Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.13
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version
To version 64.5
edited by Xiaoling
on 2022/07/08 14:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1030 +12,781 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
115 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
118 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
123 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
126 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
221 221  
222 -(((
223 -
224 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
140 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
144 +=== 2.2.2 Insert SIM card ===
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
146 +Insert the NB-IoT Card get from your provider.
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
148 +User need to take out the NB-IoT module and insert the SIM card like below:
249 249  
250 250  
151 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
164 +**Connection:**
277 277  
278 -For example, bytes[10]=90
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
173 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 -)))
185 +[[image:image-20220708110657-3.png]]
305 305  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
306 306  
307 307  
308 -== 2.4 Uplink Interval ==
309 309  
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
311 311  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
312 312  
313 313  
314 -== 2.5 Downlink Payload ==
196 +**Use below commands:**
315 315  
316 -By default, LSE50 prints the downlink payload to console port.
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
317 317  
318 -[[image:image-20220606165544-8.png]]
202 +For parameter description, please refer to AT command set
319 319  
204 +[[image:1657249793983-486.png]]
320 320  
321 -**Examples:**
322 322  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
323 323  
324 -* **Set TDC**
209 +[[image:1657249831934-534.png]]
325 325  
326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 327  
328 -Payload:    01 00 00 1E    TDC=30S
329 329  
330 -Payload:    01 00 00 3C    TDC=60S
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
331 331  
215 +This feature is supported since firmware version v1.0.1
332 332  
333 -* **Reset**
334 334  
335 -If payload = 0x04FF, it will reset the LSE01
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
336 336  
222 +[[image:1657249864775-321.png]]
337 337  
338 -* **CFM**
339 339  
340 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
225 +[[image:1657249930215-289.png]]
341 341  
342 342  
343 343  
344 -== 2.6 ​Show Data in DataCake IoT Server ==
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
345 345  
346 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
231 +This feature is supported since firmware version v110
347 347  
348 348  
349 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
350 350  
351 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
242 +[[image:1657249978444-674.png]]
352 352  
353 353  
354 -[[image:1654505857935-743.png]]
245 +[[image:1657249990869-686.png]]
355 355  
356 356  
357 -[[image:1654505874829-548.png]]
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
358 358  
359 -Step 3: Create an account or log in Datacake.
360 360  
361 -Step 4: Search the LSE01 and add DevEUI.
362 362  
254 +=== 2.2.7 Use TCP protocol to uplink data ===
363 363  
364 -[[image:1654505905236-553.png]]
256 +This feature is supported since firmware version v110
365 365  
366 366  
367 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
368 368  
369 -[[image:1654505925508-181.png]]
262 +[[image:1657250217799-140.png]]
370 370  
371 371  
265 +[[image:1657250255956-604.png]]
372 372  
373 -== 2.7 Frequency Plans ==
374 374  
375 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
376 376  
269 +=== 2.2.8 Change Update Interval ===
377 377  
378 -=== 2.7.1 EU863-870 (EU868) ===
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
379 379  
380 -(% style="color:#037691" %)** Uplink:**
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
381 381  
382 -868.1 - SF7BW125 to SF12BW125
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
383 383  
384 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
385 385  
386 -868.5 - SF7BW125 to SF12BW125
387 387  
388 -867.1 - SF7BW125 to SF12BW125
389 389  
390 -867.3 - SF7BW125 to SF12BW125
285 +== 2.3  Uplink Payload ==
391 391  
392 -867.5 - SF7BW125 to SF12BW125
287 +In this mode, uplink payload includes in total 18 bytes
393 393  
394 -867.7 - SF7BW125 to SF12BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
395 395  
396 -867.9 - SF7BW125 to SF12BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
397 397  
398 -868.8 - FSK
399 399  
298 +[[image:image-20220708111918-4.png]]
400 400  
401 -(% style="color:#037691" %)** Downlink:**
402 402  
403 -Uplink channels 1-9 (RX1)
301 +The payload is ASCII string, representative same HEX:
404 404  
405 -869.525 - SF9BW125 (RX2 downlink only)
303 +0x72403155615900640c7817075e0a8c02f900 where:
406 406  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
407 407  
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
408 408  
409 -=== 2.7.2 US902-928(US915) ===
315 +== 2. Payload Explanation and Sensor Interface ==
410 410  
411 -Used in USA, Canada and South America. Default use CHE=2
412 412  
413 -(% style="color:#037691" %)**Uplink:**
318 +=== 2.4.1  Device ID ===
414 414  
415 -903.9 - SF7BW125 to SF10BW125
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
416 416  
417 -904.1 - SF7BW125 to SF10BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
418 418  
419 -904.3 - SF7BW125 to SF10BW125
324 +**Example:**
420 420  
421 -904.5 - SF7BW125 to SF10BW125
326 +AT+DEUI=A84041F15612
422 422  
423 -904.7 - SF7BW125 to SF10BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
424 424  
425 -904.9 - SF7BW125 to SF10BW125
426 426  
427 -905.1 - SF7BW125 to SF10BW125
428 428  
429 -905.3 - SF7BW125 to SF10BW125
332 +=== 2.4.2  Version Info ===
430 430  
334 +Specify the software version: 0x64=100, means firmware version 1.00.
