Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,749 +1,731 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 66 66 67 67 63 +(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 70 70 71 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 75 75 76 -== 1.5 Firmware Change log == 77 77 78 +(% style="color:#037691" %)**Battery:** 78 78 79 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 80 80 81 81 87 +(% style="color:#037691" %)**Power Consumption** 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 84 84 85 -== 2.1 How it works == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 +== 1.4 Applications == 95 95 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 96 96 97 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 103 103 104 104 105 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657328609906-564.png]] 106 106 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 111 112 - [[image:image-20220606163732-6.jpeg]]117 += 2. Use NSE01 to communicate with IoT Server = 113 113 114 - Youcan enter this key in the LoRaWAN Server portal.Below isTTN screenshot:119 +== 2.1 How it works == 115 115 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 126 +((( 127 +The diagram below shows the working flow in default firmware of NDDS75: 170 170 ))) 171 171 172 - 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 130 +((( 131 + 192 192 ))) 193 193 134 +[[image:1657328659945-416.png]] 194 194 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.137 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 141 +== 2.2 Configure the NSE01 == 209 209 210 210 144 +=== 2.2.1 Test Requirement === 211 211 212 -=== 2.3.4 Soil Moisture === 213 213 214 214 ((( 215 - Get the moisturecontent of thesoil. Thevaluerangeof theregisteris 0-10000(Decimal),dividethisvalueby 100 to getthepercentage of moistureinhesoil.148 +To use NSE01 in your city, make sure meet below requirements: 216 216 ))) 217 217 218 - (((219 - Forexample, if thedatayougetfrom theregisteris __0x05 0xDC__,themoisture contentinthesoil is220 - )))151 +* Your local operator has already distributed a NB-IoT Network there. 152 +* The local NB-IoT network used the band that NSE01 supports. 153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 221 221 222 222 ((( 223 - 156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 224 224 ))) 225 225 226 -((( 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 -))) 229 229 160 +[[image:1657249419225-449.png]] 230 230 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 164 +=== 2.2.2 Insert SIM card === 237 237 238 238 ((( 239 - **Example**:167 +Insert the NB-IoT Card get from your provider. 240 240 ))) 241 241 242 242 ((( 243 - Ifpayloadis0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100=2.61 °C171 +User need to take out the NB-IoT module and insert the SIM card like below: 244 244 ))) 245 245 246 -((( 247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 -))) 249 249 175 +[[image:1657249468462-536.png]] 250 250 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 257 257 258 258 ((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 261 - 262 262 ((( 263 - Generally,theECvalueof irrigation waterislessthan800uS/cm.183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 264 264 ))) 265 - 266 -((( 267 - 268 268 ))) 269 269 270 -((( 271 - 272 -))) 273 273 274 - === 2.3.7 MOD ===188 +**Connection:** 275 275 276 - Firmwareversionatst v2.1 supportschanging mode.190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 277 277 278 - Forexample,bytes[10]=90192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 279 279 280 - mod=(bytes[10]>>7)&0x01=1.194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 281 281 282 282 283 - **DownlinkCommand:**197 +In the PC, use below serial tool settings: 284 284 285 -If payload = 0x0A00, workmode=0 199 +* Baud: (% style="color:green" %)**9600** 200 +* Data bits:** (% style="color:green" %)8(%%)** 201 +* Stop bits: (% style="color:green" %)**1** 202 +* Parity: (% style="color:green" %)**None** 203 +* Flow Control: (% style="color:green" %)**None** 286 286 287 -If** **payload =** **0x0A01, workmode=1 205 +((( 206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 207 +))) 288 288 209 +[[image:image-20220708110657-3.png]] 289 289 211 +((( 212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 213 +))) 290 290 291 -=== 2.3.8 Decode payload in The Things Network === 292 292 293 -While using TTN network, you can add the payload format to decode the payload. 