Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 25 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,9 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="554" width="554"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,742 +12,713 @@ 12 12 13 13 14 14 15 - =1.Introduction=13 +**Table of Contents:** 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 41 41 25 +((( 26 + 42 42 43 - [[image:1654503265560-120.png]]28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 44 44 30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 45 45 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 46 46 47 - ==1.2Features==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -== 1.3 Specification == 62 - 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 - 65 -[[image:image-20220606162220-5.png]] 66 - 67 - 68 - 69 -== 1.4 Applications == 70 - 71 -* Smart Agriculture 72 - 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 - 76 -== 1.5 Firmware Change log == 77 - 78 - 79 -**LSE01 v1.0 :** Release 80 - 81 - 82 - 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 - 85 -== 2.1 How it works == 86 - 87 87 ((( 88 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 89 89 ))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 42 + 93 93 ))) 94 94 45 +[[image:1654503236291-817.png]] 95 95 96 96 97 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 103 103 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 - [[image:image-20220606163732-6.jpeg]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 115 115 116 - **AddAPP EUI intheapplication**77 +(% style="color:#037691" %)**NB-IoT Spec:** 117 117 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 118 118 119 - [[image:1654504596150-405.png]]86 +Probe(% style="color:#037691" %)** Specification:** 120 120 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 121 121 90 +[[image:image-20220708101224-1.png]] 122 122 123 -**Add APP KEY and DEV EUI** 124 124 125 -[[image:1654504683289-357.png]] 126 126 94 +== 1.4 Applications == 127 127 96 +* Smart Agriculture 128 128 129 -**Step 2**: Power on LSE01 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 130 130 101 +== 1.5 Pin Definitions == 131 131 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 133 134 -[[image: image-20220606163915-7.png]]104 +[[image:1657246476176-652.png]] 135 135 136 136 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 138 139 - [[image:1654504778294-788.png]]108 += 2. Use NSE01 to communicate with IoT Server = 140 140 110 +== 2.1 How it works == 141 141 142 142 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 122 +[[image:image-20220708101605-2.png]] 172 172 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.125 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 209 130 +== 2.2 Configure the NSE01 == 210 210 211 211 212 -=== 2. 3.4SoilMoisture ===133 +=== 2.2.1 Test Requirement === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 217 218 218 ((( 219 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is137 +To use NSE01 in your city, make sure meet below requirements: 220 220 ))) 221 221 222 - (((223 - 224 - )))140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 225 225 226 226 ((( 227 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 228 228 ))) 229 229 230 230 149 +[[image:1657249419225-449.png]] 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 237 237 238 -((( 239 -**Example**: 240 -))) 153 +=== 2.2.2 Insert SIM card === 241 241 242 242 ((( 243 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C156 +Insert the NB-IoT Card get from your provider. 244 244 ))) 245 245 246 246 ((( 247 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C160 +User need to take out the NB-IoT module and insert the SIM card like below: 248 248 ))) 249 249 250 250 164 +[[image:1657249468462-536.png]] 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 261 261 262 262 ((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 265 - 266 266 ((( 267 - 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 268 268 ))) 269 - 270 -((( 271 - 272 272 ))) 273 273 274 -=== 2.3.7 MOD === 275 275 276 - Firmware versionat least v2.1 supportschanging mode.177 +**Connection:** 277 277 278 - Forexample,bytes[10]=90179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 279 279 280 - mod=(bytes[10]>>7)&0x01=1.181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 281 281 183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 282 282 283 -**Downlink Command:** 284 284 285 -I fpayload= 0x0A00,workmode=0186 +In the PC, use below serial tool settings: 286 286 287 -If** **payload =** **0x0A01, workmode=1 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 288 288 