Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.11
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version
To version 68.1
edited by Xiaoling
on 2022/07/09 08:40
Change comment: Uploaded new attachment "image-20220709084038-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,9 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,738 +12,713 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
13 +**Table of Contents:**
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
38 38  
21 += 1.  Introduction =
39 39  
40 -[[image:1654503236291-817.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
41 41  
25 +(((
26 +
42 42  
43 -[[image:1654503265560-120.png]]
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
44 44  
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
45 45  
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
46 46  
47 -== 1.2 ​Features ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 -* AT Commands to change parameters
56 -* Uplink on periodically
57 -* Downlink to change configure
58 -* IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -== 1.3 Specification ==
62 -
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 -
65 -[[image:image-20220606162220-5.png]]
66 -
67 -
68 -
69 -== ​1.4 Applications ==
70 -
71 -* Smart Agriculture
72 -
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
75 -
76 -== 1.5 Firmware Change log ==
77 -
78 -
79 -**LSE01 v1.0 :**  Release
80 -
81 -
82 -
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 -
85 -== 2.1 How it works ==
86 -
87 87  (((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
89 89  )))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
42 +
93 93  )))
94 94  
45 +[[image:1654503236291-817.png]]
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
48 +[[image:1657245163077-232.png]]
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
52 +== 1.2 ​ Features ==
103 103  
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
69 +== 1.3  Specification ==
109 109  
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 111  
112 -[[image:image-20220606163732-6.jpeg]]
72 +(% style="color:#037691" %)**Common DC Characteristics:**
113 113  
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
115 115  
116 -**Add APP EUI in the application**
77 +(% style="color:#037691" %)**NB-IoT Spec:**
117 117  
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
118 118  
119 -[[image:1654504596150-405.png]]
86 +Probe(% style="color:#037691" %)** Specification:**
120 120  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
121 121  
90 +[[image:image-20220708101224-1.png]]
122 122  
123 -**Add APP KEY and DEV EUI**
124 124  
125 -[[image:1654504683289-357.png]]
126 126  
94 +== ​1.4  Applications ==
127 127  
96 +* Smart Agriculture
128 128  
129 -**Step 2**: Power on LSE01
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
130 130  
101 +== 1.5  Pin Definitions ==
131 131  
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 133  
134 -[[image:image-20220606163915-7.png]]
104 +[[image:1657246476176-652.png]]
135 135  
136 136  
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 138  
139 -[[image:1654504778294-788.png]]
108 += 2.  Use NSE01 to communicate with IoT Server =
140 140  
110 +== 2.1  How it works ==
141 141  
142 142  
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
118 +(((
119 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
122 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
125 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
130 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
133 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
137 +To use NSE01 in your city, make sure meet below requirements:
220 220  )))
221 221  
222 -(((
223 -
224 -)))
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
149 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
153 +=== 2.2.2 Insert SIM card ===
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
156 +Insert the NB-IoT Card get from your provider.
244 244  )))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
160 +User need to take out the NB-IoT module and insert the SIM card like below:
248 248  )))
249 249  
250 250  
164 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
177 +**Connection:**
277 277  
278 -For example, bytes[10]=90
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
186 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
288 288  
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
289 289  
198 +[[image:image-20220708110657-3.png]]
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
294 294  
295 295  
296 -[[image:1654505570700-128.png]]
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
297 297  
298 -The payload decoder function for TTN is here:
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
299 299  
300 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
301 301  
211 +**Use below commands:**
302 302  
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
303 303  
304 -== 2.4 Uplink Interval ==
217 +For parameter description, please refer to AT command set
305 305  
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
219 +[[image:1657249793983-486.png]]
307 307  
308 308  
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
309 309  
310 -== 2.5 Downlink Payload ==
224 +[[image:1657249831934-534.png]]
311 311  
312 -By default, LSE50 prints the downlink payload to console port.