431 431  
432 -(% style="color:#037691" %)**Downlink:**
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
433 433  
434 -923.3 - SF7BW500 to SF12BW500
435 435  
436 -923.9 - SF7BW500 to SF12BW500
437 437  
438 -924.5 - SF7BW500 to SF12BW500
340 +=== 2.4. Battery Info ===
439 439  
440 -925.1 - SF7BW500 to SF12BW500
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
441 441  
442 -925.7 - SF7BW500 to SF12BW500
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
443 443  
444 -926.3 - SF7BW500 to SF12BW500
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
445 445  
446 -926.9 - SF7BW500 to SF12BW500
447 447  
448 -927.5 - SF7BW500 to SF12BW500
449 449  
450 -923.3 - SF12BW500(RX2 downlink only)
356 +=== 2.4.4  Signal Strength ===
451 451  
358 +NB-IoT Network signal Strength.
452 452  
360 +**Ex1: 0x1d = 29**
453 453  
454 -=== 2.7.3 CN470-510 (CN470) ===
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
455 455  
456 -Used in China, Default use CHE=1
364 +(% style="color:blue" %)**1**(%%)  -111dBm
457 457  
458 -(% style="color:#037691" %)**Uplink:**
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
459 459  
460 -486.3 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
461 461  
462 -486.5 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
463 463  
464 -486.7 - SF7BW125 to SF12BW125
465 465  
466 -486.9 - SF7BW125 to SF12BW125
467 467  
468 -487.1 - SF7BW125 to SF12BW125
374 +=== 2.4. Soil Moisture ===
469 469  
470 -487.3 - SF7BW125 to SF12BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
471 471  
472 -487.5 - SF7BW125 to SF12BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
473 473  
474 -487.7 - SF7BW125 to SF12BW125
384 +(((
385 +
386 +)))
475 475  
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
476 476  
477 -(% style="color:#037691" %)**Downlink:**
478 478  
479 -506.7 - SF7BW125 to SF12BW125
480 480  
481 -506.9 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
482 482  
483 -507.1 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
484 484  
485 -507.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
486 486  
487 -507.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
488 488  
489 -507.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
490 490  
491 -507.9 - SF7BW125 to SF12BW125
492 492  
493 -508.1 - SF7BW125 to SF12BW125
494 494  
495 -505.3 - SF12BW125 (RX2 downlink only)
414 +=== 2.4.7  Soil Conductivity (EC) ===
496 496  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
497 497  
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
498 498  
499 -=== 2.7.4 AU915-928(AU915) ===
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
500 500  
501 -Default use CHE=2
428 +(((
429 +
430 +)))
502 502  
503 -(% style="color:#037691" %)**Uplink:**
432 +(((
433 +
434 +)))
504 504  
505 -916.8 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
506 506  
507 -917.0 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
508 508  
509 -917.2 - SF7BW125 to SF12BW125
440 +The command is:
510 510  
511 -917.4 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 512  
513 -917.6 - SF7BW125 to SF12BW125
514 514  
515 -917.8 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
516 516  
517 -918.0 - SF7BW125 to SF12BW125
518 518  
519 -918.2 - SF7BW125 to SF12BW125
448 +Example:
520 520  
450 +0x(00): Normal uplink packet.