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 - The payloaddecoderfunction forTTNis here:195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 300 300 ))) 301 301 198 +[[image:image-20220708110657-3.png]] 199 + 302 302 ((( 303 - LSE01TTNPayloadDecoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 304 304 ))) 305 305 306 306 307 307 308 -== 2.4 Uplink Interval==206 +=== 2.2.4 Use CoAP protocol to uplink data === 309 309 310 - TheLSE01 bydefaultuplinkthesensordataevery20minutes. Usercanchange thisintervalby AT Command or LoRaWAN DownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.EndDevice AT Commands and DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 311 311 312 312 211 +**Use below commands:** 313 313 314 -== 2.5 Downlink Payload == 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 315 315 316 - Bydefault, LSE50prints the downlinkpayloadto consoleport.217 +For parameter description, please refer to AT command set 317 317 318 -[[image: image-20220606165544-8.png]]219 +[[image:1657249793983-486.png]] 319 319 320 320 321 -**E xamples:**222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 322 322 224 +[[image:1657249831934-534.png]] 323 323 324 -* **Set TDC** 325 325 326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 327 328 -P ayload:0100001E TDC=30S228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 329 329 330 - Payload:0100003C TDC=60S230 +This feature is supported since firmware version v1.0.1 331 331 332 332 333 -* **Reset** 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 334 334 335 - If payload = 0x04FF,it will reset the LSE01237 +[[image:1657249864775-321.png]] 336 336 337 337 338 - * **CFM**240 +[[image:1657249930215-289.png]] 339 339 340 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 341 341 342 342 244 +=== 2.2.6 Use MQTT protocol to uplink data === 343 343 344 - == 2.6 ShowDatainDataCakeIoT Server==246 +This feature is supported since firmware version v110 345 345 346 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 347 347 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 348 348 349 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.257 +[[image:1657249978444-674.png]] 350 350 351 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 352 352 260 +[[image:1657249990869-686.png]] 353 353 354 -[[image:1654505857935-743.png]] 355 355 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 356 356 357 -[[image:1654505874829-548.png]] 358 358 359 -Step 3: Create an account or log in Datacake. 360 360 361 - Step4:SearchtheLSE01 andaddDevEUI.269 +=== 2.2.7 Use TCP protocol to uplink data === 362 362 271 +This feature is supported since firmware version v110 363 363 364 -[[image:1654505905236-553.png]] 365 365 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 366 367 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.277 +[[image:1657250217799-140.png]] 368 368 369 -[[image:1654505925508-181.png]] 370 370 280 +[[image:1657250255956-604.png]] 371 371 372 372 373 -== 2.7 Frequency Plans == 374 374 375 - TheLSE01usesOTAA modeand belowfrequencyplans bydefault. If userwantto useit with different frequency plan, pleaserefer the AT command sets.284 +=== 2.2.8 Change Update Interval === 376 376 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 377 377 378 - ===2.7.1EU863-870 (EU868)===288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 379 379 380 -(% style="color:#037691" %)** Uplink:** 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 381 381 382 -868.1 - SF7BW125 to SF12BW125 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 383 383 384 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 385 385 386 -868.5 - SF7BW125 to SF12BW125 387 387 388 - 867.1- SF7BW125toSF12BW125300 +== 2.3 Uplink Payload == 389 389 390 - 867.3-SF7BW125toSF12BW125302 +In this mode, uplink payload includes in total 18 bytes 391 391 392 -867.5 - SF7BW125 to SF12BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 393 394 -867.7 - SF7BW125 to SF12BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 395 395 396 -867.9 - SF7BW125 to SF12BW125 397 397 398 -8 68.8-FSK315 +[[image:image-20220708111918-4.png]] 399 399 400 400 401 - (%style="color:#037691"%)**Downlink:**318 +The payload is ASCII string, representative same HEX: 402 402 403 - Uplinkchannels1-9(RX1)320 +0x72403155615900640c7817075e0a8c02f900 where: 404 404 405 -869.525 - SF9BW125 (RX2 downlink only) 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 406 406 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 407 407 408 408 409 -=== 2.7.2 US902-928(US915) === 410 410 411 - UsedinUSA, Canada and South America.Default useCHE=2334 +== 2.4 Payload Explanation and Sensor Interface == 412 412 413 -(% style="color:#037691" %)**Uplink:** 414 414 415 - 903.9- SF7BW125toSF10BW125337 +=== 2.4.1 Device ID === 416 416 417 -904.1 - SF7BW125 to SF10BW125 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 418 418 419 -904.3 - SF7BW125 to SF10BW125 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 420 420 421 -904.5 - SF7BW125 to SF10BW125 347 +((( 348 +**Example:** 349 +))) 422 422 423 -904.7 - SF7BW125 to SF10BW125 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 424 424 425 -904.9 - SF7BW125 to SF10BW125 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 426 426 427 -905.1 - SF7BW125 to SF10BW125 428 428 429 -905.3 - SF7BW125 to SF10BW125 430 430 361 +=== 2.4.2 Version Info === 431 431 432 -(% style="color:#037691" %)**Downlink:** 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 433 433 434 -923.3 - SF7BW500 to SF12BW500 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 435 435 436 -923.9 - SF7BW500 to SF12BW500 437 437 438 -924.5 - SF7BW500 to SF12BW500 439 439 440 - 925.1- SF7BW500toSF12BW500373 +=== 2.4.3 Battery Info === 441 441 442 -925.7 - SF7BW500 to SF12BW500 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 443 443 444 -926.3 - SF7BW500 to SF12BW500 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 445 445 446 -926.9 - SF7BW500 to SF12BW500 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 447 447 448 -927.5 - SF7BW500 to SF12BW500 449 449 450 -923.3 - SF12BW500(RX2 downlink only) 451 451 389 +=== 2.4.4 Signal Strength === 452 452 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 453 453 454 -=== 2.7.3 CN470-510 (CN470) === 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 455 455 456 -Used in China, Default use CHE=1 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 457 457 458 -(% style="color:#037691" %)**Uplink:** 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 459 459 460 -486.3 - SF7BW125 to SF12BW125 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 461 461 462 -486.5 - SF7BW125 to SF12BW125 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 463 463 464 -486.7 - SF7BW125 to SF12BW125 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 465 465 466 -486.9 - SF7BW125 to SF12BW125 467 467 468 -487.1 - SF7BW125 to SF12BW125 469 469 470 -4 87.3-SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 471 471 472 -487.5 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 473 473 474 -487.7 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 475 475 435 +((( 436 + 437 +))) 476 476 477 -(% style="color:#037691" %)**Downlink:** 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 478 478 479 -506.7 - SF7BW125 to SF12BW125 480 480 481 -506.9 - SF7BW125 to SF12BW125 482 482 483 - 507.1-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 484 484 485 -507.3 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 486 486 487 -507.5 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 488 488 489 -507.7 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 490 490 491 -507.9 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 492 492 493 -508.1 - SF7BW125 to SF12BW125 494 494 495 -505.3 - SF12BW125 (RX2 downlink only) 496 496 465 +=== 2.4.7 Soil Conductivity (EC) === 497 497 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 498 498 499 -=== 2.7.4 AU915-928(AU915) === 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 500 500 501 -Default use CHE=2 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 502 502 503 -(% style="color:#037691" %)**Uplink:** 479 +((( 480 + 481 +))) 504 504 505 -916.8 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 506 506 507 - 917.0- SF7BW125toSF12BW125487 +=== 2.4.8 Digital Interrupt === 508 508 509 -917.2 - SF7BW125 to SF12BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 510 510 511 -917.4 - SF7BW125 to SF12BW125 493 +((( 494 +The command is: 495 +))) 512 512 513 -917.6 - SF7BW125 to SF12BW125 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 514 514 515 -917.8 - SF7BW125 to SF12BW125 516 516 517 -918.0 - SF7BW125 to SF12BW125 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 518 518 519 -918.2 - SF7BW125 to SF12BW125 520 520 507 +((( 508 +Example: 509 +))) 521 521 522 -(% style="color:#037691" %)**Downlink:** 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 523 523 524 -923.3 - SF7BW500 to SF12BW500 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 525 525 526 -923.9 - SF7BW500 to SF12BW500 527 527 528 -924.5 - SF7BW500 to SF12BW500 529 529 530 - 925.1- SF7BW500toSF12BW500521 +=== 2.4.9 +5V Output === 531 531 532 -925.7 - SF7BW500 to SF12BW500 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 533 533 534 -926.3 - SF7BW500 to SF12BW500 535 535 536 -926.9 - SF7BW500 to SF12BW500 