Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,784 +12,628 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 70 70 71 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -**LSE01 v1.0 :** Release 80 80 87 +== 1.4 Applications == 81 81 89 +* Smart Agriculture 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 84 84 85 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 97 +[[image:1657246476176-652.png]] 94 94 95 95 96 96 97 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 98 98 99 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 170 -))) 171 - 172 - 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - CheckthebatteryvoltageforLSE01.112 +The diagram below shows the working flow in default firmware of NSE01: 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 115 +[[image:image-20220708101605-2.png]] 205 205 206 206 ((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 - 210 - 211 - 212 -=== 2.3.4 Soil Moisture === 213 - 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 - 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 221 - 222 -((( 223 223 224 224 ))) 225 225 226 -((( 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 -))) 229 229 230 230 123 +== 2.2 Configure the NSE01 == 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 126 +=== 2.2.1 Test Requirement === 237 237 238 -((( 239 -**Example**: 240 -))) 241 241 242 -((( 243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 -))) 129 +To use NSE01 in your city, make sure meet below requirements: 245 245 246 - (((247 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C248 - )))131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 249 249 250 - 251 - 252 -=== 2.3.6 Soil Conductivity (EC) === 253 - 254 254 ((( 255 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 256 256 ))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 261 261 262 -((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 140 +[[image:1657249419225-449.png]] 265 265 266 -((( 267 - 268 -))) 269 269 270 -((( 271 - 272 -))) 273 273 274 -=== 2. 3.7MOD===144 +=== 2.2.2 Insert SIM card === 275 275 276 - Firmwareversionatleastv2.1supportschanging mode.146 +Insert the NB-IoT Card get from your provider. 277 277 278 - For example,bytes[10]=90148 +User need to take out the NB-IoT module and insert the SIM card like below: 279 279 280 -mod=(bytes[10]>>7)&0x01=1. 281 281 151 +[[image:1657249468462-536.png]] 282 282 283 -**Downlink Command:** 284 284 285 -If payload = 0x0A00, workmode=0 286 286 287 - If****payload=****0x0A01,workmode=1155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 288 288 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 -The payload decoder function for TTN is here: 300 -))) 301 - 302 302 ((( 303 - LSE01TTNPayloadDecoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 304 304 ))) 161 +))) 305 305 306 306 164 +**Connection:** 307 307 308 - ==2.4UplinkInterval==166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 309 309 310 - TheLSE01by default uplink thesensor data every20 minutes. User canchange this interval by AT Commandr LoRaWAN Downlink Command. See this link:[[ChangeUplink Interval>>doc:Main.EndDeviceATCommands andDownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 311 311 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 312 312 313 313 314 - ==2.5DownlinkPayload==173 +In the PC, use below serial tool settings: 315 315 316 -By default, LSE50 prints the downlink payload to console port. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 317 317 318 -[[image:image-20220606165544-8.png]] 319 - 320 - 321 321 ((( 322 - **Examples:**182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 323 323 ))) 324 324 325 -((( 326 - 327 -))) 185 +[[image:image-20220708110657-3.png]] 328 328 329 -* ((( 330 -**Set TDC** 331 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 332 332 333 -((( 334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 -))) 336 336 337 -((( 338 -Payload: 01 00 00 1E TDC=30S 339 -))) 340 340 341 -((( 342 -Payload: 01 00 00 3C TDC=60S 343 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 344 344 345 -((( 346 - 347 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 348 348 349 -* ((( 350 -**Reset** 351 -))) 352 352 353 -((( 354 -If payload = 0x04FF, it will reset the LSE01 355 -))) 196 +**Use below commands:** 356 356 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 357 357 358 - * **CFM**202 +For parameter description, please refer to AT command set 359 359 360 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0204 +[[image:1657249793983-486.png]] 361 361 362 362 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 363 363 364 - == 2.6 Show Datain DataCakeIoT Server ==209 +[[image:1657249831934-534.png]] 365 365 366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 367 367 368 368 369 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork athistime.