Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,764 +12,628 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 70 70 71 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -**LSE01 v1.0 :** Release 80 80 87 +== 1.4 Applications == 81 81 89 +* Smart Agriculture 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 84 84 85 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 97 +[[image:1657246476176-652.png]] 94 94 95 95 96 96 97 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 98 98 99 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 115 +[[image:image-20220708101605-2.png]] 172 172 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.118 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 209 123 +== 2.2 Configure the NSE01 == 210 210 211 211 212 -=== 2. 3.4SoilMoisture ===126 +=== 2.2.1 Test Requirement === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 217 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 129 +To use NSE01 in your city, make sure meet below requirements: 221 221 222 - (((223 - 224 - )))131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 225 225 226 226 ((( 227 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 228 228 ))) 229 229 230 230 140 +[[image:1657249419225-449.png]] 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 237 237 238 -((( 239 -**Example**: 240 -))) 144 +=== 2.2.2 Insert SIM card === 241 241 242 -((( 243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 -))) 146 +Insert the NB-IoT Card get from your provider. 245 245 246 -((( 247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 -))) 148 +User need to take out the NB-IoT module and insert the SIM card like below: 249 249 250 250 151 +[[image:1657249468462-536.png]] 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 261 261 262 262 ((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 265 - 266 266 ((( 267 - 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 268 268 ))) 269 - 270 -((( 271 - 272 272 ))) 273 273 274 -=== 2.3.7 MOD === 275 275 276 - Firmware versionat least v2.1 supportschanging mode.164 +**Connection:** 277 277 278 - Forexample,bytes[10]=90166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 279 279 280 - mod=(bytes[10]>>7)&0x01=1.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 281 281 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 282 282 283 -**Downlink Command:** 284 284 285 -I fpayload= 0x0A00,workmode=0173 +In the PC, use below serial tool settings: 286 286 287 -If** **payload =** **0x0A01, workmode=1 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 288 288 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 - The payloaddecoderfunction forTTNis here:182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 300 300 ))) 301 301 302 -((( 303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 -))) 185 +[[image:image-20220708110657-3.png]] 305 305 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 306 306 307 307 308 -== 2.4 Uplink Interval == 309 309 310 - TheLSE01 by default uplink the sensor data every20 minutes. Usercan change this interval by ATCommandorLoRaWAN Downlink Command. See thislink:[[Change Uplink Interval>>doc:Main.EndDevice AT Commands and DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]191 +=== 2.2.4 Use CoAP protocol to uplink data === 311 311 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 312 312 313 313 314 - ==2.5 DownlinkPayload==196 +**Use below commands:** 315 315 316 -By default, LSE50 prints the downlink payload to console port. 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 317 317 318 - [[image:image-20220606165544-8.png]]202 +For parameter description, please refer to AT command set 319 319 204 +[[image:1657249793983-486.png]] 320 320 321 -**Examples:** 322 322 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 323 323 324 - * **Set TDC**209 +[[image:1657249831934-534.png]] 325 325 326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 327 328 -Payload: 01 00 00 1E TDC=30S 329 329 330 -P ayload:0100003C TDC=60S213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 215 +This feature is supported since firmware version v1.0.1 332 332 333 -* **Reset** 334 334 335 -If payload = 0x04FF, it will reset the LSE01 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 336 336 222 +[[image:1657249864775-321.png]] 337 337 338 -* **CFM** 339 339 340 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0225 +[[image:1657249930215-289.png]] 341 341 342 342 343 343 344 -== 2.6 ShowDatainDataCakeIoT Server==229 +=== 2.2.6 Use MQTT protocol to uplink data === 345 345 346 - [[DATACAKE>>url:https://datacake.co/]] providesa humanfriendly interfacetoshowthesensordata, oncewe havedatainTTN, wecan use[[DATACAKE>>url:https://datacake.co/]]to connect to TTN andsee the datainDATACAKE. Below are the steps:231 +This feature is supported since firmware version v110 347 347 348 348 349 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 350 350 351 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:242 +[[image:1657249978444-674.png]] 352 352 353 353 354 -[[image:1654 505857935-743.png]]245 +[[image:1657249990869-686.png]] 355 355 356 356 357 -[[image:1654505874829-548.png]] 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 358 358 359 -Step 3: Create an account or log in Datacake. 