Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,1045 +12,793 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 23 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 28 + 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 + 38 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]44 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 48 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +== 1.3 Specification == 66 66 67 67 68 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 70 +* Supply Voltage: 2.1v ~~ 3.6v 71 +* Operating Temperature: -40 ~~ 85°C 70 70 71 -* Smart Agriculture 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 74 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 -== 1.5 Firmware Change log == 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 77 77 78 78 79 - **LSE01v1.0 :**Release84 +Probe(% style="color:#037691" %)** Specification:** 80 80 86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 81 81 88 +[[image:image-20220708101224-1.png]] 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 92 +== 1.4 Applications == 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 +* Smart Agriculture 94 94 96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 97 + 95 95 99 +== 1.5 Pin Definitions == 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 98 98 99 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.102 +[[image:1657246476176-652.png]] 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 103 106 += 2. Use NSE01 to communicate with IoT Server = 104 104 105 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.108 +== 2.1 How it works == 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 116 +((( 117 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 120 +[[image:image-20220708101605-2.png]] 172 172 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.123 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 209 128 +== 2.2 Configure the NSE01 == 210 210 211 211 212 -=== 2. 3.4SoilMoisture ===131 +=== 2.2.1 Test Requirement === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 217 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 134 +To use NSE01 in your city, make sure meet below requirements: 221 221 222 - (((223 - 224 - )))136 +* Your local operator has already distributed a NB-IoT Network there. 137 +* The local NB-IoT network used the band that NSE01 supports. 138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 225 225 226 226 ((( 227 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 228 228 ))) 229 229 230 230 145 +[[image:1657249419225-449.png]] 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 237 237 238 -((( 239 -**Example**: 240 -))) 149 +=== 2.2.2 Insert SIM card === 241 241 242 -((( 243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 -))) 151 +Insert the NB-IoT Card get from your provider. 245 245 246 -((( 247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 -))) 153 +User need to take out the NB-IoT module and insert the SIM card like below: 249 249 250 250 156 +[[image:1657249468462-536.png]] 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 261 261 262 262 ((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 265 - 266 266 ((( 267 - 164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 268 268 ))) 269 - 270 -((( 271 - 272 272 ))) 273 273 274 -=== 2.3.7 MOD === 275 275 276 - Firmware versionat least v2.1 supportschanging mode.169 +**Connection:** 277 277 278 - Forexample,bytes[10]=90171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 279 279 280 - mod=(bytes[10]>>7)&0x01=1.173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 281 281 175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 282 282 283 -**Downlink Command:** 284 284 285 -I fpayload= 0x0A00,workmode=0178 +In the PC, use below serial tool settings: 286 286 287 -If** **payload =** **0x0A01, workmode=1 180 +* Baud: (% style="color:green" %)**9600** 181 +* Data bits:** (% style="color:green" %)8(%%)** 182 +* Stop bits: (% style="color:green" %)**1** 183 +* Parity: (% style="color:green" %)**None** 184 +* Flow Control: (% style="color:green" %)**None** 288 288 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 - The payloaddecoderfunction forTTNis here:187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 300 300 ))) 301 301 302 -((( 303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 -))) 190 +[[image:image-20220708110657-3.png]] 305 305 192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 