313 313  
314 -[[image:image-20220606165544-8.png]]
315 315  
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
316 316  
317 -**Examples:**
230 +This feature is supported since firmware version v1.0.1
318 318  
319 319  
320 -* **Set TDC**
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
321 321  
322 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
237 +[[image:1657249864775-321.png]]
323 323  
324 -Payload:    01 00 00 1E    TDC=30S
325 325  
326 -Payload:    01 00 00 3C    TDC=60S
240 +[[image:1657249930215-289.png]]
327 327  
328 328  
329 -* **Reset**
330 330  
331 -If payload = 0x04FF, it will reset the LSE01
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
332 332  
246 +This feature is supported since firmware version v110
333 333  
334 -* **CFM**
335 335  
336 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
337 337  
257 +[[image:1657249978444-674.png]]
338 338  
339 339  
340 -== 2.6 ​Show Data in DataCake IoT Server ==
260 +[[image:1657249990869-686.png]]
341 341  
342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
343 343  
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
344 344  
345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
346 346  
347 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
348 348  
269 +=== 2.2.7 Use TCP protocol to uplink data ===
349 349  
350 -[[image:1654505857935-743.png]]
271 +This feature is supported since firmware version v110
351 351  
352 352  
353 -[[image:1654505874829-548.png]]
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
354 354  
355 -Step 3: Create an account or log in Datacake.
277 +[[image:1657250217799-140.png]]
356 356  
357 -Step 4: Search the LSE01 and add DevEUI.
358 358  
280 +[[image:1657250255956-604.png]]
359 359  
360 -[[image:1654505905236-553.png]]
361 361  
362 362  
363 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
284 +=== 2.2.8 Change Update Interval ===
364 364  
365 -[[image:1654505925508-181.png]]
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
366 366  
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
367 367  
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
368 368  
369 -== 2.7 Frequency Plans ==
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
370 370  
371 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
372 372  
373 373  
374 -=== 2.7.1 EU863-870 (EU868) ===
300 +== 2.3  Uplink Payload ==
375 375  
376 -(% style="color:#037691" %)** Uplink:**
302 +In this mode, uplink payload includes in total 18 bytes
377 377  
378 -868.1 - SF7BW125 to SF12BW125
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
379 379  
380 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
381 381  
382 -868.5 - SF7BW125 to SF12BW125
383 383  
384 -867.1 - SF7BW125 to SF12BW125
315 +[[image:image-20220708111918-4.png]]
385 385  
386 -867.3 - SF7BW125 to SF12BW125
387 387  
388 -867.5 - SF7BW125 to SF12BW125
318 +The payload is ASCII string, representative same HEX:
389 389  
390 -867.7 - SF7BW125 to SF12BW125
320 +0x72403155615900640c7817075e0a8c02f900 where:
391 391  
392 -867.9 - SF7BW125 to SF12BW125
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
393 393  
394 -868.8 - FSK
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
395 395  
396 396  
397 -(% style="color:#037691" %)** Downlink:**
398 398  
399 -Uplink channels 1-9 (RX1)
334 +== 2.4  Payload Explanation and Sensor Interface ==
400 400  
401 -869.525 - SF9BW125 (RX2 downlink only)
402 402  
337 +=== 2.4.1  Device ID ===
403 403  
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
404 404  
405 -=== 2.7.2 US902-928(US915) ===
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
406 406  
407 -Used in USA, Canada and South America. Default use CHE=2
347 +(((
348 +**Example:**
349 +)))
408 408  
409 -(% style="color:#037691" %)**Uplink:**
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
410 410  
411 -903.9 - SF7BW125 to SF10BW125
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
412 412  
413 -904.1 - SF7BW125 to SF10BW125
414 414  
415 -904.3 - SF7BW125 to SF10BW125
416 416  
417 -904.5 - SF7BW125 to SF10BW125
361 +=== 2.4.2  Version Info ===
418 418  
419 -904.7 - SF7BW125 to SF10BW125
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
420 420  
421 -904.9 - SF7BW125 to SF10BW125
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
422 422  
423 -905.1 - SF7BW125 to SF10BW125
424 424  
425 -905.3 - SF7BW125 to SF10BW125
426 426  