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 370 370 371 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:215 +This feature is supported since firmware version v1.0.1 372 372 373 373 374 -[[image:1654505857935-743.png]] 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 375 375 222 +[[image:1657249864775-321.png]] 376 376 377 -[[image:1654505874829-548.png]] 378 378 379 - Step 3: Create an account or login Datacake.225 +[[image:1657249930215-289.png]] 380 380 381 -Step 4: Search the LSE01 and add DevEUI. 382 382 383 383 384 - [[image:1654505905236-553.png]]229 +=== 2.2.6 Use MQTT protocol to uplink data === 385 385 231 +This feature is supported since firmware version v110 386 386 387 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 388 388 389 -[[image:1654505925508-181.png]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 390 390 242 +[[image:1657249978444-674.png]] 391 391 392 392 393 - ==2.7 Frequency Plans ==245 +[[image:1657249990869-686.png]] 394 394 395 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 396 396 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 397 397 398 -=== 2.7.1 EU863-870 (EU868) === 399 399 400 -(% style="color:#037691" %)** Uplink:** 401 401 402 - 868.1-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 403 403 404 - 868.3-SF7BW125toSF12BW125andSF7BW250256 +This feature is supported since firmware version v110 405 405 406 -868.5 - SF7BW125 to SF12BW125 407 407 408 -867.1 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 409 409 410 - 867.3 - SF7BW125to SF12BW125262 +[[image:1657250217799-140.png]] 411 411 412 -867.5 - SF7BW125 to SF12BW125 413 413 414 - 867.7 - SF7BW125to SF12BW125265 +[[image:1657250255956-604.png]] 415 415 416 -867.9 - SF7BW125 to SF12BW125 417 417 418 -868.8 - FSK 419 419 269 +=== 2.2.8 Change Update Interval === 420 420 421 -(% style="color: #037691" %)**Downlink:**271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 422 422 423 - Uplinkchannels1-9(RX1)273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 424 424 425 -869.525 - SF9BW125 (RX2 downlink only) 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 426 426 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 427 427 428 428 429 -=== 2.7.2 US902-928(US915) === 430 430 431 - UsedinUSA, Canadaand South America.Default use CHE=2285 +== 2.3 Uplink Payload == 432 432 433 - (%style="color:#037691"%)**Uplink:**287 +In this mode, uplink payload includes in total 18 bytes 434 434 435 -903.9 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 436 436 437 - 904.1-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 438 438 439 -904.3 - SF7BW125 to SF10BW125 440 440 441 - 904.5-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 442 442 443 -904.7 - SF7BW125 to SF10BW125 444 444 445 - 904.9-SF7BW125toSF10BW125301 +The payload is ASCII string, representative same HEX: 446 446 447 - 905.1 - SF7BW125to SF10BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 448 448 449 -905.3 - SF7BW125 to SF10BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 450 450 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 451 451 452 - (%style="color:#037691"%)**Downlink:**315 +== 2.4 Payload Explanation and Sensor Interface == 453 453 454 -923.3 - SF7BW500 to SF12BW500 455 455 456 - 923.9-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 457 457 458 - 924.5-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 459 459 460 - 925.1-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 461 461 462 - 925.7 - SF7BW500 to SF12BW500324 +**Example:** 463 463 464 - 926.3 - SF7BW500 to SF12BW500326 +AT+DEUI=A84041F15612 465 465 466 - 926.9-SF7BW500toSF12BW500328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 467 467 468 -927.5 - SF7BW500 to SF12BW500 469 469 470 -923.3 - SF12BW500(RX2 downlink only) 471 471 332 +=== 2.4.2 Version Info === 472 472 334 +Specify the software version: 0x64=100, means firmware version 1.00. 473 473 474 - ===2.7.3CN470-510(CN470)===336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 475 475 476 -Used in China, Default use CHE=1 477 477 478 -(% style="color:#037691" %)**Uplink:** 479 479 480 -4 86.3- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 481 481 482 -486.5 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 483 483 484 -486.7 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 485 485 486 -486.9 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 487 487 488 -487.1 - SF7BW125 to SF12BW125 489 489 490 -487.3 - SF7BW125 to SF12BW125 491 491 492 -4 87.5-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 493 493 494 - 487.7-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 495 495 360 +**Ex1: 0x1d = 29** 496 496 497 -(% style="color: #037691" %)**Downlink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 498 498 499 - 506.7-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 500 500 501 - 506.9- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 502 502 503 - 507.1-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 504 504 505 - 507.3-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 506 506 507 -507.5 - SF7BW125 to SF12BW125 508 508 509 -507.7 - SF7BW125 to SF12BW125 510 510 511 - 507.9- SF7BW125toSF12BW125374 +=== 2.4.5 Soil Moisture === 512 512 513 -508.1 - SF7BW125 to SF12BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 514 514 515 -505.3 - SF12BW125 (RX2 downlink