521 521  
522 -(% style="color:#037691" %)**Downlink:**
452 +0x(01): Interrupt Uplink Packet.
523 523  
524 -923.3 - SF7BW500 to SF12BW500
525 525  
526 -923.9 - SF7BW500 to SF12BW500
527 527  
528 -924.5 - SF7BW500 to SF12BW500
456 +=== 2.4. ​+5V Output ===
529 529  
530 -925.1 - SF7BW500 to SF12BW500
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
531 531  
532 -925.7 - SF7BW500 to SF12BW500
533 533  
534 -926.3 - SF7BW500 to SF12BW500
461 +The 5V output time can be controlled by AT Command.
535 535  
536 -926.9 - SF7BW500 to SF12BW500
463 +(% style="color:blue" %)**AT+5VT=1000**
537 537  
538 -927.5 - SF7BW500 to SF12BW500
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
539 539  
540 -923.3 - SF12BW500(RX2 downlink only)
541 541  
542 542  
469 +== 2.5  Downlink Payload ==
543 543  
544 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
471 +By default, NSE01 prints the downlink payload to console port.
545 545  
546 -(% style="color:#037691" %)**Default Uplink channel:**
473 +[[image:image-20220708133731-5.png]]
547 547  
548 -923.2 - SF7BW125 to SF10BW125
549 549  
550 -923.4 - SF7BW125 to SF10BW125
476 +(((
477 +(% style="color:blue" %)**Examples:**
478 +)))
551 551  
480 +(((
481 +
482 +)))
552 552  
553 -(% style="color:#037691" %)**Additional Uplink Channel**:
484 +* (((
485 +(% style="color:blue" %)**Set TDC**
486 +)))
554 554  
555 -(OTAA mode, channel added by JoinAccept message)
488 +(((
489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 +)))
556 556  
557 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
492 +(((
493 +Payload:    01 00 00 1E    TDC=30S
494 +)))
558 558  
559 -922.2 - SF7BW125 to SF10BW125
496 +(((
497 +Payload:    01 00 00 3C    TDC=60S
498 +)))
560 560  
561 -922.4 - SF7BW125 to SF10BW125
500 +(((
501 +
502 +)))
562 562  
563 -922.6 - SF7BW125 to SF10BW125
504 +* (((
505 +(% style="color:blue" %)**Reset**
506 +)))
564 564  
565 -922.8 - SF7BW125 to SF10BW125
508 +(((
509 +If payload = 0x04FF, it will reset the NSE01
510 +)))
566 566  
567 -923.0 - SF7BW125 to SF10BW125
568 568  
569 -922.0 - SF7BW125 to SF10BW125
513 +* (% style="color:blue" %)**INTMOD**
570 570  
515 +Downlink Payload: 06000003, Set AT+INTMOD=3
571 571  
572 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
573 573  
574 -923.6 - SF7BW125 to SF10BW125
575 575  
576 -923.8 - SF7BW125 to SF10BW125
519 +== 2. ​LED Indicator ==
577 577  
578 -924.0 - SF7BW125 to SF10BW125
521 +(((
522 +The NSE01 has an internal LED which is to show the status of different state.
579 579  
580 -924.2 - SF7BW125 to SF10BW125
581 581  
582 -924.4 - SF7BW125 to SF10BW125
525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 +* Then the LED will be on for 1 second means device is boot normally.
527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 +* For each uplink probe, LED will be on for 500ms.
529 +)))
583 583  
584 -924.6 - SF7BW125 to SF10BW125
585 585  
586 586  
587 -(% style="color:#037691" %)** Downlink:**
588 588  
589 -Uplink channels 1-8 (RX1)
534 +== 2.7  Installation in Soil ==
590 590  
591 -923.2 - SF10BW125 (RX2)
536 +__**Measurement the soil surface**__
592 592  
538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
593 593  
540 +[[image:1657259653666-883.png]] ​
594 594  
595 -=== 2.7.6 KR920-923 (KR920) ===
596 596  
597 -Default channel:
543 +(((
544 +
598 598  
599 -922.1 - SF7BW125 to SF12BW125
546 +(((
547 +Dig a hole with diameter > 20CM.
