Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.14
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version
To version 62.3
edited by Xiaoling
on 2022/07/08 14:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,762 +12,631 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
170 -)))
171 -
172 -
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
112 +The diagram below shows the working flow in default firmware of NSE01:
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
115 +[[image:image-20220708101605-2.png]]
205 205  
206 206  (((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 -
210 -
211 -
212 -=== 2.3.4 Soil Moisture ===
213 -
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 -
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
221 -
222 -(((
223 223  
224 224  )))
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
229 229  
230 230  
123 +== 2.2 ​ Configure the NSE01 ==
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
126 +=== 2.2.1 Test Requirement ===
237 237  
238 -(((
239 -**Example**:
240 -)))
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
249 249  
250 -
251 -
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 -
254 254  (((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
256 256  )))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
140 +[[image:1657249419225-449.png]]
265 265  
266 -(((
267 -
268 -)))
269 269  
270 -(((
271 -
272 -)))
273 273  
274 -=== 2.3.7 MOD ===
144 +=== 2.2.2 Insert SIM card ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
146 +Insert the NB-IoT Card get from your provider.
277 277  
278 -For example, bytes[10]=90
148 +User need to take out the NB-IoT module and insert the SIM card like below:
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
281 281  
151 +[[image:1657249468462-536.png]]
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
286 286  
287 -If** **payload =** **0x0A01, workmode=1
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
300 -)))
301 -
302 302  (((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
304 304  )))
161 +)))
305 305  
306 306  
164 +**Connection:**
307 307  
308 -== 2.4 Uplink Interval ==
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
309 309  
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
311 311  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
312 312  
313 313  
314 -== 2.5 Downlink Payload ==
173 +In the PC, use below serial tool settings:
315 315  
316 -By default, LSE50 prints the downlink payload to console port.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
317 317  
318 -[[image:image-20220606165544-8.png]]
319 -
320 -
321 321  (((
322 -**Examples:**
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
323 323  )))
324 324  
325 -(((
326 -
327 -)))
185 +[[image:image-20220708110657-3.png]]
328 328  
329 -* (((
330 -**Set TDC**
331 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
332 332  
333 -(((
334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
335 -)))
336 336  
337 -(((
338 -Payload:    01 00 00 1E    TDC=30S
339 -)))
340 340  
341 -(((
342 -Payload:    01 00 00 3C    TDC=60S
343 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
344 344  
345 -(((
346 -
347 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
348 348  
349 -* (((
350 -**Reset**
351 -)))
352 352  
353 -(((
354 -If payload = 0x04FF, it will reset the LSE01
355 -)))
196 +**Use below commands:**
356 356  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
357 357  
358 -* **CFM**
202 +For parameter description, please refer to AT command set
359 359  
360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
204 +[[image:1657249793983-486.png]]
361 361  
362 362  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
363 363  
364 -== 2.6 ​Show Data in DataCake IoT Server ==
209 +[[image:1657249831934-534.png]]
365 365  
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 367  
368 368  
369 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
370 370  
371 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
215 +This feature is supported since firmware version v1.0.1
372 372  
373 373  
374 -[[image:1654505857935-743.png]]
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
375 375  
222 +[[image:1657249864775-321.png]]
376 376  
377 -[[image:1654505874829-548.png]]
378 378  
379 -Step 3: Create an account or log in Datacake.
225 +[[image:1657249930215-289.png]]
380 380  
381 -Step 4: Search the LSE01 and add DevEUI.