306 306 307 307 308 -== 2.4 Uplink Interval == 309 309 310 - TheLSE01 by default uplink the sensor data every20 minutes. Usercan change this interval by ATCommandorLoRaWAN Downlink Command. See thislink:[[Change Uplink Interval>>doc:Main.EndDevice AT Commands and DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]196 +=== 2.2.4 Use CoAP protocol to uplink data === 311 311 198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 312 312 313 313 314 - ==2.5 DownlinkPayload==201 +**Use below commands:** 315 315 316 -By default, LSE50 prints the downlink payload to console port. 203 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 317 317 318 - [[image:image-20220606165544-8.png]]207 +For parameter description, please refer to AT command set 319 319 209 +[[image:1657249793983-486.png]] 320 320 321 -**Examples:** 322 322 212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 323 323 324 - * **Set TDC**214 +[[image:1657249831934-534.png]] 325 325 326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 327 328 -Payload: 01 00 00 1E TDC=30S 329 329 330 -P ayload:0100003C TDC=60S218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 331 331 220 +This feature is supported since firmware version v1.0.1 332 332 333 -* **Reset** 334 334 335 -If payload = 0x04FF, it will reset the LSE01 223 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 336 336 227 +[[image:1657249864775-321.png]] 337 337 338 -* **CFM** 339 339 340 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0230 +[[image:1657249930215-289.png]] 341 341 342 342 343 343 344 -== 2.6 ShowDatainDataCakeIoT Server==234 +=== 2.2.6 Use MQTT protocol to uplink data === 345 345 346 - [[DATACAKE>>url:https://datacake.co/]] providesa humanfriendly interfacetoshowthesensordata, oncewe havedatainTTN, wecan use[[DATACAKE>>url:https://datacake.co/]]to connect to TTN andsee the datainDATACAKE. Below are the steps:236 +This feature is supported since firmware version v110 347 347 348 348 349 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 239 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 350 350 351 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:247 +[[image:1657249978444-674.png]] 352 352 353 353 354 -[[image:1654 505857935-743.png]]250 +[[image:1657249990869-686.png]] 355 355 356 356 357 -[[image:1654505874829-548.png]] 253 +((( 254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 +))) 358 358 359 -Step 3: Create an account or log in Datacake. 360 360 361 -Step 4: Search the LSE01 and add DevEUI. 362 362 259 +=== 2.2.7 Use TCP protocol to uplink data === 363 363 364 - [[image:1654505905236-553.png]]261 +This feature is supported since firmware version v110 365 365 366 366 367 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 264 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 368 368 369 -[[image:165 4505925508-181.png]]267 +[[image:1657250217799-140.png]] 370 370 371 371 270 +[[image:1657250255956-604.png]] 372 372 373 -== 2.7 Frequency Plans == 374 374 375 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 376 376 274 +=== 2.2.8 Change Update Interval === 377 377 378 - ===2.7.1EU863-870(EU868)===276 +User can use below command to change the (% style="color:green" %)**uplink interval**. 379 379 380 -(% style="color: #037691" %)** Uplink:**278 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 381 381 382 -868.1 - SF7BW125 to SF12BW125 280 +((( 281 +(% style="color:red" %)**NOTE:** 282 +))) 383 383 384 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 284 +((( 285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 +))) 385 385 386 -868.5 - SF7BW125 to SF12BW125 387 387 388 -867.1 - SF7BW125 to SF12BW125 389 389 390 - 867.3-SF7BW125 toSF12BW125290 +== 2.3 Uplink Payload == 391 391 392 - 867.5-SF7BW125toSF12BW125292 +In this mode, uplink payload includes in total 18 bytes 393 393 394 -867.7 - SF7BW125 to SF12BW125 294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 +|=(% style="width: 50px;" %)((( 296 +**Size(bytes)** 297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 395 395 396 - 867.9-SF7BW125to SF12BW125300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 397 397 398 -868.8 - FSK 399 399 303 +[[image:image-20220708111918-4.png]] 400 400 401 -(% style="color:#037691" %)** Downlink:** 402 402 403 - Uplinkchannels1-9 (RX1)306 +The payload is ASCII string, representative same HEX: 404 404 405 - 869.525- SF9BW125(RX2downlink only)308 +0x72403155615900640c7817075e0a8c02f900 