548 +)))
600 600  
601 -922.3 - SF7BW125 to SF12BW125
550 +(((
551 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 +)))
553 +)))
602 602  
603 -922.5 - SF7BW125 to SF12BW125
555 +[[image:1654506665940-119.png]]
604 604  
557 +(((
558 +
559 +)))
605 605  
606 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
607 607  
608 -922.1 - SF7BW125 to SF12BW125
562 +== 2. Firmware Change Log ==
609 609  
610 -922.3 - SF7BW125 to SF12BW125
611 611  
612 -922.5 - SF7BW125 to SF12BW125
565 +Download URL & Firmware Change log
613 613  
614 -922.7 - SF7BW125 to SF12BW125
567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
615 615  
616 -922.9 - SF7BW125 to SF12BW125
617 617  
618 -923.1 - SF7BW125 to SF12BW125
570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
619 619  
620 -923.3 - SF7BW125 to SF12BW125
621 621  
622 622  
623 -(% style="color:#037691" %)**Downlink:**
574 +== 2.9  ​Battery Analysis ==
624 624  
625 -Uplink channels 1-7(RX1)
576 +=== 2.9.1  ​Battery Type ===
626 626  
627 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
628 628  
579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
629 629  
630 630  
631 -=== 2.7.7 IN865-867 (IN865) ===
582 +The battery is designed to last for several years depends on the actually use environment and update interval. 
632 632  
633 -(% style="color:#037691" %)** Uplink:**
634 634  
635 -865.0625 - SF7BW125 to SF12BW125
585 +The battery related documents as below:
636 636  
637 -865.4025 - SF7BW125 to SF12BW125
587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 638  
639 -865.9850 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %) **Downlink:**
643 -
644 -Uplink channels 1-3 (RX1)
645 -
646 -866.550 - SF10BW125 (RX2)
647 -
648 -
649 -
650 -
651 -== 2.8 LED Indicator ==
652 -
653 -The LSE01 has an internal LED which is to show the status of different state.
654 -
655 -* Blink once when device power on.
656 -* Solid ON for 5 seconds once device successful Join the network.
657 -* Blink once when device transmit a packet.
658 -
659 -
660 -
661 -== 2.9 Installation in Soil ==
662 -
663 -**Measurement the soil surface**
664 -
665 -
666 -[[image:1654506634463-199.png]] ​
667 -
668 668  (((
669 -(((
670 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
592 +[[image:image-20220708140453-6.png]]
671 671  )))
672 -)))
673 673  
674 674  
675 -[[image:1654506665940-119.png]]
676 676  
677 -(((
678 -Dig a hole with diameter > 20CM.
679 -)))
597 +=== 2.9.2  Power consumption Analyze ===
680 680  
681 681  (((
682 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
683 683  )))
684 684  
685 685  
686 -== 2.10 ​Firmware Change Log ==
687 -
688 688  (((
689 -**Firmware download link:**
605 +Instruction to use as below:
690 690  )))
691 691  
692 692  (((
693 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
609 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
694 694  )))
695 695  
696 -(((
697 -
698 -)))
699 699  
700 700  (((
701 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
702 702  )))
703 703  
704 -(((
705 -
617 +* (((
618 +Product Model
706 706  )))
707 -
708 -(((
709 -**V1.0.**
620 +* (((
621 +Uplink Interval
710 710  )))
623 +* (((
624 +Working Mode
625 +)))
711 711  
712 712  (((
713 -Release
628 +And the Life expectation in difference case will be shown on the right.
714 714  )))
715 715  
631 +[[image:image-20220708141352-7.jpeg]]
716 716  
717 -== 2.11 ​Battery Analysis ==
718 718  
719 -=== 2.11.1 ​Battery Type ===
720 720  
721 -(((
722 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
723 -)))
635 +=== 2.9.3  ​Battery Note ===
724 724  
725 725  (((
726 -The battery is designed to last for more than 5 years for the LSN50.