382 382  
383 383  
384 -[[image:1654505905236-553.png]]
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
385 385  
231 +This feature is supported since firmware version v110
386 386  
387 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
388 388  
389 -[[image:1654505925508-181.png]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
390 390  
242 +[[image:1657249978444-674.png]]
391 391  
392 392  
393 -== 2.7 Frequency Plans ==
245 +[[image:1657249990869-686.png]]
394 394  
395 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
396 396  
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
397 397  
398 -=== 2.7.1 EU863-870 (EU868) ===
399 399  
400 -(% style="color:#037691" %)** Uplink:**
401 401  
402 -868.1 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
403 403  
404 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
256 +This feature is supported since firmware version v110
405 405  
406 -868.5 - SF7BW125 to SF12BW125
407 407  
408 -867.1 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
409 409  
410 -867.3 - SF7BW125 to SF12BW125
262 +[[image:1657250217799-140.png]]
411 411  
412 -867.5 - SF7BW125 to SF12BW125
413 413  
414 -867.7 - SF7BW125 to SF12BW125
265 +[[image:1657250255956-604.png]]
415 415  
416 -867.9 - SF7BW125 to SF12BW125
417 417  
418 -868.8 - FSK
419 419  
269 +=== 2.2.8 Change Update Interval ===
420 420  
421 -(% style="color:#037691" %)** Downlink:**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
422 422  
423 -Uplink channels 1-9 (RX1)
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
424 424  
425 -869.525 - SF9BW125 (RX2 downlink only)
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
426 426  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
427 427  
428 428  
429 -=== 2.7.2 US902-928(US915) ===
430 430  
431 -Used in USA, Canada and South America. Default use CHE=2
285 +== 2.3  Uplink Payload ==
432 432  
433 -(% style="color:#037691" %)**Uplink:**
287 +In this mode, uplink payload includes in total 18 bytes
434 434  
435 -903.9 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
436 436  
437 -904.1 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
438 438  
439 -904.3 - SF7BW125 to SF10BW125
440 440  
441 -904.5 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
442 442  
443 -904.7 - SF7BW125 to SF10BW125
444 444  
445 -904.9 - SF7BW125 to SF10BW125
301 +The payload is ASCII string, representative same HEX:
446 446  
447 -905.1 - SF7BW125 to SF10BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
448 448  
449 -905.3 - SF7BW125 to SF10BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
450 450  
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
451 451  
452 -(% style="color:#037691" %)**Downlink:**
315 +== 2.4  Payload Explanation and Sensor Interface ==
453 453  
454 -923.3 - SF7BW500 to SF12BW500
455 455  
456 -923.9 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
457 457  
458 -924.5 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
459 459  
460 -925.1 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
461 461  
462 -925.7 - SF7BW500 to SF12BW500
324 +**Example:**
463 463  
464 -926.3 - SF7BW500 to SF12BW500
326 +AT+DEUI=A84041F15612
465 465  
466 -926.9 - SF7BW500 to SF12BW500
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
467 467  
468 -927.5 - SF7BW500 to SF12BW500
469 469  
470 -923.3 - SF12BW500(RX2 downlink only)
471 471  
332 +=== 2.4.2  Version Info ===
472 472  
334 +Specify the software version: 0x64=100, means firmware version 1.00.
473 473  
474 -=== 2.7.3 CN470-510 (CN470) ===
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
475 475  
476 -Used in China, Default use CHE=1
477 477  
478 -(% style="color:#037691" %)**Uplink:**
479 479  
480 -486.3 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
481 481  
482 -486.5 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
483 483  
484 -486.7 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
485 485  
486 -486.9 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
487 487  
488 -487.1 - SF7BW125 to SF12BW125
489 489  
490 -487.3 - SF7BW125 to SF12BW125
491 491  
492 -487.5 - SF7BW125 to SF12BW125
356 +=== 2.4. Signal Strength ===
493 493  
494 -487.7 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
495 495  
360 +**Ex1: 0x1d = 29**
496 496  
497 -(% style="color:#037691" %)**Downlink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
498 498  
499 -506.7 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
500 500  
501 -506.9 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
502 502  
503 -507.1 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
504 504  
505 -507.3 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
506 506  
507 -507.5 - SF7BW125 to SF12BW125
508 508  
509 -507.7 - SF7BW125 to SF12BW125
510 510  
511 -507.9 - SF7BW125 to SF12BW125
374 +=== 2.4.5  Soil Moisture ===
512 512  
513 -508.1 - SF7BW125 to SF12BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
514 514  
515 -505.3 - SF12BW125 (RX2 downlink only)
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
516 516  
384 +(((
385 +
386 +)))
517 517  
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
518 518  
519 -=== 2.7.4 AU915-928(AU915) ===
520 520  
521 -Default use CHE=2
522 522  
523 -(% style="color:#037691" %)**Uplink:**
394 +=== 2.4.6  Soil Temperature ===
524 524  
525 -916.8 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
526 526  
527 -917.0 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
528 528  
529 -917.2 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
530 530  
531 -917.4 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
532 532  
533 -917.6 - SF7BW125 to SF12BW125
534 534  
535 -917.8 - SF7BW125 to SF12BW125
536 536  
537 -918.0 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
538 538  
539 -918.2 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
540 540  
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
541 541  
542 -(% style="color:#037691" %)**Downlink:**
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
543 543  
544 -923.3 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
545 545  
546 -923.9 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
547 547  
548 -924.5 - SF7BW500 to SF12BW500
436 +=== 2.4. Digital Interrupt ===
549 549  
550 -925.1 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
551 551  
552 -925.7 - SF7BW500 to SF12BW500
440 +The command is:
553 553  
554 -926.3 - SF7BW500 to SF12BW500
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
555 555  
556 -926.9 - SF7BW500 to SF12BW500
557 557  
558 -927.5 - SF7BW500 to SF12BW500
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
559 559  
560 -923.3 - SF12BW500(RX2 downlink only)
561 561  
448 +Example:
562 562  
450 +0x(00): Normal uplink packet.