only) 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 516 516 384 +((( 385 + 386 +))) 517 517 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 518 518 519 -=== 2.7.4 AU915-928(AU915) === 520 520 521 -Default use CHE=2 522 522 523 - (% style="color:#037691"%)**Uplink:**394 +=== 2.4.6 Soil Temperature === 524 524 525 -916.8 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 526 526 527 -917.0 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 528 528 529 -917.2 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 530 530 531 -917.4 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 532 532 533 -917.6 - SF7BW125 to SF12BW125 534 534 535 -917.8 - SF7BW125 to SF12BW125 536 536 537 - 918.0-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 538 538 539 -918.2 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 540 540 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 541 541 542 -(% style="color:#037691" %)**Downlink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 543 543 544 -923.3 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 545 545 546 -923.9 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 547 547 548 - 924.5-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 549 549 550 - 925.1-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 551 551 552 - 925.7- SF7BW500 toSF12BW500440 +The command is: 553 553 554 - 926.3-SF7BW500to SF12BW500442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 555 555 556 -926.9 - SF7BW500 to SF12BW500 557 557 558 - 927.5-SF7BW500toSF12BW500445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 559 559 560 -923.3 - SF12BW500(RX2 downlink only) 561 561 448 +Example: 562 562 450 +0x(00): Normal uplink packet. 563 563 564 - === 2.7.5 AS920-923 & AS923-925(AS923)===452 +0x(01): Interrupt Uplink Packet. 565 565 566 -(% style="color:#037691" %)**Default Uplink channel:** 567 567 568 -923.2 - SF7BW125 to SF10BW125 569 569 570 - 923.4- SF7BW125 toSF10BW125456 +=== 2.4.9 +5V Output === 571 571 458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 572 572 573 -(% style="color:#037691" %)**Additional Uplink Channel**: 574 574 575 - (OTAAmode,channeladded byJoinAcceptmessage)461 +The 5V output time can be controlled by AT Command. 576 576 577 -(% style="color: #037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:463 +(% style="color:blue" %)**AT+5VT=1000** 578 578 579 - 922.2-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 580 580 581 -922.4 - SF7BW125 to SF10BW125 582 582 583 -922.6 - SF7BW125 to SF10BW125 584 584 585 - 922.8- SF7BW125toSF10BW125469 +== 2.5 Downlink Payload == 586 586 587 - 923.0-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 588 588 589 - 922.0- SF7BW125 to SF10BW125473 +[[image:image-20220708133731-5.png]] 590 590 591 591 592 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 593 593 594 -923.6 - SF7BW125 to SF10BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 595 595 596 -923.8 - SF7BW125 to SF10BW125 481 +((( 482 + 483 +))) 597 597 598 -924.0 - SF7BW125 to SF10BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 599 599 600 -924.2 - SF7BW125 to SF10BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 601 601 602 -924.4 - SF7BW125 to SF10BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 603 603 604 -924.6 - SF7BW125 to SF10BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 605 605 501 +((( 502 + 503 +))) 606 606 607 -(% style="color:#037691" %)** Downlink:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 608 608 609 -Uplink channels 1-8 (RX1) 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 610 610 611 -923.2 - SF10BW125 (RX2) 612 612 514 +* (% style="color:blue" %)**INTMOD** 613 613 516 +Downlink Payload: 06000003, Set AT+INTMOD=3 614 614 615 -=== 2.7.6 KR920-923 (KR920) === 616 616 617 -Default channel: 618 618 619 - 922.1-SF7BW125toSF12BW125520 +== 2.6 LED Indicator == 620 620 621 -922.3 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 622 622 623 -922.5 - SF7BW125 to SF12BW125 624 624 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 625 625 626 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 627 627 628 -922.1 - SF7BW125 to SF12BW125 629 629 630 -922.3 - SF7BW125 to SF12BW125 631 631 632 - 922.5 - SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 633 633 634 - 922.7- SF7BW125toSF12BW125537 +__**Measurement the soil surface**__ 635 635 636 - 922.9-SF7BW125SF12BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 637 637 638 - 923.1- SF7BW125to SF12BW125541 +[[image:1657259653666-883.png]] 639 639 640 -923.3 - SF7BW125 to SF12BW125 641 641 544 +((( 545 + 642 642 643 -(% style="color:#037691" %)**Downlink:** 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 644 644 645 -Uplink channels 1-7(RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 646 646 647 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125might be changed to SF9BW125)556 +[[image:1654506665940-119.png]] 648 648 558 +((( 559 + 560 +))) 649 649 650 650 651 -== =2.7.7 IN865-867(IN865)===563 +== 2.8 Firmware Change Log == 652 652 653 -(% style="color:#037691" %)** Uplink:** 654 654 655 - 865.0625-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 656 656 657 - 865.4025-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 658 658 659 -865.9850 - SF7BW125 to SF12BW125 660 660 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 661 661 662 -(% style="color:#037691" %) **Downlink:** 663 663 664 -Uplink channels 1-3 (RX1) 665 665 666 - 866.550- SF10BW125(RX2)575 +== 2.9 Battery Analysis == 667 667 577 +=== 2.9.1 Battery Type === 668 668 669 669 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 670 670 671 -== 2.8 LED Indicator == 672 672 673 -The LSE01 hasaninternalLEDwhich istoshowthestatusof differentstate.583 +The battery is designed to last for several years depends on the actually use environment and update interval. 