638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
727 727  )))
728 728  
729 -(((
730 -(((
731 -The battery-related documents are as below:
732 -)))
733 -)))
734 734  
735 -* (((
736 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
737 -)))
738 -* (((
739 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
740 -)))
741 -* (((
742 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
743 -)))
744 744  
745 - [[image:image-20220606171726-9.png]]
643 +=== 2.9.4  Replace the battery ===
746 746  
747 -
748 -
749 -=== 2.11.2 ​Battery Note ===
750 -
751 751  (((
752 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
753 753  )))
754 754  
755 755  
756 756  
757 -=== 2.11.3 Replace the battery ===
651 += 3. ​ Access NB-IoT Module =
758 758  
759 759  (((
760 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
654 +Users can directly access the AT command set of the NB-IoT module.
761 761  )))
762 762  
763 763  (((
764 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
765 765  )))
766 766  
767 -(((
768 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
769 -)))
661 +[[image:1657261278785-153.png]]
770 770  
771 771  
772 772  
773 -= 3. Using the AT Commands =
665 += 4.  Using the AT Commands =
774 774  
775 -== 3.1 Access AT Commands ==
667 +== 4.1  Access AT Commands ==
776 776  
669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
777 777  
778 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
779 779  
780 -[[image:1654501986557-872.png||height="391" width="800"]]
672 +AT+<CMD>?  : Help on <CMD>
781 781  
674 +AT+<CMD>         : Run <CMD>
782 782  
783 -Or if you have below board, use below connection:
676 +AT+<CMD>=<value> : Set the value
784 784  
678 +AT+<CMD>=?  : Get the value
785 785  
786 -[[image:1654502005655-729.png||height="503" width="801"]]
787 787  
788 -
789 -
790 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 -
792 -
793 - [[image:1654502050864-459.png||height="564" width="806"]]
794 -
795 -
796 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 -
798 -
799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 -
801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 -
803 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 -
805 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 -
807 -
808 808  (% style="color:#037691" %)**General Commands**(%%)      
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
683 +AT  : Attention       
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
685 +AT?  : Short Help     
813 813  
814 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 +ATZ  : MCU Reset    
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 +AT+TDC  : Application Data Transmission Interval
817 817  
691 +AT+CFG  : Print all configurations
818 818  
819 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
693 +AT+CFGMOD           : Working mode selection
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
695 +AT+INTMOD            : Set the trigger interrupt mode
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
697 +AT+5VT  : Set extend the time of 5V power  
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
699 +AT+PRO  : Choose agreement
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 +AT+WEIGRE  : Get weight or set weight to 0
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
703 +AT+WEIGAP  : Get or Set the GapValue of weight
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
705 +AT+RXDL  : Extend the sending and receiving time
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
707 +AT+CNTFAC  : Get or set counting parameters
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 +AT+SERVADDR  : Server Address
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
712 +(% style="color:#037691" %)**COAP Management**      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
714 +AT+URI            : Resource parameters
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
717 +(% style="color:#037691" %)**UDP Management**
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
719 +AT+CFM          : Upload confirmation mode (only valid for UDP)
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
722 +(% style="color:#037691" %)**MQTT Management**
852 852  
724 +AT+CLIENT               : Get or Set MQTT client
853 853  
854 -(% style="color:#037691" %)**LoRa Network Management**
726 +AT+UNAME  : Get or Set MQTT Username
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
728 +AT+PWD                  : Get or Set MQTT password
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
730 +AT+PUBTOPI : Get or Set MQTT publish topic
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
732 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
735 +(% style="color:#037691" %)**Information**          
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
737 +AT+FDR  : Factory Data Reset
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
739 +AT+PWOR : Serial Access Password
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
743 += ​5.  FAQ =
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
745 +== 5.1 How to Upgrade Firmware ==
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 -
882 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 -
884 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 -
886 -
887 -(% style="color:#037691" %)**Information** 