294 294 217 +=== 2.2.4 Use CoAP protocol to uplink data === 295 295 296 -[[i mage:1654505570700-128.png]]219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 297 297 298 -The payload decoder function for TTN is here: 299 299 300 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]222 +**Use below commands:** 301 301 224 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 302 302 228 +For parameter description, please refer to AT command set 303 303 304 - ==2.4Uplink Interval ==230 +[[image:1657249793983-486.png]] 305 305 306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 307 307 233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 308 308 235 +[[image:1657249831934-534.png]] 309 309 310 -== 2.5 Downlink Payload == 311 311 312 -By default, LSE50 prints the downlink payload to console port. 313 313 314 - [[image:image-20220606165544-8.png]]239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 315 315 241 +This feature is supported since firmware version v1.0.1 316 316 317 -**Examples:** 318 318 244 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 319 319 320 - * **Set TDC**248 +[[image:1657249864775-321.png]] 321 321 322 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 323 323 324 - Payload:0100 00 1E TDC=30S251 +[[image:1657249930215-289.png]] 325 325 326 -Payload: 01 00 00 3C TDC=60S 327 327 328 328 329 - ***Reset**255 +=== 2.2.6 Use MQTT protocol to uplink data === 330 330 331 - If payload= 0x04FF,itwillresettheLSE01257 +This feature is supported since firmware version v110 332 332 333 333 334 -* **CFM** 260 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 335 335 336 - Downlink Payload:05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0268 +[[image:1657249978444-674.png]] 337 337 338 338 271 +[[image:1657249990869-686.png]] 339 339 340 -== 2.6 Show Data in DataCake IoT Server == 341 341 342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 274 +((( 275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 +))) 343 343 344 344 345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 346 346 347 - **Step2**:ToconfiguretheApplicationtoforwarddata toDATACAKE youwillneedto add integration. Toaddthe DATACAKE integration, perform the following steps:280 +=== 2.2.7 Use TCP protocol to uplink data === 348 348 282 +This feature is supported since firmware version v110 349 349 350 -[[image:1654505857935-743.png]] 351 351 285 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 352 352 353 -[[image:165 4505874829-548.png]]288 +[[image:1657250217799-140.png]] 354 354 355 -Step 3: Create an account or log in Datacake. 356 356 357 - Step 4: Search theLSE01and add DevEUI.291 +[[image:1657250255956-604.png]] 358 358 359 359 360 -[[image:1654505905236-553.png]] 361 361 295 +=== 2.2.8 Change Update Interval === 362 362 363 - After added,thesensordataarriveTTN, itwillalsoarriveandshowinMydevices.297 +User can use below command to change the (% style="color:green" %)**uplink interval**. 