where: 406 406 310 +* Device ID: 0x 724031556159 = 724031556159 311 +* Version: 0x0064=100=1.0.0 407 407 313 +* BAT: 0x0c78 = 3192 mV = 3.192V 314 +* Singal: 0x17 = 23 315 +* Soil Moisture: 0x075e= 1886 = 18.86 % 316 +* Soil Temperature:0x0a8c =2700=27 °C 317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 +* Interrupt: 0x00 = 0 408 408 409 -=== 2.7.2 US902-928(US915) === 410 410 411 -Used in USA, Canada and South America. Default use CHE=2 412 412 413 - (%style="color:#037691"%)**Uplink:**322 +== 2.4 Payload Explanation and Sensor Interface == 414 414 415 -903.9 - SF7BW125 to SF10BW125 416 416 417 - 904.1-SF7BW125 to SF10BW125325 +=== 2.4.1 Device ID === 418 418 419 - 904.3-SF7BW125toSF10BW125327 +By default, the Device ID equal to the last 6 bytes of IMEI. 420 420 421 - 904.5-SF7BW125toSF10BW125329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 422 422 423 - 904.7 - SF7BW125 to SF10BW125331 +**Example:** 424 424 425 - 904.9 - SF7BW125to SF10BW125333 +AT+DEUI=A84041F15612 426 426 427 - 905.1-SF7BW125toSF10BW125335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 428 428 429 -905.3 - SF7BW125 to SF10BW125 430 430 431 431 432 - (%style="color:#037691" %)**Downlink:**339 +=== 2.4.2 Version Info === 433 433 434 - 923.3-SF7BW500toSF12BW500341 +Specify the software version: 0x64=100, means firmware version 1.00. 435 435 436 - 923.9-SF7BW500 toSF12BW500343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 437 437 438 -924.5 - SF7BW500 to SF12BW500 439 439 440 -925.1 - SF7BW500 to SF12BW500 441 441 442 - 925.7- SF7BW500toSF12BW500347 +=== 2.4.3 Battery Info === 443 443 444 -926.3 - SF7BW500 to SF12BW500 349 +((( 350 +Check the battery voltage for LSE01. 351 +))) 445 445 446 -926.9 - SF7BW500 to SF12BW500 353 +((( 354 +Ex1: 0x0B45 = 2885mV 355 +))) 447 447 448 -927.5 - SF7BW500 to SF12BW500 357 +((( 358 +Ex2: 0x0B49 = 2889mV 359 +))) 449 449 450 -923.3 - SF12BW500(RX2 downlink only) 451 451 452 452 363 +=== 2.4.4 Signal Strength === 453 453 454 - === 2.7.3 CN470-510(CN470)===365 +NB-IoT Network signal Strength. 455 455 456 - Usedin China, Default use CHE=1367 +**Ex1: 0x1d = 29** 457 457 458 -(% style="color: #037691" %)**Uplink:**369 +(% style="color:blue" %)**0**(%%) -113dBm or less 459 459 460 - 486.3-SF7BW125toSF12BW125371 +(% style="color:blue" %)**1**(%%) -111dBm 461 461 462 - 486.5- SF7BW125toSF12BW125373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 463 463 464 - 486.7-SF7BW125toSF12BW125375 +(% style="color:blue" %)**31** (%%) -51dBm or greater 465 465 466 - 486.9-SF7BW125toSF12BW125377 +(% style="color:blue" %)**99** (%%) Not known or not detectable 467 467 468 -487.1 - SF7BW125 to SF12BW125 469 469 470 -487.3 - SF7BW125 to SF12BW125 471 471 472 -4 87.5-SF7BW125toSF12BW125381 +=== 2.4.5 Soil Moisture === 473 473 474 -487.7 - SF7BW125 to SF12BW125 383 +((( 384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 385 +))) 475 475 387 +((( 388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 389 +))) 476 476 477 -(% style="color:#037691" %)**Downlink:** 391 +((( 392 + 393 +))) 478 478 479 -506.7 - SF7BW125 to SF12BW125 395 +((( 396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 397 +))) 480 480 481 -506.9 - SF7BW125 to SF12BW125 482 482 483 -507.1 - SF7BW125 to SF12BW125 484 484 485 - 507.3-SF7BW125toSF12BW125401 +=== 2.4.6 Soil Temperature === 486 486 487 -507.5 - SF7BW125 to SF12BW125 403 +((( 404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 405 +))) 488 488 489 -507.7 - SF7BW125 to SF12BW125 407 +((( 408 +**Example**: 409 +))) 490 490 491 -507.9 - SF7BW125 to SF12BW125 411 +((( 412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 413 +))) 492 492 493 -508.1 - SF7BW125 to SF12BW125 415 +((( 416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 417 +))) 494 494 495 -505.3 - SF12BW125 (RX2 downlink only) 496 496 497 497 421 +=== 2.4.7 Soil Conductivity (EC) === 498 498 499 -=== 2.7.4 AU915-928(AU915) === 423 +((( 424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 425 +))) 500 500 501 -Default use CHE=2 427 +((( 428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 429 +))) 502 502 503 -(% style="color:#037691" %)**Uplink:** 431 +((( 432 +Generally, the EC value of irrigation water is less than 800uS / cm. 433 +))) 504 504 505 -916.8 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 506 506 507 -917.0 - SF7BW125 to SF12BW125 439 +((( 440 + 441 +))) 508 508 509 - 917.2- SF7BW125toSF12BW125443 +=== 2.4.8 Digital Interrupt === 510 510 511 - 917.4-SF7BW125toSF12BW125445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 512 512 513 - 917.6- SF7BW125 toSF12BW125447 +The command is: 514 514 515 - 917.8-SF7BW125to SF12BW125449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 516 516 517 -918.0 - SF7BW125 to SF12BW125 518 518 519 - 918.2-SF7BW125toSF12BW125452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 520 520 521 521 522 - (% style="color:#037691" %)**Downlink:**455 +Example: 523 523 524 - 923.3 - SF7BW500toSF12BW500457 +0x(00): Normal uplink packet. 