888 -
889 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 -
891 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 -
893 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 -
895 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 -
897 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 -
899 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 -
901 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 -
903 -
904 -= ​4. FAQ =
905 -
906 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
907 -
908 908  (((
909 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
910 -When downloading the images, choose the required image file for download. ​
749 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
911 911  )))
912 912  
913 913  (((
914 -
753 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
915 915  )))
916 916  
917 917  (((
918 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
757 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
919 919  )))
920 920  
921 -(((
922 -
923 -)))
924 924  
925 -(((
926 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
927 -)))
928 928  
929 -(((
930 -
931 -)))
762 += 6.  Trouble Shooting =
932 932  
933 -(((
934 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
935 -)))
764 +== 6.1  ​Connection problem when uploading firmware ==
936 936  
937 -[[image:image-20220606154726-3.png]]
938 938  
939 -
940 -When you use the TTN network, the US915 frequency bands use are:
941 -
942 -* 903.9 - SF7BW125 to SF10BW125
943 -* 904.1 - SF7BW125 to SF10BW125
944 -* 904.3 - SF7BW125 to SF10BW125
945 -* 904.5 - SF7BW125 to SF10BW125
946 -* 904.7 - SF7BW125 to SF10BW125
947 -* 904.9 - SF7BW125 to SF10BW125
948 -* 905.1 - SF7BW125 to SF10BW125
949 -* 905.3 - SF7BW125 to SF10BW125
950 -* 904.6 - SF8BW500
951 -
767 +(% class="wikigeneratedid" %)
952 952  (((
953 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
769 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
954 954  )))
955 955  
956 -(% class="box infomessage" %)
957 -(((
958 -**AT+CHE=2**
959 -)))
960 960  
961 -(% class="box infomessage" %)
962 -(((
963 -**ATZ**
964 -)))
965 965  
966 -(((
967 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
968 -)))
774 +== 6.2  AT Command input doesn't work ==
969 969  
970 970  (((
971 -
777 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
972 972  )))
973 973  
974 -(((
975 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
976 -)))
977 977  
978 -[[image:image-20220606154825-4.png]]
979 979  
782 += 7. ​ Order Info =
980 980  
981 981  
982 -= 5. Trouble Shooting =
785 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
983 983  
984 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
985 985  
986 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
987 -
988 -
989 -== 5.2 AT Command input doesn’t work ==
990 -
991 -(((
992 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
993 -)))
994 -
995 -
996 -== 5.3 Device rejoin in at the second uplink packet ==
997 -
998 -(% style="color:#4f81bd" %)**Issue describe as below:**
999 -
1000 -[[image:1654500909990-784.png]]
1001 -
1002 -
1003 -(% style="color:#4f81bd" %)**Cause for this issue:**
1004 -
1005 -(((
1006 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1007 -)))
1008 -
1009 -
1010 -(% style="color:#4f81bd" %)**Solution: **
1011 -
1012 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1013 -
1014 -[[image:1654500929571-736.png||height="458" width="832"]]
1015 -
1016 -
1017 -= 6. ​Order Info =
1018 -
1019 -
1020 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 -
1022 -
1023 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 -
1025 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1026 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1027 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1028 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1029 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1030 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1031 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1032 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1033 -
1034 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1035 -
1036 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1037 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1038 -
1039 1039  (% class="wikigeneratedid" %)
1040 1040  (((
1041 1041  
... ... @@ -1047,6 +1047,10 @@
1047 1047  
1048 1048  
1049 1049  (% style="color:#037691" %)**Package Includes**:
799 +
800 +
801 +* NSE01 NB-IoT Sensor Node x 1
802 +* External antenna x 1
1050 1050  )))
1051 1051  
1052 1052  * (((
... ... @@ -1057,30 +1057,20 @@
1057 1057  
1058 1058  
1059 1059  (% style="color:#037691" %)**Dimension and weight**:
1060 -)))
1061 1061  
1062 -* (((
1063 -Device Size: cm
814 +
815 +* Size: 195 x 125 x 55 mm
816 +* Weight:   420g
1064 1064  )))
1065 -* (((
1066 -Device Weight: g
1067 -)))
1068 -* (((
1069 -Package Size / pcs : cm
1070 -)))
1071 -* (((
1072 -Weight / pcs : g
1073 1073  
819 +(((
820 +
1074 1074  
822 +
1075 1075  
1076 1076  )))
1077 1077  
1078 -= 8. Support =
826 += 9.  Support =
1079 1079  
1080 1080  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1081 1081  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 -
1083 -
1084 -~)~)~)
1085 -~)~)~)
1086 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content