360 360 361 -Step 4: Search the LSE01 and add DevEUI. 362 362 254 +=== 2.2.7 Use TCP protocol to uplink data === 363 363 364 - [[image:1654505905236-553.png]]256 +This feature is supported since firmware version v110 365 365 366 366 367 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 368 368 369 -[[image:165 4505925508-181.png]]262 +[[image:1657250217799-140.png]] 370 370 371 371 265 +[[image:1657250255956-604.png]] 372 372 373 -== 2.7 Frequency Plans == 374 374 375 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 376 376 269 +=== 2.2.8 Change Update Interval === 377 377 378 - ===2.7.1EU863-870(EU868)===271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 380 -(% style="color: #037691" %)** Uplink:**273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 382 -868.1 - SF7BW125 to SF12BW125 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 383 383 384 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 385 385 386 -868.5 - SF7BW125 to SF12BW125 387 387 388 -867.1 - SF7BW125 to SF12BW125 389 389 390 - 867.3-SF7BW125 toSF12BW125285 +== 2.3 Uplink Payload == 391 391 392 - 867.5-SF7BW125toSF12BW125287 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -867.7 - SF7BW125 to SF12BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 395 395 396 - 867.9-SF7BW125to SF12BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 397 397 398 -868.8 - FSK 399 399 298 +[[image:image-20220708111918-4.png]] 400 400 401 -(% style="color:#037691" %)** Downlink:** 402 402 403 - Uplinkchannels1-9 (RX1)301 +The payload is ASCII string, representative same HEX: 404 404 405 - 869.525- SF9BW125(RX2downlink only)303 +0x72403155615900640c7817075e0a8c02f900 where: 406 406 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 407 407 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 408 408 409 -== =2.7.2US902-928(US915)===315 +== 2.4 Payload Explanation and Sensor Interface == 410 410 411 -Used in USA, Canada and South America. Default use CHE=2 412 412 413 - (%style="color:#037691"%)**Uplink:**318 +=== 2.4.1 Device ID === 414 414 415 - 903.9-SF7BW125toSF10BW125320 +By default, the Device ID equal to the last 6 bytes of IMEI. 416 416 417 - 904.1-SF7BW125toSF10BW125322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 418 418 419 - 904.3 - SF7BW125 to SF10BW125324 +**Example:** 420 420 421 - 904.5 - SF7BW125to SF10BW125326 +AT+DEUI=A84041F15612 422 422 423 - 904.7-SF7BW125toSF10BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 424 424 425 -904.9 - SF7BW125 to SF10BW125 426 426 427 -905.1 - SF7BW125 to SF10BW125 428 428 429 - 905.3- SF7BW125toSF10BW125332 +=== 2.4.2 Version Info === 430 430 334 +Specify the software version: 0x64=100, means firmware version 1.00. 431 431 432 - (%style="color:#037691"%)**Downlink:**336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 433 433 434 -923.3 - SF7BW500 to SF12BW500 435 435 436 -923.9 - SF7BW500 to SF12BW500 437 437 438 - 924.5- SF7BW500toSF12BW500340 +=== 2.4.3 Battery Info === 439 439 440 -925.1 - SF7BW500 to SF12BW500 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 441 441 442 -925.7 - SF7BW500 to SF12BW500 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 443 443 444 -926.3 - SF7BW500 to SF12BW500 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 445 445 446 -926.9 - SF7BW500 to SF12BW500 447 447 448 -927.5 - SF7BW500 to SF12BW500 449 449 450 - 923.3-SF12BW500(RX2 downlinkonly)356 +=== 2.4.4 Signal Strength === 451 451 358 +NB-IoT Network signal Strength. 452 452 360 +**Ex1: 0x1d = 29** 453 453 454 -= ==2.7.3 CN470-510(CN470)===362 +(% style="color:blue" %)**0**(%%) -113dBm or less 455 455 456 - UsedinChina,DefaultuseCHE=1364 +(% style="color:blue" %)**1**(%%) -111dBm 457 457 458 -(% style="color: #037691" %)**Uplink:**366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 459 459 460 - 486.3-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 461 461 462 - 486.5-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 463 463 464 -486.7 - SF7BW125 to SF12BW125 465 465 466 -486.9 - SF7BW125 to SF12BW125 467 467 468 -4 87.1-SF7BW125toSF12BW125374 +=== 2.4.5 Soil Moisture === 469 469 470 -487.3 - SF7BW125 to SF12BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 471 471 472 -487.5 - SF7BW125 to SF12BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 473 473 474 -487.7 - SF7BW125 to SF12BW125 384 +((( 385 + 386 +))) 475 475 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 476 476 477 -(% style="color:#037691" %)**Downlink:** 478 478 479 -506.7 - SF7BW125 to SF12BW125 480 480 481 - 506.9-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 482 482 483 -507.1 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 484 484 485 -507.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 486 486 487 -507.