525 525 526 - 923.9 - SF7BW500 toSF12BW500459 +0x(01): Interrupt Uplink Packet. 527 527 528 -924.5 - SF7BW500 to SF12BW500 529 529 530 -925.1 - SF7BW500 to SF12BW500 531 531 532 - 925.7- SF7BW500toSF12BW500463 +=== 2.4.9 +5V Output === 533 533 534 - 926.3-SF7BW500toSF12BW500465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 535 536 -926.9 - SF7BW500 to SF12BW500 537 537 538 - 927.5-SF7BW500toSF12BW500468 +The 5V output time can be controlled by AT Command. 539 539 540 - 923.3 - SF12BW500(RX2downlinkonly)470 +(% style="color:blue" %)**AT+5VT=1000** 541 541 472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 542 542 543 543 544 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 545 545 546 - (% style="color:#037691"%)**Default Uplinkchannel:**476 +== 2.5 Downlink Payload == 547 547 548 - 923.2-SF7BW125toSF10BW125478 +By default, NSE01 prints the downlink payload to console port. 549 549 550 - 923.4 - SF7BW125to SF10BW125480 +[[image:image-20220708133731-5.png]] 551 551 552 552 553 -(% style="color:#037691" %)**Additional Uplink Channel**: 483 +((( 484 +(% style="color:blue" %)**Examples:** 485 +))) 554 554 555 -(OTAA mode, channel added by JoinAccept message) 487 +((( 488 + 489 +))) 556 556 557 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 491 +* ((( 492 +(% style="color:blue" %)**Set TDC** 493 +))) 558 558 559 -922.2 - SF7BW125 to SF10BW125 495 +((( 496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 497 +))) 560 560 561 -922.4 - SF7BW125 to SF10BW125 499 +((( 500 +Payload: 01 00 00 1E TDC=30S 501 +))) 562 562 563 -922.6 - SF7BW125 to SF10BW125 503 +((( 504 +Payload: 01 00 00 3C TDC=60S 505 +))) 564 564 565 -922.8 - SF7BW125 to SF10BW125 507 +((( 508 + 509 +))) 566 566 567 -923.0 - SF7BW125 to SF10BW125 511 +* ((( 512 +(% style="color:blue" %)**Reset** 513 +))) 568 568 569 -922.0 - SF7BW125 to SF10BW125 515 +((( 516 +If payload = 0x04FF, it will reset the NSE01 517 +))) 570 570 571 571 572 -(% style="color: #037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong,Indonesia, Laos,Taiwan, Thailand, Vietnam**:520 +* (% style="color:blue" %)**INTMOD** 573 573 574 - 923.6-SF7BW125toSF10BW125522 +Downlink Payload: 06000003, Set AT+INTMOD=3 575 575 576 -923.8 - SF7BW125 to SF10BW125 577 577 578 -924.0 - SF7BW125 to SF10BW125 579 579 580 - 924.2-SF7BW125toSF10BW125526 +== 2.6 LED Indicator == 581 581 582 -924.4 - SF7BW125 to SF10BW125 528 +((( 529 +The NSE01 has an internal LED which is to show the status of different state. 583 583 584 -924.6 - SF7BW125 to SF10BW125 585 585 532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 533 +* Then the LED will be on for 1 second means device is boot normally. 534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 535 +* For each uplink probe, LED will be on for 500ms. 536 +))) 586 586 587 -(% style="color:#037691" %)** Downlink:** 588 588 589 -Uplink channels 1-8 (RX1) 590 590 591 -923.2 - SF10BW125 (RX2) 592 592 541 +== 2.7 Installation in Soil == 593 593 543 +__**Measurement the soil surface**__ 594 594 595 - ===2.7.6KR920-923(KR920) ===545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 596 596 597 - Default channel:547 +[[image:1657259653666-883.png]] 598 598 599 -922.1 - SF7BW125 to SF12BW125 600 600 601 -922.3 - SF7BW125 to SF12BW125 550 +((( 551 + 602 602 603 -922.5 - SF7BW125 to SF12BW125 553 +((( 554 +Dig a hole with diameter > 20CM. 555 +))) 604 604 557 +((( 558 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 559 +))) 560 +))) 605 605 606 - (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**562 +[[image:1654506665940-119.png]] 607 607 608 -922.1 - SF7BW125 to SF12BW125 564 +((( 565 + 566 +))) 609 609 610 -922.3 - SF7BW125 to SF12BW125 611 611 612 - 922.5- SF7BW125toSF12BW125569 +== 2.8 Firmware Change Log == 613 613 614 -922.7 - SF7BW125 to SF12BW125 615 615 616 - 922.9-SF7BW125toSF12BW125572 +Download URL & Firmware Change log 617 617 618 - 