1068  
1069 1069  (% style="color:#037691" %)**Package Includes**:
1070 -)))
1071 1071  
1072 -* (((
1073 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1074 1074  )))
1075 1075  
1076 1076  (((
... ... @@ -1077,30 +1077,20 @@
1077 1077  
1078 1078  
1079 1079  (% style="color:#037691" %)**Dimension and weight**:
1080 -)))
1081 1081  
1082 -* (((
1083 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1084 1084  )))
1085 -* (((
1086 -Device Weight: g
1087 -)))
1088 -* (((
1089 -Package Size / pcs : cm
1090 -)))
1091 -* (((
1092 -Weight / pcs : g
1093 1093  
833 +(((
834 +
1094 1094  
836 +
1095 1095  
1096 1096  )))
1097 1097  
1098 -= 8. Support =
840 += 9.  Support =
1099 1099  
1100 1100  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1101 1101  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1102 -
1103 -
1104 -~)~)~)
1105 -~)~)~)
1106 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content