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 537 537 538 -927.5 - SF7BW500 to SF12BW500 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 539 539 540 -923.3 - SF12BW500(RX2 downlink only) 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 541 541 542 542 543 543 544 -== =2.7.5AS920-923&AS923-925 (AS923)===542 +== 2.5 Downlink Payload == 545 545 546 - (% style="color:#037691"%)**DefaultUplinkchannel:**544 +By default, NSE01 prints the downlink payload to console port. 547 547 548 - 923.2- SF7BW125 to SF10BW125546 +[[image:image-20220708133731-5.png]] 549 549 550 -923.4 - SF7BW125 to SF10BW125 551 551 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 552 552 553 -(% style="color:#037691" %)**Additional Uplink Channel**: 553 +((( 554 + 555 +))) 554 554 555 -(OTAA mode, channel added by JoinAccept message) 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 556 556 557 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 558 558 559 -922.2 - SF7BW125 to SF10BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 560 560 561 -922.4 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 562 562 563 -922.6 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 564 564 565 -922.8 - SF7BW125 to SF10BW125 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 566 566 567 -923.0 - SF7BW125 to SF10BW125 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 568 568 569 -922.0 - SF7BW125 to SF10BW125 570 570 586 +* (% style="color:blue" %)**INTMOD** 571 571 572 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 573 573 574 -923.6 - SF7BW125 to SF10BW125 575 575 576 -923.8 - SF7BW125 to SF10BW125 577 577 578 - 924.0-SF7BW125toSF10BW125594 +== 2.6 LED Indicator == 579 579 580 -924.2 - SF7BW125 to SF10BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 581 581 582 -924.4 - SF7BW125 to SF10BW125 583 583 584 -924.6 - SF7BW125 to SF10BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 585 585 586 586 587 -(% style="color:#037691" %)** Downlink:** 588 588 589 -Uplink channels 1-8 (RX1) 590 590 591 - 923.2-SF10BW125(RX2)609 +== 2.7 Installation in Soil == 592 592 611 +__**Measurement the soil surface**__ 593 593 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 594 594 595 - === 2.7.6KR920-923(KR920) ===617 +[[image:1657259653666-883.png]] 596 596 597 -Default channel: 598 598 599 -922.1 - SF7BW125 to SF12BW125 620 +((( 621 + 600 600 601 -922.3 - SF7BW125 to SF12BW125 623 +((( 624 +Dig a hole with diameter > 20CM. 625 +))) 602 602 603 -922.5 - SF7BW125 to SF12BW125 627 +((( 628 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 604 604 632 +[[image:1654506665940-119.png]] 605 605 606 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 634 +((( 635 + 636 +))) 607 607 608 -922.1 - SF7BW125 to SF12BW125 609 609 610 - 922.3- SF7BW125toSF12BW125639 +== 2.8 Firmware Change Log == 611 611 612 -922.5 - SF7BW125 to SF12BW125 613 613 614 - 922.7-SF7BW125toSF12BW125642 +Download URL & Firmware Change log 615 615 616 - 922.9-F7BW125toSF12BW125644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 617 617 618 -923.1 - SF7BW125 to SF12BW125 619 619 620 - 923.3- SF7BW125toSF12BW125647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 621 621 622 622 623 -(% style="color:#037691" %)**Downlink:** 624 624 625 - Uplinkchannels1-7(RX1)651 +== 2.9 Battery Analysis == 626 626 627 - 921.9- SF12BW125(RX2 downlink only; SF12BW125 mightbechangedto SF9BW125)653 +=== 2.9.1 Battery Type === 628 628 629 629 630 - 631 -=== 2.7.7 IN865-867 (IN865) === 632 - 633 -(% style="color:#037691" %)** Uplink:** 634 - 635 -865.0625 - SF7BW125 to SF12BW125 636 - 637 -865.4025 - SF7BW125 to SF12BW125 638 - 639 -865.9850 - SF7BW125 to SF12BW125 640 - 641 - 642 -(% style="color:#037691" %) **Downlink:** 643 - 644 -Uplink channels 1-3 (RX1) 645 - 646 -866.550 - SF10BW125 (RX2) 647 - 648 - 649 - 650 - 651 -== 2.8 LED Indicator == 652 - 653 -The LSE01 has an internal LED which is to show the status of different state. 654 - 655 -* Blink once when device power on. 656 -* Solid ON for 5 seconds once device successful Join the network. 657 -* Blink once when device transmit a packet. 658 - 659 - 660 - 661 -== 2.9 Installation in Soil == 662 - 663 -**Measurement the soil surface** 664 - 665 - 666 -[[image:1654506634463-199.png]] 667 - 668 668 ((( 669 -((( 670 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 671 671 ))) 672 -))) 673 673 674 674 675 -[[image:1654506665940-119.png]] 676 - 677 677 ((( 678 - Dig aholewithdiameter>20CM.662 +The battery is designed to last for several years depends on the actually use environment and update interval. 