923.1-F7BW125toSF12BW125574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 619 619 620 -923.3 - SF7BW125 to SF12BW125 621 621 577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 622 622 623 -(% style="color:#037691" %)**Downlink:** 624 624 625 -Uplink channels 1-7(RX1) 626 626 627 - 921.9- SF12BW125(RX2 downlink only; SF12BW125 mightbe changed to SF9BW125)581 +== 2.9 Battery Analysis == 628 628 583 +=== 2.9.1 Battery Type === 629 629 630 630 631 - ===2.7.7 IN865-867(IN865)===586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 632 632 633 -(% style="color:#037691" %)** Uplink:** 634 634 635 - 865.0625-SF7BW125toSF12BW125589 +The battery is designed to last for several years depends on the actually use environment and update interval. 636 636 637 -865.4025 - SF7BW125 to SF12BW125 638 638 639 - 865.9850-SF7BW125toSF12BW125592 +The battery related documents as below: 640 640 594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 641 641 642 -(% style="color:#037691" %) **Downlink:** 643 - 644 -Uplink channels 1-3 (RX1) 645 - 646 -866.550 - SF10BW125 (RX2) 647 - 648 - 649 - 650 - 651 -== 2.8 LED Indicator == 652 - 653 -The LSE01 has an internal LED which is to show the status of different state. 654 - 655 -* Blink once when device power on. 656 -* Solid ON for 5 seconds once device successful Join the network. 657 -* Blink once when device transmit a packet. 658 - 659 - 660 - 661 -== 2.9 Installation in Soil == 662 - 663 -**Measurement the soil surface** 664 - 665 - 666 -[[image:1654506634463-199.png]] 667 - 668 668 ((( 669 -((( 670 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 599 +[[image:image-20220708140453-6.png]] 671 671 ))) 672 -))) 673 673 674 674 675 -[[image:1654506665940-119.png]] 676 676 677 -((( 678 -Dig a hole with diameter > 20CM. 679 -))) 604 +=== 2.9.2 Power consumption Analyze === 680 680 681 681 ((( 682 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 683 683 ))) 684 684 685 685 686 -== 2.10 Firmware Change Log == 687 - 688 688 ((( 689 - **Firmware downloadlink:**612 +Instruction to use as below: 690 690 ))) 691 691 692 692 ((( 693 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]616 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 694 694 ))) 695 695 696 -((( 697 - 698 -))) 699 699 700 700 ((( 701 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 702 702 ))) 703 703 704 -((( 705 - 624 +* ((( 625 +Product Model 706 706 ))) 707 - 708 -((( 709 -**V1.0.** 627 +* ((( 628 +Uplink Interval 710 710 ))) 630 +* ((( 631 +Working Mode 632 +))) 711 711 712 712 ((( 713 - Release635 +And the Life expectation in difference case will be shown on the right. 714 714 ))) 715 715 638 +[[image:image-20220708141352-7.jpeg]] 716 716 717 -== 2.11 Battery Analysis == 718 718 719 -=== 2.11.1 Battery Type === 720 720 721 -((( 722 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 723 -))) 642 +=== 2.9.3 Battery Note === 724 724 725 725 ((( 726 -The battery is designed to last for more than5 yearsfor theLSN50.645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 727 727 ))) 728 728 729 -((( 730 -((( 731 -The battery-related documents are as below: 732 -))) 733 -))) 734 734 735 -* ((( 736 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 737 -))) 738 -* ((( 739 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 740 -))) 741 -* ((( 742 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 743 -))) 744 744 745 - [[image:image-20220606171726-9.png]]650 +=== 2.9.4 Replace the battery === 746 746 747 - 748 - 749 -=== 2.11.2 Battery Note === 750 - 751 751 ((( 752 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 753 753 ))) 754 754 755 755 756 756 757 -= ==2.11.3Replacethebattery===658 += 3. Access NB-IoT Module = 758 758 759 759 ((( 760 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.661 +Users can directly access the AT command set of the NB-IoT module. 