563 563  
564 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
452 +0x(01): Interrupt Uplink Packet.
565 565  
566 -(% style="color:#037691" %)**Default Uplink channel:**
567 567  
568 -923.2 - SF7BW125 to SF10BW125
569 569  
570 -923.4 - SF7BW125 to SF10BW125
456 +=== 2.4.9  ​+5V Output ===
571 571  
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
572 572  
573 -(% style="color:#037691" %)**Additional Uplink Channel**:
574 574  
575 -(OTAA mode, channel added by JoinAccept message)
461 +The 5V output time can be controlled by AT Command.
576 576  
577 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
463 +(% style="color:blue" %)**AT+5VT=1000**
578 578  
579 -922.2 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
580 580  
581 -922.4 - SF7BW125 to SF10BW125
582 582  
583 -922.6 - SF7BW125 to SF10BW125
584 584  
585 -922.8 - SF7BW125 to SF10BW125
469 +== 2.5  Downlink Payload ==
586 586  
587 -923.0 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
588 588  
589 -922.0 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
590 590  
591 591  
592 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
593 593  
594 -923.6 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
595 595  
596 -923.8 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
597 597  
598 -924.0 - SF7BW125 to SF10BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
599 599  
600 -924.2 - SF7BW125 to SF10BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
601 601  
602 -924.4 - SF7BW125 to SF10BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
603 603  
604 -924.6 - SF7BW125 to SF10BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
605 605  
501 +(((
502 +
503 +)))
606 606  
607 -(% style="color:#037691" %)** Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
608 608  
609 -Uplink channels 1-8 (RX1)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
610 610  
611 -923.2 - SF10BW125 (RX2)
612 612  
514 +* (% style="color:blue" %)**INTMOD**
613 613  
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
614 614  
615 -=== 2.7.6 KR920-923 (KR920) ===
616 616  
617 -Default channel:
618 618  
619 -922.1 - SF7BW125 to SF12BW125
520 +== 2. ​LED Indicator ==
620 620  
621 -922.3 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
622 622  
623 -922.5 - SF7BW125 to SF12BW125
624 624  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
625 625  
626 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 629  
630 -922.3 - SF7BW125 to SF12BW125
631 631  
632 -922.5 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
633 633  
634 -922.7 - SF7BW125 to SF12BW125
537 +__**Measurement the soil surface**__
635 635  
636 -922.9 - SF7BW125 to SF12BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
637 637  
638 -923.1 - SF7BW125 to SF12BW125
541 +[[image:1657259653666-883.png]] ​
639 639  
640 -923.3 - SF7BW125 to SF12BW125
641 641  
544 +(((
545 +
642 642  
643 -(% style="color:#037691" %)**Downlink:**
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
644 644  
645 -Uplink channels 1-7(RX1)
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
646 646  
647 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
556 +[[image:1654506665940-119.png]]
648 648  
558 +(((
559 +
560 +)))
649 649  
650 650  
651 -=== 2.7.7 IN865-867 (IN865) ===
563 +== 2.8  ​Firmware Change Log ==
652 652  
653 -(% style="color:#037691" %)** Uplink:**
654 654  
655 -865.0625 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
656 656  
657 -865.4025 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
658 658  
659 -865.9850 - SF7BW125 to SF12BW125
660 660  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
661 661  
662 -(% style="color:#037691" %) **Downlink:**
663 663  
664 -Uplink channels 1-3 (RX1)
665 665  
666 -866.550 - SF10BW125 (RX2)
575 +== 2. Battery Analysis ==
667 667  
577 +=== 2.9.1  ​Battery Type ===
668 668  
669 669  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
670 670  
671 -== 2.8 LED Indicator ==
672 672  
673 -The LSE01 has an internal LED which is to show the status of different state.