364 364 365 - [[image:1654505925508-181.png]]299 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 366 366 301 +((( 302 +(% style="color:red" %)**NOTE:** 303 +))) 367 367 305 +((( 306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 +))) 368 368 369 -== 2.7 Frequency Plans == 370 370 371 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 372 372 311 +== 2.3 Uplink Payload == 373 373 374 - ===2.7.1EU863-870(EU868)===313 +In this mode, uplink payload includes in total 18 bytes 375 375 376 -(% style="color:#037691" %)** Uplink:** 315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 +|=(% style="width: 60px;" %)((( 317 +**Size(bytes)** 318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 377 377 378 -868.1 - SF7BW125 to SF12BW125 321 +((( 322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 +))) 379 379 380 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 381 381 382 - 868.5-SF7BW125 to SF12BW125326 +[[image:image-20220708111918-4.png]] 383 383 384 -867.1 - SF7BW125 to SF12BW125 385 385 386 - 867.3-SF7BW125toSF12BW125329 +The payload is ASCII string, representative same HEX: 387 387 388 - 867.5- SF7BW125to SF12BW125331 +0x72403155615900640c7817075e0a8c02f900 where: 389 389 390 -867.7 - SF7BW125 to SF12BW125 333 +* Device ID: 0x 724031556159 = 724031556159 334 +* Version: 0x0064=100=1.0.0 391 391 392 -867.9 - SF7BW125 to SF12BW125 336 +* BAT: 0x0c78 = 3192 mV = 3.192V 337 +* Singal: 0x17 = 23 338 +* Soil Moisture: 0x075e= 1886 = 18.86 % 339 +* Soil Temperature:0x0a8c =2700=27 °C 340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 +* Interrupt: 0x00 = 0 393 393 394 - 868.8-FSK343 +== 2.4 Payload Explanation and Sensor Interface == 395 395 396 396 397 - (%style="color:#037691"%)**Downlink:**346 +=== 2.4.1 Device ID === 398 398 399 -Uplink channels 1-9 (RX1) 348 +((( 349 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 +))) 400 400 401 -869.525 - SF9BW125 (RX2 downlink only) 352 +((( 353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 +))) 402 402 356 +((( 357 +**Example:** 358 +))) 403 403 360 +((( 361 +AT+DEUI=A84041F15612 362 +))) 404 404 405 -=== 2.7.2 US902-928(US915) === 364 +((( 365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 +))) 406 406 407 -Used in USA, Canada and South America. Default use CHE=2 408 408 409 -(% style="color:#037691" %)**Uplink:** 410 410 411 - 903.9- SF7BW125toSF10BW125370 +=== 2.4.2 Version Info === 412 412 413 -904.1 - SF7BW125 to SF10BW125 372 +((( 373 +Specify the software version: 0x64=100, means firmware version 1.00. 374 +))) 414 414 415 -904.3 - SF7BW125 to SF10BW125 376 +((( 377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 +))) 416 416 417 -904.5 - SF7BW125 to SF10BW125 418 418 419 -904.7 - SF7BW125 to SF10BW125 420 420 421 - 904.9- SF7BW125toSF10BW125382 +=== 2.4.3 Battery Info === 422 422 423 -905.1 - SF7BW125 to SF10BW125 384 +((( 385 +Check the battery voltage for LSE01. 386 +))) 424 424 425 -905.3 - SF7BW125 to SF10BW125 388 +((( 389 +Ex1: 0x0B45 = 2885mV 390 +))) 426 426 392 +((( 393 +Ex2: 0x0B49 = 2889mV 394 +))) 427 427 428 -(% style="color:#037691" %)**Downlink:** 429 429 430 -923.3 - SF7BW500 to SF12BW500 431 431 432 - 923.9-SF7BW500toSF12BW500398 +=== 2.4.4 Signal Strength === 433 433 434 -924.5 - SF7BW500 to SF12BW500 400 +((( 401 +NB-IoT Network signal Strength. 402 +))) 435 435 436 -925.1 - SF7BW500 to SF12BW500 404 +((( 405 +**Ex1: 0x1d = 29** 406 +))) 437 437 438 -925.7 - SF7BW500 to SF12BW500 408 +((( 409 +(% style="color:blue" %)**0**(%%) -113dBm or less 410 +))) 439 439 440 -926.3 - SF7BW500 to SF12BW500 412 +((( 413 +(% style="color:blue" %)**1**(%%) -111dBm 414 +))) 441 441 442 -926.9 - SF7BW500 to SF12BW500 416 +((( 417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 +))) 443 443 444 -927.5 - SF7BW500 to SF12BW500 420 +((( 421 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 +))) 445 445 446 -923.3 - SF12BW500(RX2 downlink only) 424 +((( 425 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 +))) 447 447 448 448 449 449 450 -=== 2. 