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 488 488 489 -507.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 490 490 491 -507.9 - SF7BW125 to SF12BW125 492 492 493 -508.1 - SF7BW125 to SF12BW125 494 494 495 - 505.3- SF12BW125(RX2 downlinkonly)414 +=== 2.4.7 Soil Conductivity (EC) === 496 496 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 497 497 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 498 498 499 -=== 2.7.4 AU915-928(AU915) === 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 500 500 501 -Default use CHE=2 428 +((( 429 + 430 +))) 502 502 503 -(% style="color:#037691" %)**Uplink:** 432 +((( 433 + 434 +))) 504 504 505 - 916.8-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 506 506 507 - 917.0-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 508 508 509 - 917.2- SF7BW125 toSF12BW125440 +The command is: 510 510 511 - 917.4-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 512 513 -917.6 - SF7BW125 to SF12BW125 514 514 515 - 917.8-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 516 516 517 -918.0 - SF7BW125 to SF12BW125 518 518 519 - 918.2 - SF7BW125 to SF12BW125448 +Example: 520 520 450 +0x(00): Normal uplink packet. 521 521 522 -( %style="color:#037691"%)**Downlink:**452 +0x(01): Interrupt Uplink Packet. 523 523 524 -923.3 - SF7BW500 to SF12BW500 525 525 526 -923.9 - SF7BW500 to SF12BW500 527 527 528 - 924.5- SF7BW500toSF12BW500456 +=== 2.4.9 +5V Output === 529 529 530 - 925.1-SF7BW500toSF12BW500458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 531 532 -925.7 - SF7BW500 to SF12BW500 533 533 534 - 926.3- SF7BW500toSF12BW500461 +The 5V output time can be controlled by AT Command. 535 535 536 - 926.9- SF7BW500toSF12BW500463 +(% style="color:blue" %)**AT+5VT=1000** 537 537 538 - 927.5-SF7BW500 toSF12BW500465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 539 539 540 -923.3 - SF12BW500(RX2 downlink only) 541 541 542 542 469 +== 2.5 Downlink Payload == 543 543 544 - ===2.7.5AS920-923&AS923-925(AS923)===471 +By default, NSE01 prints the downlink payload to console port. 545 545 546 - (% style="color:#037691" %)**Default Uplink channel:**473 +[[image:image-20220708133731-5.png]] 547 547 548 -923.2 - SF7BW125 to SF10BW125 549 549 550 -923.4 - SF7BW125 to SF10BW125 551 551 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 552 552 553 -(% style="color:#037691" %)**Additional Uplink Channel**: 481 +((( 482 + 483 +))) 554 554 555 -(OTAA mode, channel added by JoinAccept message) 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 556 556 557 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 558 558 559 -922.2 - SF7BW125 to SF10BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 560 560 561 -922.4 - SF7BW125 to SF10BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 562 562 563 -922.6 - SF7BW125 to SF10BW125 501 +((( 502 + 503 +))) 564 564 565 -922.8 - SF7BW125 to SF10BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 566 566 567 -923.0 - SF7BW125 to SF10BW125 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 568 568 569 -922.0 - SF7BW125 to SF10BW125 570 570 514 +* (% style="color:blue" %)**INTMOD** 571 571 572 - (%style="color:#037691" %)**AS923~~ AS925 for Brunei,Cambodia, Hong Kong,Indonesia, Laos,Taiwan, Thailand, Vietnam**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 573 573 574 -923.6 - SF7BW125 to SF10BW125 575 575 576 -923.8 - SF7BW125 to SF10BW125 577 577 578 - 924.0-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 579 579 580 -924.2 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 581 581 582 -924.4 - SF7BW125 to SF10BW125 583 583 584 -924.6 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 585 585 586 586 587 -(% style="color:#037691" %)** Downlink:** 588 588 589 -Uplink channels 1-8 (RX1) 590 590 591 - 923.2-SF10BW125(RX2)535 +== 2.7 Installation in Soil == 592 592 537 +__**Measurement the soil surface**__ 593 593 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 594 594 595 - === 2.7.6KR920-923(KR920) ===541 +[[image:1657259653666-883.png]] 596 596 597 -Default channel: 598 598 599 -922.1 - SF7BW125 to SF12BW125 544 +((( 545 + 600 600 601 -922.3 - SF7BW125 to SF12BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 602 602 603 -922.5 - SF7BW125 to SF12BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 604 604 556 +[[image:1654506665940-119.png]] 605 605 606 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 558 +((( 559 + 560 +))) 607 607 608 -922.1 - SF7BW125 to SF12BW125 609 609 610 - 922.3- SF7BW125toSF12BW125563 +== 2.8 Firmware Change Log == 611 611 612 -922.5 - SF7BW125 to SF12BW125 613 613 614 - 922.7-SF7BW125toSF12BW125566 +Download URL & Firmware Change log 615 615 616 - 922.9-F7BW125toSF12BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 617 617 618 -923.1 - SF7BW125 to SF12BW125 619 619 620 - 923.3- SF7BW125toSF12BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 621 621 622 622 623 -(% style="color:#037691" %)**Downlink:** 624 624 625 - Uplinkchannels1-7(RX1)575 +== 2.9 Battery Analysis == 626 626 627 - 921.9- SF12BW125(RX2 downlink only; SF12BW125 mightbechangedto SF9BW125)577 +=== 2.9.1 Battery Type === 628 628 629 629 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 630 630 631 -=== 2.7.7 IN865-867 (IN865) === 632 632 633 - (%style="color:#037691"%)**Uplink:**583 +The battery is designed to last for several years depends on the actually use environment and update interval. 