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
674 674  
675 -* Blink once when device power on.
676 -* Solid ON for 5 seconds once device successful Join the network.
677 -* Blink once when device transmit a packet.
678 678  
586 +The battery related documents as below:
679 679  
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 680  
681 -== 2.9 Installation in Soil ==
682 -
683 -**Measurement the soil surface**
684 -
685 -
686 -[[image:1654506634463-199.png]] ​
687 -
688 688  (((
689 -(((
690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
691 691  )))
692 -)))
693 693  
694 694  
695 -[[image:1654506665940-119.png]]
696 696  
697 -(((
698 -Dig a hole with diameter > 20CM.
699 -)))
598 +=== 2.9.2  Power consumption Analyze ===
700 700  
701 701  (((
702 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
703 703  )))
704 704  
705 705  
706 -== 2.10 ​Firmware Change Log ==
707 -
708 708  (((
709 -**Firmware download link:**
606 +Instruction to use as below:
710 710  )))
711 711  
712 712  (((
713 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
714 714  )))
715 715  
716 -(((
717 -
718 -)))
719 719  
720 720  (((
721 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
722 722  )))
723 723  
724 -(((
725 -
726 -)))
727 -
728 -(((
729 -**V1.0.**
730 -)))
731 -
732 -(((
733 -Release
734 -)))
735 -
736 -
737 -== 2.11 ​Battery Analysis ==
738 -
739 -=== 2.11.1 ​Battery Type ===
740 -
741 -(((
742 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
743 -)))
744 -
745 -(((
746 -The battery is designed to last for more than 5 years for the LSN50.
747 -)))
748 -
749 -(((
750 -(((
751 -The battery-related documents are as below:
752 -)))
753 -)))
754 -
755 755  * (((
756 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
619 +Product Model
757 757  )))
758 758  * (((
759 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
622 +Uplink Interval
760 760  )))
761 761  * (((
762 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
625 +Working Mode
763 763  )))
764 764  
765 - [[image:image-20220606171726-9.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
766 766  
632 +[[image:image-20220708141352-7.jpeg]]
767 767  
768 768  
769 -=== 2.11.2 ​Battery Note ===
770 770  
636 +=== 2.9.3  ​Battery Note ===
637 +
771 771  (((
772 772  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
773 773  )))
... ... @@ -774,22 +774,14 @@
774 774  
775 775  
776 776  
777 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
778 778  
779 779  (((
780 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 781  )))
782 782  
783 -(((
784 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
785 -)))
786 786  
787 -(((
788 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
789 -)))
790 790  
791 -
792 -
793 793  = 3. ​Using the AT Commands =
794 794  
795 795  == 3.1 Access AT Commands ==
... ... @@ -813,7 +813,7 @@
813 813   [[image:1654502050864-459.png||height="564" width="806"]]
814 814  
815 815  
816 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
817 817  
818 818  
819 819  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -971,19 +971,14 @@
971 971  
972 972  (((
973 973  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
974 -)))
975 975  
976 -(% class="box infomessage" %)
977 -(((
978 -**AT+CHE=2**
834 +* (% style="color:#037691" %)**AT+CHE=2**
835 +* (% style="color:#037691" %)**ATZ**
979 979  )))
980 980  
981 -(% class="box infomessage" %)
982 982  (((
983 -**ATZ**
984 -)))
839 +
985 985  
986 -(((
987 987  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
988 988  )))
989 989  
... ... @@ -998,18 +998,22 @@
998 998  [[image:image-20220606154825-4.png]]
999 999  
1000 1000  
855 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1001 1001  
857 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
858 +
859 +
1002 1002  = 5. Trouble Shooting =
1003 1003  
1004 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
862 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 1005  
1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
864 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 1007  
1008 1008  
1009 -== 5.2 AT Command input doesnt work ==
867 +== 5.2 AT Command input doesn't work ==
1010 1010  
1011 1011  (((
1012 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 1013  )))
1014 1014  
1015 1015  
... ... @@ -1091,7 +1091,6 @@
1091 1091  * (((
1092 1092  Weight / pcs : g
1093 1093  
1094 -
1095 1095  
1096 1096  )))
1097 1097  
... ... @@ -1099,8 +1099,3 @@
1099 1099  
1100 1100  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1101 1101  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1102 -
1103 -
1104 -~)~)~)
1105 -~)~)~)
1106 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content