7.3 CN470-510(CN470)===430 +=== 2.4.5 Soil Moisture === 451 451 452 -Used in China, Default use CHE=1 432 +((( 433 +((( 434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 +))) 436 +))) 453 453 454 -(% style="color:#037691" %)**Uplink:** 438 +((( 439 +((( 440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 +))) 442 +))) 455 455 456 -486.3 - SF7BW125 to SF12BW125 444 +((( 445 + 446 +))) 457 457 458 -486.5 - SF7BW125 to SF12BW125 448 +((( 449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 +))) 459 459 460 -486.7 - SF7BW125 to SF12BW125 461 461 462 -486.9 - SF7BW125 to SF12BW125 463 463 464 -4 87.1-SF7BW125toSF12BW125454 +=== 2.4.6 Soil Temperature === 465 465 466 -487.3 - SF7BW125 to SF12BW125 456 +((( 457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 +))) 467 467 468 -487.5 - SF7BW125 to SF12BW125 460 +((( 461 +**Example**: 462 +))) 469 469 470 -487.7 - SF7BW125 to SF12BW125 464 +((( 465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 +))) 471 471 468 +((( 469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 +))) 472 472 473 -(% style="color:#037691" %)**Downlink:** 474 474 475 -506.7 - SF7BW125 to SF12BW125 476 476 477 - 506.9-SF7BW125toSF12BW125474 +=== 2.4.7 Soil Conductivity (EC) === 478 478 479 -507.1 - SF7BW125 to SF12BW125 476 +((( 477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 +))) 480 480 481 -507.3 - SF7BW125 to SF12BW125 480 +((( 481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 +))) 482 482 483 -507.5 - SF7BW125 to SF12BW125 484 +((( 485 +Generally, the EC value of irrigation water is less than 800uS / cm. 486 +))) 484 484 485 -507.7 - SF7BW125 to SF12BW125 488 +((( 489 + 490 +))) 486 486 487 -507.9 - SF7BW125 to SF12BW125 492 +((( 493 + 494 +))) 488 488 489 - 508.1- SF7BW125toSF12BW125496 +=== 2.4.8 Digital Interrupt === 490 490 491 -505.3 - SF12BW125 (RX2 downlink only) 498 +((( 499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 +))) 492 492 502 +((( 503 +The command is: 504 +))) 493 493 506 +((( 507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 +))) 494 494 495 -=== 2.7.4 AU915-928(AU915) === 496 496 497 -Default use CHE=2 511 +((( 512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 +))) 498 498 499 -(% style="color:#037691" %)**Uplink:** 500 500 501 -916.8 - SF7BW125 to SF12BW125 516 +((( 517 +Example: 518 +))) 502 502 503 -917.0 - SF7BW125 to SF12BW125 520 +((( 521 +0x(00): Normal uplink packet. 522 +))) 504 504 505 -917.2 - SF7BW125 to SF12BW125 524 +((( 525 +0x(01): Interrupt Uplink Packet. 526 +))) 506 506 507 -917.4 - SF7BW125 to SF12BW125 508 508 509 -917.6 - SF7BW125 to SF12BW125 510 510 511 - 917.8- SF7BW125 toSF12BW125530 +=== 2.4.9 +5V Output === 512 512 513 -918.0 - SF7BW125 to SF12BW125 532 +((( 533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 +))) 514 514 515 -918.2 - SF7BW125 to SF12BW125 516 516 537 +((( 538 +The 5V output time can be controlled by AT Command. 539 +))) 517 517 518 -(% style="color:#037691" %)**Downlink:** 541 +((( 542 +(% style="color:blue" %)**AT+5VT=1000** 543 +))) 519 519 520 -923.3 - SF7BW500 to SF12BW500 545 +((( 546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 +))) 521 521 522 -923.9 - SF7BW500 to SF12BW500 523 523 524 -924.5 - SF7BW500 to SF12BW500 525 525 526 - 925.1 - SF7BW500toSF12BW500551 +== 2.5 Downlink Payload == 527 527 528 - 925.7-SF7BW500toSF12BW500553 +By default, NSE01 prints the downlink payload to console port. 529 529 530 - 926.3-SF7BW500 to SF12BW500555 +[[image:image-20220708133731-5.png]] 531 531 532 -926.9 - SF7BW500 to SF12BW500 533 533 534 -927.5 - SF7BW500 to SF12BW500 558 +((( 559 +(% style="color:blue" %)**Examples:** 560 +))) 535 535 536 -923.3 - SF12BW500(RX2 downlink only) 562 +((( 563 + 564 +))) 537 537 566 +* ((( 567 +(% style="color:blue" %)**Set TDC** 568 +))) 538 538 570 +((( 571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 +))) 539 539 540 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 574 +((( 575 +Payload: 01 00 00 1E TDC=30S 576 +))) 541 541 542 -(% style="color:#037691" %)**Default Uplink channel:** 578 +((( 579 +Payload: 01 00 00 3C TDC=60S 580 +))) 543 543 544 -923.2 - SF7BW125 to SF10BW125 582 +((( 583 + 584 +))) 545 545 546 -923.4 - SF7BW125 to SF10BW125 586 +* ((( 587 +(% style="color:blue" %)**Reset** 588 +))) 547 547 590 +((( 591 +If payload = 0x04FF, it will reset the NSE01 592 +))) 548 548 549 -(% style="color:#037691" %)**Additional Uplink Channel**: 550 550 551 -( OTAAmode,channeladded by JoinAcceptmessage)595 +* (% style="color:blue" %)**INTMOD** 552 552 553 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 597 +((( 598 +Downlink Payload: 06000003, Set AT+INTMOD=3 599 +))) 554 554 555 -922.2 - SF7BW125 to SF10BW125 556 556 557 -922.4 - SF7BW125 to SF10BW125 558 558 559 - 922.6-SF7BW125toSF10BW125603 +== 2.6 LED Indicator == 560 560 561 -922.8 - SF7BW125 to SF10BW125 605 +((( 606 +The NSE01 has an internal LED which is to show the status of different state. 