679 679 ))) 680 680 681 -((( 682 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 -))) 684 684 685 - 686 -== 2.10 Firmware Change Log == 687 - 688 688 ((( 689 - **Firmware downloadlink:**667 +The battery related documents as below: 690 690 ))) 691 691 692 - (((693 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]694 - )))670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 695 695 696 696 ((( 697 - 675 +[[image:image-20220708140453-6.png]] 698 698 ))) 699 699 700 -((( 701 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 -))) 703 703 704 -((( 705 - 706 -))) 707 707 708 -((( 709 -**V1.0.** 710 -))) 680 +=== 2.9.2 Power consumption Analyze === 711 711 712 712 ((( 713 - Release683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 714 714 ))) 715 715 716 716 717 -== 2.11 Battery Analysis == 718 - 719 -=== 2.11.1 Battery Type === 720 - 721 721 ((( 722 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.688 +Instruction to use as below: 723 723 ))) 724 724 725 725 ((( 726 - Thebatterys designedlastforrethan5 years fortheSN50.692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 727 727 ))) 728 728 695 + 729 729 ((( 730 -((( 731 -The battery-related documents are as below: 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 732 732 ))) 733 -))) 734 734 735 735 * ((( 736 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 +Product Model 737 737 ))) 738 738 * ((( 739 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],704 +Uplink Interval 740 740 ))) 741 741 * ((( 742 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]707 +Working Mode 743 743 ))) 744 744 745 - [[image:image-20220606171726-9.png]] 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 746 746 714 +[[image:image-20220708141352-7.jpeg]] 747 747 748 748 749 -=== 2.11.2 Battery Note === 750 750 718 +=== 2.9.3 Battery Note === 719 + 751 751 ((( 752 752 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 753 753 ))) ... ... @@ -754,303 +754,176 @@ 754 754 755 755 756 756 757 -=== 2. 11.3Replace the battery ===726 +=== 2.9.4 Replace the battery === 758 758 759 759 ((( 760 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 761 761 ))) 762 762 732 + 733 + 734 += 3. Access NB-IoT Module = 735 + 763 763 ((( 764 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.737 +Users can directly access the AT command set of the NB-IoT module. 765 765 ))) 766 766 767 767 ((( 768 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 769 769 ))) 770 770 744 +[[image:1657261278785-153.png]] 771 771 772 772 773 -= 3. Using the AT Commands = 774 774 775 -= =3.1AccessAT Commands ==748 += 4. Using the AT Commands = 776 776 750 +== 4.1 Access AT Commands == 777 777 778 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 779 779 780 -[[image:1654501986557-872.png||height="391" width="800"]] 781 781 755 +AT+<CMD>? : Help on <CMD> 782 782 783 - Orifyouhavebelowboard,usebelowconnection:757 +AT+<CMD> : Run <CMD> 784 784 759 +AT+<CMD>=<value> : Set the value 785 785 786 - [[image:1654502005655-729.png||height="503"width="801"]]761 +AT+<CMD>=? : Get the value 787 787 788 788 789 - 790 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 - 792 - 793 - [[image:1654502050864-459.png||height="564" width="806"]] 794 - 795 - 796 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 - 798 - 799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 - 801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 - 803 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 - 805 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 - 807 - 808 808 (% style="color:#037691" %)**General Commands**(%%) 809 809 810 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 811 811 812 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 813 813 814 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 817 817 774 +AT+CFG : Print all configurations 818 818 819 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 844 844 845 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 846 846 847 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 850 850 851 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 852 852 807 +AT+CLIENT : Get or Set MQTT client 853 853 854 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 863 863 864 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 873 873 874 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 875 875 876 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 877 877 878 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 879 879 880 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 - 882 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 - 884 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 - 886 - 887 -(% style="color:#037691" %)**Information** 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 - 891 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 - 893 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 - 895 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 - 897 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 - 899 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 - 901 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 - 903 - 904 -= 4. FAQ = 905 - 906 -== 4.1 How to change the LoRa Frequency Bands/Region? == 907 - 908 908 ((( 909 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 -When downloading the images, choose the required image file for download. 