634 634 635 -865.0625 - SF7BW125 to SF12BW125 636 636 637 - 865.4025-SF7BW125toSF12BW125586 +The battery related documents as below: 638 638 639 -865.9850 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 640 640 641 - 642 -(% style="color:#037691" %) **Downlink:** 643 - 644 -Uplink channels 1-3 (RX1) 645 - 646 -866.550 - SF10BW125 (RX2) 647 - 648 - 649 - 650 - 651 -== 2.8 LED Indicator == 652 - 653 -The LSE01 has an internal LED which is to show the status of different state. 654 - 655 -* Blink once when device power on. 656 -* Solid ON for 5 seconds once device successful Join the network. 657 -* Blink once when device transmit a packet. 658 - 659 - 660 - 661 -== 2.9 Installation in Soil == 662 - 663 -**Measurement the soil surface** 664 - 665 - 666 -[[image:1654506634463-199.png]] 667 - 668 668 ((( 669 -((( 670 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 671 671 ))) 672 -))) 673 673 674 674 675 -[[image:1654506665940-119.png]] 676 676 677 -((( 678 -Dig a hole with diameter > 20CM. 679 -))) 598 +2.9.2 680 680 681 -((( 682 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 684 685 685 686 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 687 687 688 -((( 689 -**Firmware download link:** 690 -))) 691 691 692 -((( 693 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 695 695 696 -((( 697 - 698 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 699 699 700 -((( 701 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 -))) 703 703 704 -((( 705 - 706 -))) 611 +Step 2: Open it and choose 707 707 708 - (((709 -* *V1.0.**710 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 711 711 712 -((( 713 -Release 714 -))) 617 +And the Life expectation in difference case will be shown on the right. 715 715 716 716 717 -== 2.11 Battery Analysis == 718 718 719 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 720 720 721 721 ((( 722 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 723 -))) 724 - 725 -((( 726 -The battery is designed to last for more than 5 years for the LSN50. 727 -))) 728 - 729 -((( 730 -((( 731 -The battery-related documents are as below: 732 -))) 733 -))) 734 - 735 -* ((( 736 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 737 -))) 738 -* ((( 739 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 740 -))) 741 -* ((( 742 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 743 -))) 744 - 745 - [[image:image-20220606171726-9.png]] 746 - 747 - 748 - 749 -=== 2.11.2 Battery Note === 750 - 751 -((( 752 752 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 753 753 ))) 754 754 755 755 756 756 757 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 758 758 759 -((( 760 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 761 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 762 762 763 -((( 764 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 765 -))) 766 766 767 -((( 768 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 769 -))) 770 770 771 - 772 - 773 773 = 3. Using the AT Commands = 774 774 775 775 == 3.1 Access AT Commands == ... ... @@ -793,7 +793,7 @@ 793 793 [[image:1654502050864-459.png||height="564" width="806"]] 794 794 795 795 796 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 797 797 798 798 799 799 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -951,19 +951,14 @@ 951 951 952 952 ((( 953 953 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 954 -))) 955 955 956 -(% class="box infomessage" %) 957 -((( 958 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 959 959 ))) 960 960 961 -(% class="box infomessage" %) 962 962 ((( 963 -**ATZ** 964 -))) 822 + 965 965 966 -((( 967 967 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 968 ))) 969 969 ... ... @@ -978,18 +978,22 @@ 978 978 [[image:image-20220606154825-4.png]] 979 979 980 980 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 981 981 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 982 982 = 5. Trouble Shooting = 983 983 984 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 985 985 986 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 987 987 988 988 989 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 990 990 991 991 ((( 992 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 993 ))) 994 994 995 995 ... ... @@ -1071,7 +1071,6 @@ 1071 1071 * ((( 1072 1072 Weight / pcs : g 1073 1073 1074 - 1075 1075 1076 1076 ))) 1077 1077 ... ... @@ -1079,8 +1079,3 @@ 1079 1079 1080 1080 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1081 1081 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 - 1083 - 1084 -~)~)~) 1085 -~)~)~) 1086 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content