562 562 563 -923.0 - SF7BW125 to SF10BW125 564 564 565 -922.0 - SF7BW125 to SF10BW125 609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 +* Then the LED will be on for 1 second means device is boot normally. 611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 +* For each uplink probe, LED will be on for 500ms. 613 +))) 566 566 567 567 568 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 569 569 570 -923.6 - SF7BW125 to SF10BW125 571 571 572 - 923.8 - SF7BW125to SF10BW125618 +== 2.7 Installation in Soil == 573 573 574 - 924.0- SF7BW125toSF10BW125620 +__**Measurement the soil surface**__ 575 575 576 -924.2 - SF7BW125 to SF10BW125 622 +((( 623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 +))) 577 577 578 - 924.4 - SF7BW125to SF10BW125626 +[[image:1657259653666-883.png]] 579 579 580 -924.6 - SF7BW125 to SF10BW125 581 581 629 +((( 630 + 582 582 583 -(% style="color:#037691" %)** Downlink:** 632 +((( 633 +Dig a hole with diameter > 20CM. 634 +))) 584 584 585 -Uplink channels 1-8 (RX1) 636 +((( 637 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 +))) 639 +))) 586 586 587 -9 23.2-SF10BW125 (RX2)641 +[[image:1654506665940-119.png]] 588 588 643 +((( 644 + 645 +))) 589 589 590 590 591 -== =2.7.6KR920-923(KR920)===648 +== 2.8 Firmware Change Log == 592 592 593 -Default channel: 594 594 595 - 922.1-SF7BW125toSF12BW125651 +Download URL & Firmware Change log 596 596 597 - 922.3-F7BW125toSF12BW125653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 598 598 599 -922.5 - SF7BW125 to SF12BW125 600 600 656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 601 601 602 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 603 603 604 -922.1 - SF7BW125 to SF12BW125 605 605 606 - 922.3- SF7BW125toSF12BW125660 +== 2.9 Battery Analysis == 607 607 608 - 922.5 - SF7BW125toSF12BW125662 +=== 2.9.1 Battery Type === 609 609 610 -922.7 - SF7BW125 to SF12BW125 611 611 612 -922.9 - SF7BW125 to SF12BW125 613 - 614 -923.1 - SF7BW125 to SF12BW125 615 - 616 -923.3 - SF7BW125 to SF12BW125 617 - 618 - 619 -(% style="color:#037691" %)**Downlink:** 620 - 621 -Uplink channels 1-7(RX1) 622 - 623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 - 625 - 626 - 627 -=== 2.7.7 IN865-867 (IN865) === 628 - 629 -(% style="color:#037691" %)** Uplink:** 630 - 631 -865.0625 - SF7BW125 to SF12BW125 632 - 633 -865.4025 - SF7BW125 to SF12BW125 634 - 635 -865.9850 - SF7BW125 to SF12BW125 636 - 637 - 638 -(% style="color:#037691" %) **Downlink:** 639 - 640 -Uplink channels 1-3 (RX1) 641 - 642 -866.550 - SF10BW125 (RX2) 643 - 644 - 645 - 646 - 647 -== 2.8 LED Indicator == 648 - 649 -The LSE01 has an internal LED which is to show the status of different state. 650 - 651 -* Blink once when device power on. 652 -* Solid ON for 5 seconds once device successful Join the network. 653 -* Blink once when device transmit a packet. 654 - 655 - 656 - 657 -== 2.9 Installation in Soil == 658 - 659 -**Measurement the soil surface** 660 - 661 - 662 -[[image:1654506634463-199.png]] 663 - 664 664 ((( 665 -((( 666 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 667 667 ))) 668 -))) 669 669 670 670 671 -[[image:1654506665940-119.png]] 672 - 673 673 ((( 674 - Dig aholewithdiameter>20CM.671 +The battery is designed to last for several years depends on the actually use environment and update interval. 