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 911 911 ))) 912 912 913 913 ((( 914 - 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 915 915 ))) 916 916 917 917 ((( 918 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 919 919 ))) 920 920 921 -((( 922 - 923 -))) 924 924 925 -((( 926 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 -))) 928 928 929 -((( 930 - 931 -))) 845 +== 5.2 Can I calibrate NSE01 to different soil types? == 932 932 933 933 ((( 934 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 935 935 ))) 936 936 937 -[[image:image-20220606154726-3.png]] 938 938 852 += 6. Trouble Shooting = 939 939 940 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:854 +== 6.1 Connection problem when uploading firmware == 941 941 942 -* 903.9 - SF7BW125 to SF10BW125 943 -* 904.1 - SF7BW125 to SF10BW125 944 -* 904.3 - SF7BW125 to SF10BW125 945 -* 904.5 - SF7BW125 to SF10BW125 946 -* 904.7 - SF7BW125 to SF10BW125 947 -* 904.9 - SF7BW125 to SF10BW125 948 -* 905.1 - SF7BW125 to SF10BW125 949 -* 905.3 - SF7BW125 to SF10BW125 950 -* 904.6 - SF8BW500 951 951 952 952 ((( 953 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 954 954 ))) 955 955 956 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 957 957 ((( 958 -**AT+CHE=2** 959 -))) 960 - 961 -(% class="box infomessage" %) 962 -((( 963 -**ATZ** 964 -))) 965 - 966 -((( 967 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 -))) 969 - 970 -((( 971 971 972 972 ))) 973 973 974 -((( 975 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 -))) 977 977 978 - [[image:image-20220606154825-4.png]]867 +== 6.2 AT Command input doesn't work == 979 979 980 - 981 - 982 -= 5. Trouble Shooting = 983 - 984 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 - 986 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 - 988 - 989 -== 5.2 AT Command input doesn’t work == 990 - 991 991 ((( 992 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 -))) 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 994 995 - 996 -== 5.3 Device rejoin in at the second uplink packet == 997 - 998 -(% style="color:#4f81bd" %)**Issue describe as below:** 999 - 1000 -[[image:1654500909990-784.png]] 1001 - 1002 - 1003 -(% style="color:#4f81bd" %)**Cause for this issue:** 1004 - 1005 -((( 1006 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 872 + 1007 1007 ))) 1008 1008 1009 1009 1010 - (% style="color:#4f81bd"%)**Solution:**876 += 7. Order Info = 1011 1011 1012 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1013 1013 1014 - [[image:1654500929571-736.png||height="458" width="832"]]879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1015 1015 1016 1016 1017 -= 6. Order Info = 1018 - 1019 - 1020 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 - 1022 - 1023 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 - 1025 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 - 1034 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 - 1036 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 - 1039 1039 (% class="wikigeneratedid" %) 1040 1040 ((( 1041 1041 1042 1042 ))) 1043 1043 1044 -= 7. Packing Info =887 += 8. Packing Info = 1045 1045 1046 1046 ((( 1047 1047 1048 1048 1049 1049 (% style="color:#037691" %)**Package Includes**: 1050 -))) 1051 1051 1052 -* (((1053 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 1054 1054 ))) 1055 1055 1056 1056 ((( ... ... @@ -1057,30 +1057,19 @@ 1057 1057 1058 1058 1059 1059 (% style="color:#037691" %)**Dimension and weight**: 1060 -))) 1061 1061 1062 -* (((1063 - DeviceSize:cm903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 1064 1064 ))) 1065 -* ((( 1066 -Device Weight: g 1067 -))) 1068 -* ((( 1069 -Package Size / pcs : cm 1070 -))) 1071 -* ((( 1072 -Weight / pcs : g 1073 1073 907 +((( 908 + 1074 1074 910 + 1075 1075 1076 1076 ))) 1077 1077 1078 -= 8. Support =914 += 9. Support = 1079 1079 1080 1080 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1081 1081 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 - 1083 - 1084 -~)~)~) 1085 -~)~)~) 1086 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content