761 761 ))) 762 762 763 763 ((( 764 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 765 765 ))) 766 766 767 -((( 768 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 769 -))) 668 +[[image:1657261278785-153.png]] 770 770 771 771 772 772 773 -= 3.Using the AT Commands =672 += 4. Using the AT Commands = 774 774 775 -== 3.1 Access AT Commands ==674 +== 4.1 Access AT Commands == 776 776 676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 777 777 778 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 779 779 780 - [[image:1654501986557-872.png||height="391"width="800"]]679 +AT+<CMD>? : Help on <CMD> 781 781 681 +AT+<CMD> : Run <CMD> 782 782 783 - Orifyouhavebelowboard,usebelowconnection:683 +AT+<CMD>=<value> : Set the value 784 784 685 +AT+<CMD>=? : Get the value 785 785 786 -[[image:1654502005655-729.png||height="503" width="801"]] 787 787 788 - 789 - 790 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 - 792 - 793 - [[image:1654502050864-459.png||height="564" width="806"]] 794 - 795 - 796 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 - 798 - 799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 - 801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 - 803 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 - 805 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 - 807 - 808 808 (% style="color:#037691" %)**General Commands**(%%) 809 809 810 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention690 +AT : Attention 811 811 812 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help692 +AT? : Short Help 813 813 814 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset694 +ATZ : MCU Reset 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval696 +AT+TDC : Application Data Transmission Interval 817 817 698 +AT+CFG : Print all configurations 818 818 819 - (%style="color:#037691"%)**Keys,IDsand EUIs management**700 +AT+CFGMOD : Working mode selection 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI702 +AT+INTMOD : Set the trigger interrupt mode 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey704 +AT+5VT : Set extend the time of 5V power 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key706 +AT+PRO : Choose agreement 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress708 +AT+WEIGRE : Get weight or set weight to 0 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI710 +AT+WEIGAP : Get or Set the GapValue of weight 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)712 +AT+RXDL : Extend the sending and receiving time 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network714 +AT+CNTFAC : Get or set counting parameters 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode716 +AT+SERVADDR : Server Address 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network719 +(% style="color:#037691" %)**COAP Management** 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode721 +AT+URI : Resource parameters 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 844 844 845 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format724 +(% style="color:#037691" %)**UDP Management** 846 846 847 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat726 +AT+CFM : Upload confirmation mode (only valid for UDP) 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 850 850 851 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data729 +(% style="color:#037691" %)**MQTT Management** 852 852 731 +AT+CLIENT : Get or Set MQTT client 853 853 854 - (%style="color:#037691"%)**LoRaNetworkManagement**733 +AT+UNAME : Get or Set MQTT Username 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate735 +AT+PWD : Get or Set MQTT password 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA737 +AT+PUBTOPIC : Get or Set MQTT publish topic 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting739 +AT+SUBTOPIC : Get or Set MQTT subscription topic 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 863 863 864 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink742 +(% style="color:#037691" %)**Information** 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink744 +AT+FDR : Factory Data Reset 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1746 +AT+PWORD : Serial Access Password 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 873 873 874 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1750 += 5. FAQ = 875 875 876 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2752 +== 5.1 How to Upgrade Firmware == 877 877 878 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 879 879 880 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 - 882 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 - 884 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 - 886 - 887 -(% style="color:#037691" %)**Information** 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 - 891 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 - 893 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 - 895 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 - 897 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 - 899 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 - 901 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 - 903 - 904 -= 4. FAQ = 905 - 906 -== 4.1 How to change the LoRa Frequency Bands/Region? == 907 - 908 908 ((( 909 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 -When downloading the images, choose the required image file for download. 