675 675 ))) 676 676 677 -((( 678 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 679 -))) 680 680 681 - 682 -== 2.10 Firmware Change Log == 683 - 684 684 ((( 685 - **Firmware downloadlink:**676 +The battery related documents as below: 686 686 ))) 687 687 688 - (((689 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]690 - )))679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 691 691 692 692 ((( 693 - 684 +[[image:image-20220708140453-6.png]] 694 694 ))) 695 695 696 -((( 697 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 698 -))) 699 699 700 -((( 701 - 702 -))) 703 703 704 -((( 705 -**V1.0.** 706 -))) 689 +=== 2.9.2 Power consumption Analyze === 707 707 708 708 ((( 709 - Release692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 710 710 ))) 711 711 712 712 713 -== 2.11 Battery Analysis == 714 - 715 -=== 2.11.1 Battery Type === 716 - 717 717 ((( 718 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.697 +Instruction to use as below: 719 719 ))) 720 720 721 721 ((( 722 - Thebatterys designedlastforrethan5 years fortheSN50.701 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 723 723 ))) 724 724 704 + 725 725 ((( 726 -((( 727 -The battery-related documents are as below: 706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 728 728 ))) 729 -))) 730 730 731 731 * ((( 732 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],710 +Product Model 733 733 ))) 734 734 * ((( 735 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],713 +Uplink Interval 736 736 ))) 737 737 * ((( 738 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]716 +Working Mode 739 739 ))) 740 740 741 - [[image:image-20220606171726-9.png]] 719 +((( 720 +And the Life expectation in difference case will be shown on the right. 721 +))) 742 742 723 +[[image:image-20220708141352-7.jpeg]] 743 743 744 744 745 -=== 2.11.2 Battery Note === 746 746 727 +=== 2.9.3 Battery Note === 728 + 747 747 ((( 748 748 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 749 749 ))) ... ... @@ -750,303 +750,176 @@ 750 750 751 751 752 752 753 -=== 2. 11.3Replace the battery ===735 +=== 2.9.4 Replace the battery === 754 754 755 755 ((( 756 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 757 757 ))) 758 758 741 + 742 + 743 += 3. Access NB-IoT Module = 744 + 759 759 ((( 760 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.746 +Users can directly access the AT command set of the NB-IoT module. 761 761 ))) 762 762 763 763 ((( 764 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 765 765 ))) 766 766 753 +[[image:1657261278785-153.png]] 767 767 768 768 769 -= 3. Using the AT Commands = 770 770 771 -= =3.1AccessAT Commands ==757 += 4. Using the AT Commands = 772 772 759 +== 4.1 Access AT Commands == 773 773 774 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 775 775 776 -[[image:1654501986557-872.png||height="391" width="800"]] 777 777 764 +AT+<CMD>? : Help on <CMD> 778 778 779 - Orifyouhavebelowboard,usebelowconnection:766 +AT+<CMD> : Run <CMD> 780 780 768 +AT+<CMD>=<value> : Set the value 781 781 782 - [[image:1654502005655-729.png||height="503"width="801"]]770 +AT+<CMD>=? : Get the value 783 783 784 784 785 - 786 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 787 - 788 - 789 - [[image:1654502050864-459.png||height="564" width="806"]] 790 - 791 - 792 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 793 - 794 - 795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 796 - 797 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 798 - 799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 800 - 801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 802 - 803 - 804 804 (% style="color:#037691" %)**General Commands**(%%) 805 805 806 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention775 +AT : Attention 807 807 808 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help777 +AT? : Short Help 809 809 810 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset779 +ATZ : MCU Reset 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval781 +AT+TDC : Application Data Transmission Interval 813 813 783 +AT+CFG : Print all configurations 814 814 815 - (%style="color:#037691"%)**Keys,IDsand EUIs management**785 +AT+CFGMOD : Working mode selection 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI787 +AT+INTMOD : Set the trigger interrupt mode 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey789 +AT+5VT : Set extend the time of 5V power 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key791 +AT+PRO : Choose agreement 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress793 +AT+WEIGRE : Get weight or set weight to 0 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI795 +AT+WEIGAP : Get or Set the GapValue of weight 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)797 +AT+RXDL : Extend the sending and receiving time 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network799 +AT+CNTFAC : Get or set counting parameters 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode801 +AT+SERVADDR : Server Address 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network804 +(% style="color:#037691" %)**COAP Management** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode806 +AT+URI : Resource parameters 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 840 840 841 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format809 +(% style="color:#037691" %)**UDP Management** 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat811 +AT+CFM : Upload confirmation mode (only valid for UDP) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 846 846 847 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data814 +(% style="color:#037691" %)**MQTT Management** 848 848 816 +AT+CLIENT : Get or Set MQTT client 849 849 850 - (%style="color:#037691"%)**LoRaNetworkManagement**818 +AT+UNAME : Get or Set MQTT Username 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate820 +AT+PWD : Get or Set MQTT password 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA822 +AT+PUBTOPIC : Get or Set MQTT publish topic 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting824 +AT+SUBTOPIC : Get or Set MQTT subscription topic 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 859 859 860 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink827 +(% style="color:#037691" %)**Information** 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink829 +AT+FDR : Factory Data Reset 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1831 +AT+PWORD : Serial Access Password 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 869 869 870 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1835 += 5. FAQ = 871 871 872 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2837 +== 5.1 How to Upgrade Firmware == 873 873 874 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 877 - 878 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 879 - 880 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 881 - 882 - 883 -(% style="color:#037691" %)**Information** 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 886 - 887 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 890 - 891 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 892 - 893 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 894 - 895 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 896 - 897 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 898 - 899 - 900 -= 4. FAQ = 901 - 902 -== 4.1 How to change the LoRa Frequency Bands/Region? == 903 - 904 904 ((( 905 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 906 -When downloading the images, choose the required image file for download. 841 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 907 907 ))) 908 908 909 909 ((( 910 - 845 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 911 911 ))) 912 912 913 913 ((( 914 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 915 915 ))) 916 916 917 -((( 918 - 919 -))) 920 920 921 -((( 922 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 -))) 924 924 925 -((( 926 - 927 -))) 854 +== 5.2 Can I calibrate NSE01 to different soil types? == 928 928 929 929 ((( 930 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 931 931 ))) 932 932 933 -[[image:image-20220606154726-3.png]] 934 934 861 += 6. Trouble Shooting = 935 935 936 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:863 +== 6.1 Connection problem when uploading firmware == 937 937 938 -* 903.9 - SF7BW125 to SF10BW125 939 -* 904.1 - SF7BW125 to SF10BW125 940 -* 904.3 - SF7BW125 to SF10BW125 941 -* 904.5 - SF7BW125 to SF10BW125 942 -* 904.7 - SF7BW125 to SF10BW125 943 -* 904.9 - SF7BW125 to SF10BW125 944 -* 905.1 - SF7BW125 to SF10BW125 945 -* 905.3 - SF7BW125 to SF10BW125 946 -* 904.6 - SF8BW500 947 947 948 948 ((( 949 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 950 950 ))) 951 951 952 -(% class=" boxinfomessage" %)870 +(% class="wikigeneratedid" %) 953 953 ((( 954 -**AT+CHE=2** 955 -))) 956 - 957 -(% class="box infomessage" %) 958 -((( 959 -**ATZ** 960 -))) 961 - 962 -((( 963 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 964 -))) 965 - 966 -((( 967 967 968 968 ))) 969 969 970 -((( 971 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 972 -))) 973 973 974 - [[image:image-20220606154825-4.png]]876 +== 6.2 AT Command input doesn't work == 975 975 976 - 977 - 978 -= 5. Trouble Shooting = 979 - 980 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 981 - 982 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 983 - 984 - 985 -== 5.2 AT Command input doesn’t work == 986 - 987 987 ((( 988 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 989 -))) 879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 990 990 991 - 992 -== 5.3 Device rejoin in at the second uplink packet == 993 - 994 -(% style="color:#4f81bd" %)**Issue describe as below:** 995 - 996 -[[image:1654500909990-784.png]] 997 - 998 - 999 -(% style="color:#4f81bd" %)**Cause for this issue:** 1000 - 1001 -((( 1002 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 881 + 1003 1003 ))) 1004 1004 1005 1005 1006 - (% style="color:#4f81bd"%)**Solution:**885 += 7. Order Info = 1007 1007 1008 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1009 1009 1010 - [[image:1654500929571-736.png||height="458" width="832"]]888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1011 1011 1012 1012 1013 -= 6. Order Info = 1014 - 1015 - 1016 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1017 - 1018 - 1019 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1020 - 1021 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1022 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1023 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1024 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1025 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1026 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1027 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1028 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1029 - 1030 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1031 - 1032 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1033 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1034 - 1035 1035 (% class="wikigeneratedid" %) 1036 1036 ((( 1037 1037 1038 1038 ))) 1039 1039 1040 -= 7. Packing Info =896 += 8. Packing Info = 1041 1041 1042 1042 ((( 1043 1043 1044 1044 1045 1045 (% style="color:#037691" %)**Package Includes**: 1046 -))) 1047 1047 1048 -* (((1049 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 904 +* External antenna x 1 1050 1050 ))) 1051 1051 1052 1052 ((( ... ... @@ -1053,30 +1053,19 @@ 1053 1053 1054 1054 1055 1055 (% style="color:#037691" %)**Dimension and weight**: 1056 -))) 1057 1057 1058 -* (((1059 - DeviceSize:cm912 +* Size: 195 x 125 x 55 mm 913 +* Weight: 420g 1060 1060 ))) 1061 -* ((( 1062 -Device Weight: g 1063 -))) 1064 -* ((( 1065 -Package Size / pcs : cm 1066 -))) 1067 -* ((( 1068 -Weight / pcs : g 1069 1069 916 +((( 917 + 1070 1070 919 + 1071 1071 1072 1072 ))) 1073 1073 1074 -= 8. Support =923 += 9. Support = 1075 1075 1076 1076 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1077 1077 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 - 1079 - 1080 -~)~)~) 1081 -~)~)~) 1082 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content