373 +=== 2.4.3  Battery Info ===
427 427  
428 -(% style="color:#037691" %)**Downlink:**
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
429 429  
430 -923.3 - SF7BW500 to SF12BW500
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
431 431  
432 -923.9 - SF7BW500 to SF12BW500
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
433 433  
434 -924.5 - SF7BW500 to SF12BW500
435 435  
436 -925.1 - SF7BW500 to SF12BW500
437 437  
438 -925.7 - SF7BW500 to SF12BW500
389 +=== 2.4.4  Signal Strength ===
439 439  
440 -926.3 - SF7BW500 to SF12BW500
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
441 441  
442 -926.9 - SF7BW500 to SF12BW500
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
443 443  
444 -927.5 - SF7BW500 to SF12BW500
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
445 445  
446 -923.3 - SF12BW500(RX2 downlink only)
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
447 447  
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
448 448  
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
449 449  
450 -=== 2.7.3 CN470-510 (CN470) ===
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
451 451  
452 -Used in China, Default use CHE=1
453 453  
454 -(% style="color:#037691" %)**Uplink:**
455 455  
456 -486.3 - SF7BW125 to SF12BW125
421 +=== 2.4. Soil Moisture ===
457 457  
458 -486.5 - SF7BW125 to SF12BW125
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
459 459  
460 -486.7 - SF7BW125 to SF12BW125
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
461 461  
462 -486.9 - SF7BW125 to SF12BW125
435 +(((
436 +
437 +)))
463 463  
464 -487.1 - SF7BW125 to SF12BW125
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
465 465  
466 -487.3 - SF7BW125 to SF12BW125
467 467  
468 -487.5 - SF7BW125 to SF12BW125
469 469  
470 -487.7 - SF7BW125 to SF12BW125
445 +=== 2.4. Soil Temperature ===
471 471  
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
472 472  
473 -(% style="color:#037691" %)**Downlink:**
451 +(((
452 +**Example**:
453 +)))
474 474  
475 -506.7 - SF7BW125 to SF12BW125
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
476 476  
477 -506.9 - SF7BW125 to SF12BW125
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
478 478  
479 -507.1 - SF7BW125 to SF12BW125
480 480  
481 -507.3 - SF7BW125 to SF12BW125
482 482  
483 -507.5 - SF7BW125 to SF12BW125
465 +=== 2.4.7  Soil Conductivity (EC) ===
484 484  
485 -507.7 - SF7BW125 to SF12BW125
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
486 486  
487 -507.9 - SF7BW125 to SF12BW125
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
488 488  
489 -508.1 - SF7BW125 to SF12BW125
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
490 490  
491 -505.3 - SF12BW125 (RX2 downlink only)
479 +(((
480 +
481 +)))
492 492  
483 +(((
484 +
485 +)))
493 493  
487 +=== 2.4.8  Digital Interrupt ===
494 494  
495 -=== 2.7.4 AU915-928(AU915) ===
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
496 496  
497 -Default use CHE=2
493 +(((
494 +The command is:
495 +)))
498 498  
499 -(% style="color:#037691" %)**Uplink:**
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
500 500  
501 -916.8 - SF7BW125 to SF12BW125
502 502  
503 -917.0 - SF7BW125 to SF12BW125
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
504 504  
505 -917.2 - SF7BW125 to SF12BW125
506 506  
507 -917.4 - SF7BW125 to SF12BW125
507 +(((
508 +Example:
509 +)))
508 508  
509 -917.6 - SF7BW125 to SF12BW125
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
510 510  
511 -917.8 - SF7BW125 to SF12BW125
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
512 512  
513 -918.0 - SF7BW125 to SF12BW125
514 514  
515 -918.2 - SF7BW125 to SF12BW125
516 516  
521 +=== 2.4.9  ​+5V Output ===
517 517  
518 -(% style="color:#037691" %)**Downlink:**
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
519 519  
520 -923.3 - SF7BW500 to SF12BW500
521 521  
522 -923.9 - SF7BW500 to SF12BW500
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
523 523  
524 -924.5 - SF7BW500 to SF12BW500
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
525 525  
526 -925.1 - SF7BW500 to SF12BW500
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
527 527  
528 -925.7 - SF7BW500 to SF12BW500
529 529  
530 -926.3 - SF7BW500 to SF12BW500
531 531  
532 -926.9 - SF7BW500 to SF12BW500
542 +== 2.5  Downlink Payload ==
533 533  
534 -927.5 - SF7BW500 to SF12BW500
544 +By default, NSE01 prints the downlink payload to console port.