674 674 675 -* Blink once when device power on. 676 -* Solid ON for 5 seconds once device successful Join the network. 677 -* Blink once when device transmit a packet. 678 678 586 +The battery related documents as below: 679 679 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 680 681 -== 2.9 Installation in Soil == 682 - 683 -**Measurement the soil surface** 684 - 685 - 686 -[[image:1654506634463-199.png]] 687 - 688 688 ((( 689 -((( 690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 691 691 ))) 692 -))) 693 693 694 694 695 -[[image:1654506665940-119.png]] 696 696 697 -((( 698 -Dig a hole with diameter > 20CM. 699 -))) 598 +2.9.2 700 700 701 -((( 702 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 703 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 704 704 705 705 706 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 707 707 708 -((( 709 -**Firmware download link:** 710 -))) 711 711 712 -((( 713 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 714 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 715 715 716 -((( 717 - 718 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 719 719 720 -((( 721 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 722 -))) 723 723 724 -((( 725 - 726 -))) 611 +Step 2: Open it and choose 727 727 728 - (((729 -* *V1.0.**730 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 731 731 732 -((( 733 -Release 734 -))) 617 +And the Life expectation in difference case will be shown on the right. 735 735 736 736 737 -== 2.11 Battery Analysis == 738 738 739 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 740 740 741 741 ((( 742 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 743 -))) 744 - 745 -((( 746 -The battery is designed to last for more than 5 years for the LSN50. 747 -))) 748 - 749 -((( 750 -((( 751 -The battery-related documents are as below: 752 -))) 753 -))) 754 - 755 -* ((( 756 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 757 -))) 758 -* ((( 759 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 760 -))) 761 -* ((( 762 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 763 -))) 764 - 765 - [[image:image-20220606171726-9.png]] 766 - 767 - 768 - 769 -=== 2.11.2 Battery Note === 770 - 771 -((( 772 772 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 773 773 ))) 774 774 775 775 776 776 777 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 778 778 779 -((( 780 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 781 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 782 782 783 -((( 784 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 785 -))) 786 786 787 -((( 788 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 789 -))) 790 790 791 - 792 - 793 793 = 3. Using the AT Commands = 794 794 795 795 == 3.1 Access AT Commands == ... ... @@ -813,7 +813,7 @@ 813 813 [[image:1654502050864-459.png||height="564" width="806"]] 814 814 815 815 816 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 817 817 818 818 819 819 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -971,19 +971,14 @@ 971 971 972 972 ((( 973 973 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 974 -))) 975 975 976 -(% class="box infomessage" %) 977 -((( 978 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 979 979 ))) 980 980 981 -(% class="box infomessage" %) 982 982 ((( 983 -**ATZ** 984 -))) 822 + 985 985 986 -((( 987 987 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 988 988 ))) 989 989 ... ... @@ -998,18 +998,22 @@ 998 998 [[image:image-20220606154825-4.png]] 999 999 1000 1000 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1001 1001 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1002 1002 = 5. Trouble Shooting = 1003 1003 1004 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 1005 1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 1007 1008 1008 1009 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1010 1010 1011 1011 ((( 1012 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 1013 ))) 1014 1014 1015 1015 ... ... @@ -1091,7 +1091,6 @@ 1091 1091 * ((( 1092 1092 Weight / pcs : g 1093 1093 1094 - 1095 1095 1096 1096 ))) 1097 1097 ... ... @@ -1099,8 +1099,3 @@ 1099 1099 1100 1100 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1101 1101 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1102 - 1103 - 1104 -~)~)~) 1105 -~)~)~) 1106 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content