756 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 911 911 ))) 912 912 913 913 ((( 914 - 760 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 915 915 ))) 916 916 917 917 ((( 918 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 919 919 ))) 920 920 921 -((( 922 - 923 -))) 924 924 925 -((( 926 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 -))) 928 928 929 -((( 930 - 931 -))) 769 += 6. Trouble Shooting = 932 932 933 -((( 934 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 935 -))) 771 +== 6.1 Connection problem when uploading firmware == 936 936 937 -[[image:image-20220606154726-3.png]] 938 938 939 - 940 -When you use the TTN network, the US915 frequency bands use are: 941 - 942 -* 903.9 - SF7BW125 to SF10BW125 943 -* 904.1 - SF7BW125 to SF10BW125 944 -* 904.3 - SF7BW125 to SF10BW125 945 -* 904.5 - SF7BW125 to SF10BW125 946 -* 904.7 - SF7BW125 to SF10BW125 947 -* 904.9 - SF7BW125 to SF10BW125 948 -* 905.1 - SF7BW125 to SF10BW125 949 -* 905.3 - SF7BW125 to SF10BW125 950 -* 904.6 - SF8BW500 951 - 774 +(% class="wikigeneratedid" %) 952 952 ((( 953 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 954 954 ))) 955 955 956 -(% class="box infomessage" %) 957 -((( 958 -**AT+CHE=2** 959 -))) 960 960 961 -(% class="box infomessage" %) 962 -((( 963 -**ATZ** 964 -))) 965 965 966 -((( 967 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 -))) 781 +== 6.2 AT Command input doesn't work == 969 969 970 970 ((( 971 - 784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 972 972 ))) 973 973 974 -((( 975 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 -))) 977 977 978 -[[image:image-20220606154825-4.png]] 979 979 789 += 7. Order Info = 980 980 981 981 982 - = 5. TroubleShooting=792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 983 983 984 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 985 986 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 - 988 - 989 -== 5.2 AT Command input doesn’t work == 990 - 991 -((( 992 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 -))) 994 - 995 - 996 -== 5.3 Device rejoin in at the second uplink packet == 997 - 998 -(% style="color:#4f81bd" %)**Issue describe as below:** 999 - 1000 -[[image:1654500909990-784.png]] 1001 - 1002 - 1003 -(% style="color:#4f81bd" %)**Cause for this issue:** 1004 - 1005 -((( 1006 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1007 -))) 1008 - 1009 - 1010 -(% style="color:#4f81bd" %)**Solution: ** 1011 - 1012 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1013 - 1014 -[[image:1654500929571-736.png||height="458" width="832"]] 1015 - 1016 - 1017 -= 6. Order Info = 1018 - 1019 - 1020 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 - 1022 - 1023 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 - 1025 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 - 1034 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 - 1036 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 - 1039 1039 (% class="wikigeneratedid" %) 1040 1040 ((( 1041 1041 1042 1042 ))) 1043 1043 1044 -= 7. Packing Info =800 += 8. Packing Info = 1045 1045 1046 1046 ((( 1047 1047 1048 1048 1049 1049 (% style="color:#037691" %)**Package Includes**: 1050 -))) 1051 1051 1052 -* ((( 1053 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 807 + 808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 809 +* External antenna x 1 1054 1054 ))) 1055 1055 1056 1056 ((( ... ... @@ -1057,30 +1057,20 @@ 1057 1057 1058 1058 1059 1059 (% style="color:#037691" %)**Dimension and weight**: 1060 -))) 1061 1061 1062 -* ((( 1063 -Device Size: cm 817 + 818 +* Size: 195 x 125 x 55 mm 819 +* Weight: 420g 1064 1064 ))) 1065 -* ((( 1066 -Device Weight: g 1067 -))) 1068 -* ((( 1069 -Package Size / pcs : cm 1070 -))) 1071 -* ((( 1072 -Weight / pcs : g 1073 1073 822 +((( 823 + 1074 1074 825 + 1075 1075 1076 1076 ))) 1077 1077 1078 -= 8. Support =829 += 9. Support = 1079 1079 1080 1080 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1081 1081 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 - 1083 - 1084 -~)~)~) 1085 -~)~)~) 1086 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content