535 535  
536 -923.3 - SF12BW500(RX2 downlink only)
546 +[[image:image-20220708133731-5.png]]
537 537  
538 538  
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
539 539  
540 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
553 +(((
554 +
555 +)))
541 541  
542 -(% style="color:#037691" %)**Default Uplink channel:**
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
543 543  
544 -923.2 - SF7BW125 to SF10BW125
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
545 545  
546 -923.4 - SF7BW125 to SF10BW125
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
547 547  
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
548 548  
549 -(% style="color:#037691" %)**Additional Uplink Channel**:
573 +(((
574 +
575 +)))
550 550  
551 -(OTAA mode, channel added by JoinAccept message)
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
552 552  
553 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
554 554  
555 -922.2 - SF7BW125 to SF10BW125
556 556  
557 -922.4 - SF7BW125 to SF10BW125
586 +* (% style="color:blue" %)**INTMOD**
558 558  
559 -922.6 - SF7BW125 to SF10BW125
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
560 560  
561 -922.8 - SF7BW125 to SF10BW125
562 562  
563 -923.0 - SF7BW125 to SF10BW125
564 564  
565 -922.0 - SF7BW125 to SF10BW125
594 +== 2. ​LED Indicator ==
566 566  
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
567 567  
568 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
569 569  
570 -923.6 - SF7BW125 to SF10BW125
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
571 571  
572 -923.8 - SF7BW125 to SF10BW125
573 573  
574 -924.0 - SF7BW125 to SF10BW125
575 575  
576 -924.2 - SF7BW125 to SF10BW125
577 577  
578 -924.4 - SF7BW125 to SF10BW125
609 +== 2.7  Installation in Soil ==
579 579  
580 -924.6 - SF7BW125 to SF10BW125
611 +__**Measurement the soil surface**__
581 581  
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
582 582  
583 -(% style="color:#037691" %)** Downlink:**
617 +[[image:1657259653666-883.png]] ​
584 584  
585 -Uplink channels 1-8 (RX1)
586 586  
587 -923.2 - SF10BW125 (RX2)
620 +(((
621 +
588 588  
623 +(((
624 +Dig a hole with diameter > 20CM.
625 +)))
589 589  
627 +(((
628 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
590 590  
591 -=== 2.7.6 KR920-923 (KR920) ===
632 +[[image:1654506665940-119.png]]
592 592  
593 -Default channel:
634 +(((
635 +
636 +)))
594 594  
595 -922.1 - SF7BW125 to SF12BW125
596 596  
597 -922.3 - SF7BW125 to SF12BW125
639 +== 2. Firmware Change Log ==
598 598  
599 -922.5 - SF7BW125 to SF12BW125
600 600  
642 +Download URL & Firmware Change log
601 601  
602 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
603 603  
604 -922.1 - SF7BW125 to SF12BW125
605 605  
606 -922.3 - SF7BW125 to SF12BW125
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
607 607  
608 -922.5 - SF7BW125 to SF12BW125
609 609  
610 -922.7 - SF7BW125 to SF12BW125
611 611  
612 -922.9 - SF7BW125 to SF12BW125
651 +== 2.9  Battery Analysis ==
613 613  
614 -923.1 - SF7BW125 to SF12BW125
653 +=== 2.9.1  Battery Type ===
615 615  
616 -923.3 - SF7BW125 to SF12BW125
617 617  
618 -
619 -(% style="color:#037691" %)**Downlink:**
620 -
621 -Uplink channels 1-7(RX1)
622 -
623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 -
625 -
626 -
627 -=== 2.7.7 IN865-867 (IN865) ===
628 -
629 -(% style="color:#037691" %)** Uplink:**
630 -
631 -865.0625 - SF7BW125 to SF12BW125
632 -
633 -865.4025 - SF7BW125 to SF12BW125
634 -
635 -865.9850 - SF7BW125 to SF12BW125
636 -
637 -
638 -(% style="color:#037691" %) **Downlink:**
639 -
640 -Uplink channels 1-3 (RX1)
641 -
642 -866.550 - SF10BW125 (RX2)
643 -
644 -
645 -
646 -
647 -== 2.8 LED Indicator ==
648 -
649 -The LSE01 has an internal LED which is to show the status of different state.
650 -
651 -* Blink once when device power on.
652 -* Solid ON for 5 seconds once device successful Join the network.
653 -* Blink once when device transmit a packet.
654 -
655 -
656 -
657 -== 2.9 Installation in Soil ==
658 -
659 -**Measurement the soil surface**
660 -
661 -
662 -[[image:1654506634463-199.png]] ​
663 -
664 664  (((
665 -(((
666 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
667 667  )))
668 -)))
669 669  
670 670  
671 -[[image:1654506665940-119.png]]
672 -
673 673  (((
674 -Dig a hole with diameter > 20CM.
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
675 675  )))
676 676  
677 -(((
678 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
679 -)))
680 680  
681 -
682 -== 2.10 ​Firmware Change Log ==
683 -
684 684  (((
685 -**Firmware download link:**
667 +The battery related documents as below:
686 686  )))
687 687  
688 -(((
689 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
690 -)))
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
691 691  
692 692  (((
693 -
675 +[[image:image-20220708140453-6.png]]
694 694  )))
695 695  
696 -(((
697 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
698 -)))
699 699  
700 -(((
701 -
702 -)))
703 703  
704 -(((
705 -**V1.0.**
706 -)))
680 +=== 2.9.2  Power consumption Analyze ===
707 707  
708 708  (((
709 -Release
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
710 710  )))
711 711  
712 712  
713 -== 2.11 ​Battery Analysis ==
714 -
715 -=== 2.11.1 ​Battery Type ===
716 -
717 717  (((
718 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 +Instruction to use as below:
719 719  )))
720 720  
721 721  (((
722 -The battery is designed to last for more than 5 years for the LSN50.
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
723 723  )))
724 724  
695 +
725 725  (((
726 -(((
727 -The battery-related documents are as below:
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
728 728  )))
729 -)))
730 730  
731 731  * (((
732 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 +Product Model
733 733  )))
734 734  * (((
735 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
704 +Uplink Interval
736 736  )))
737 737  * (((
738 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
707 +Working Mode
739 739  )))
740 740  
741 - [[image:image-20220606171726-9.png]]
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
742 742  
714 +[[image:image-20220708141352-7.jpeg]]
743 743  
744 744  
745 -=== 2.11.2 ​Battery Note ===
746 746  
718 +=== 2.9.3  ​Battery Note ===
719 +
747 747  (((
748 748  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
749 749  )))
... ... @@ -750,303 +750,176 @@
750 750  
751 751  
752 752  
753 -=== 2.11.3 Replace the battery ===
726 +=== 2.9. Replace the battery ===
754 754  
755 755  (((
756 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
757 757  )))
758 758  
732 +
733 +
734 += 3. ​ Access NB-IoT Module =
735 +
759 759  (((
760 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
737 +Users can directly access the AT command set of the NB-IoT module.
761 761  )))
762 762  
763 763  (((
764 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
765 765  )))
766 766  
744 +[[image:1657261278785-153.png]]
767 767  
768 768  
769 -= 3. ​Using the AT Commands =
770 770  
771 -== 3.1 Access AT Commands ==
748 += 4.  Using the AT Commands =
772 772  
750 +== 4.1  Access AT Commands ==
773 773  
774 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
775 775  
776 -[[image:1654501986557-872.png||height="391" width="800"]]
777 777  
755 +AT+<CMD>?  : Help on <CMD>
778 778  
779 -Or if you have below board, use below connection:
757 +AT+<CMD>         : Run <CMD>
780 780  
759 +AT+<CMD>=<value> : Set the value
781 781  
782 -[[image:1654502005655-729.png||height="503" width="801"]]
761 +AT+<CMD>=?  : Get the value
783 783  
784 784  
785 -
786 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
787 -
788 -
789 - [[image:1654502050864-459.png||height="564" width="806"]]
790 -
791 -
792 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
793 -
794 -
795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
796 -
797 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
798 -
799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
800 -
801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
802 -
803 -
804 804  (% style="color:#037691" %)**General Commands**(%%)      
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
809 809  
810 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
813 813  
774 +AT+CFG  : Print all configurations
814 814  
815 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
848 848  
807 +AT+CLIENT               : Get or Set MQTT client
849 849  
850 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
877 -
878 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
879 -
880 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
881 -
882 -
883 -(% style="color:#037691" %)**Information** 
884 -
885 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
886 -
887 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
888 -
889 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
890 -
891 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
892 -
893 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
894 -
895 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
896 -
897 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
898 -
899 -
900 -= ​4. FAQ =
901 -
902 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
903 -
904 904  (((
905 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
906 -When downloading the images, choose the required image file for download. ​
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
907 907  )))
908 908  
909 909  (((
910 -
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
911 911  )))
912 912  
913 913  (((
914 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
915 915  )))
916 916  
917 -(((
918 -
919 -)))
920 920  
921 -(((
922 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
923 -)))
924 924  
925 -(((
926 -
927 -)))
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
928 928  
929 929  (((
930 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
931 931  )))
932 932  
933 -[[image:image-20220606154726-3.png]]
934 934  
852 += 6.  Trouble Shooting =
935 935  
936 -When you use the TTN network, the US915 frequency bands use are:
854 +== 6.1  ​Connection problem when uploading firmware ==
937 937  
938 -* 903.9 - SF7BW125 to SF10BW125
939 -* 904.1 - SF7BW125 to SF10BW125
940 -* 904.3 - SF7BW125 to SF10BW125
941 -* 904.5 - SF7BW125 to SF10BW125
942 -* 904.7 - SF7BW125 to SF10BW125
943 -* 904.9 - SF7BW125 to SF10BW125
944 -* 905.1 - SF7BW125 to SF10BW125
945 -* 905.3 - SF7BW125 to SF10BW125
946 -* 904.6 - SF8BW500
947 947  
948 948  (((
949 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
950 950  )))
951 951  
952 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
953 953  (((
954 -**AT+CHE=2**
955 -)))
956 -
957 -(% class="box infomessage" %)
958 -(((
959 -**ATZ**
960 -)))
961 -
962 -(((
963 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
964 -)))
965 -
966 -(((
967 967  
968 968  )))
969 969  
970 -(((
971 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
972 -)))
973 973  
974 -[[image:image-20220606154825-4.png]]
867 +== 6.2  AT Command input doesn't work ==
975 975  
976 -
977 -
978 -= 5. Trouble Shooting =
979 -
980 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
981 -
982 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
983 -
984 -
985 -== 5.2 AT Command input doesn’t work ==
986 -
987 987  (((
988 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
989 -)))
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
990 990  
991 -
992 -== 5.3 Device rejoin in at the second uplink packet ==
993 -
994 -(% style="color:#4f81bd" %)**Issue describe as below:**
995 -
996 -[[image:1654500909990-784.png]]
997 -
998 -
999 -(% style="color:#4f81bd" %)**Cause for this issue:**
1000 -
1001 -(((
1002 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
872 +
1003 1003  )))
1004 1004  
1005 1005  
1006 -(% style="color:#4f81bd" %)**Solution: **
876 += 7. ​ Order Info =
1007 1007  
1008 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1009 1009  
1010 -[[image:1654500929571-736.png||height="458" width="832"]]
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1011 1011  
1012 1012  
1013 -= 6. ​Order Info =
1014 -
1015 -
1016 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1017 -
1018 -
1019 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1020 -
1021 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1022 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1023 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1024 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1025 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1026 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1027 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1028 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1029 -
1030 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1031 -
1032 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1033 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1034 -
1035 1035  (% class="wikigeneratedid" %)
1036 1036  (((
1037 1037  
1038 1038  )))
1039 1039  
1040 -= 7. Packing Info =
887 += 8.  Packing Info =
1041 1041  
1042 1042  (((
1043 1043  
1044 1044  
1045 1045  (% style="color:#037691" %)**Package Includes**:
1046 -)))
1047 1047  
1048 -* (((
1049 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
1050 1050  )))
1051 1051  
1052 1052  (((
... ... @@ -1053,30 +1053,19 @@
1053 1053  
1054 1054  
1055 1055  (% style="color:#037691" %)**Dimension and weight**:
1056 -)))
1057 1057  
1058 -* (((
1059 -Device Size: cm
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
1060 1060  )))
1061 -* (((
1062 -Device Weight: g
1063 -)))
1064 -* (((
1065 -Package Size / pcs : cm
1066 -)))
1067 -* (((
1068 -Weight / pcs : g
1069 1069  
907 +(((
908 +
1070 1070  
910 +
1071 1071  
1072 1072  )))
1073 1073  
1074 -= 8. Support =
914 += 9.  Support =
1075 1075  
1076 1076  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1077 1077  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1078 -
1079 -
1080 -~)~)~)
1081 -~)~)~)
1082 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content