Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1041 +12,805 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 64 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 75 76 -== 1.5 Firmware Change log == 77 77 74 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 80 80 81 81 82 82 83 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 84 84 85 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 89 +[[image:image-20220708101224-1.png]] 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 95 93 +== 1.4 Applications == 96 96 97 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 100 100 100 +== 1.5 Pin Definitions == 101 101 102 -[[image:1654503992078-669.png]] 103 103 103 +[[image:1657246476176-652.png]] 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 109 109 110 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 115 115 116 -**Add APP EUI in the application** 117 117 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayloadincludesintotal11bytes.118 +The diagram below shows the working flow in default firmware of NSE01: 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 121 +[[image:image-20220708101605-2.png]] 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 123 +((( 124 + 170 170 ))) 171 171 172 172 173 173 174 -== =2.3.2MOD~=1(Original value)===129 +== 2.2 Configure the NSE01 == 175 175 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 177 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 132 +=== 2.2.1 Test Requirement === 181 181 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 186 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 135 +To use NSE01 in your city, make sure meet below requirements: 190 190 191 -(Optional) 192 -))) 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 193 193 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Check the batteryvoltageforLSE01.142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 146 +[[image:1657249419225-449.png]] 209 209 210 210 211 211 212 -=== 2. 3.4SoilMoisture===150 +=== 2.2.2 Insert SIM card === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 152 +Insert the NB-IoT Card get from your provider. 217 217 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 154 +User need to take out the NB-IoT module and insert the SIM card like below: 221 221 222 -((( 223 - 224 -))) 225 225 226 -((( 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 -))) 157 +[[image:1657249468462-536.png]] 229 229 230 230 231 231 232 -=== 2. 3.5SoilTemperature ===161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 233 233 234 234 ((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 237 - 238 238 ((( 239 - **Example**:165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 240 240 ))) 241 - 242 -((( 243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 244 244 ))) 245 245 246 -((( 247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 -))) 249 249 170 +**Connection:** 250 250 172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 251 251 252 - ===2.3.6SoilConductivity(EC)===174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 261 261 262 -((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 179 +In the PC, use below serial tool settings: 265 265 266 -((( 267 - 268 -))) 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 269 269 270 270 ((( 271 - 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 272 272 ))) 273 273 274 - ===2.3.7 MOD ===191 +[[image:image-20220708110657-3.png]] 275 275 276 - Firmwareversion atleastv2.1supports changingmode.193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 277 277 278 -For example, bytes[10]=90 279 279 280 -mod=(bytes[10]>>7)&0x01=1. 281 281 197 +=== 2.2.4 Use CoAP protocol to uplink data === 282 282 283 - **DownlinkCommand:**199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 284 284 285 -If payload = 0x0A00, workmode=0 286 286 287 - If****payload =** **0x0A01,workmode=1202 +**Use below commands:** 288 288 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 289 289 208 +For parameter description, please refer to AT command set 290 290 291 - ===2.3.8Decodepayload inThe Things Network ===210 +[[image:1657249793983-486.png]] 292 292 293 -While using TTN network, you can add the payload format to decode the payload. 294 294 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 295 295 296 -[[image:165 4505570700-128.png]]215 +[[image:1657249831934-534.png]] 297 297 298 -The payload decoder function for TTN is here: 299 299 300 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 301 301 219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 302 302 221 +This feature is supported since firmware version v1.0.1 303 303 304 -== 2.4 Uplink Interval == 305 305 306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 307 307 228 +[[image:1657249864775-321.png]] 308 308 309 309 310 - ==2.5Downlink Payload ==231 +[[image:1657249930215-289.png]] 311 311 312 -By default, LSE50 prints the downlink payload to console port. 313 313 314 -[[image:image-20220606165544-8.png]] 315 315 235 +=== 2.2.6 Use MQTT protocol to uplink data === 316 316 317 - **Examples:**237 +This feature is supported since firmware version v110 318 318 319 319 320 -* **Set TDC** 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 321 321 322 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.248 +[[image:1657249978444-674.png]] 323 323 324 -Payload: 01 00 00 1E TDC=30S 325 325 326 - Payload:0100 00 3C TDC=60S251 +[[image:1657249990869-686.png]] 327 327 328 328 329 -* **Reset** 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 330 330 331 -If payload = 0x04FF, it will reset the LSE01 332 332 333 333 334 - ***CFM**260 +=== 2.2.7 Use TCP protocol to uplink data === 335 335 336 - DownlinkPayload: 05000001, SetAT+CFM=1or05000000,setAT+CFM=0262 +This feature is supported since firmware version v110 337 337 338 338 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 339 339 340 - == 2.6 Show Datain DataCakeIoT Server ==268 +[[image:1657250217799-140.png]] 341 341 342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 343 343 271 +[[image:1657250255956-604.png]] 344 344 345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 346 346 347 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 348 348 275 +=== 2.2.8 Change Update Interval === 349 349 350 - [[image:1654505857935-743.png]]277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 351 351 279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 352 352 353 -[[image:1654505874829-548.png]] 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 354 354 355 -Step 3: Create an account or log in Datacake. 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 356 356 357 -Step 4: Search the LSE01 and add DevEUI. 358 358 359 359 360 - [[image:1654505905236-553.png]]291 +== 2.3 Uplink Payload == 361 361 293 +In this mode, uplink payload includes in total 18 bytes 362 362 363 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 364 364 365 - [[image:1654505925508-181.png]]301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 366 366 367 367 304 +[[image:image-20220708111918-4.png]] 368 368 369 -== 2.7 Frequency Plans == 370 370 371 -The LSE01 uses OTAA modeand below frequencyplans bydefault.If userwantto use itwith differentfrequencyplan, pleaserefertheAT commandsets.307 +The payload is ASCII string, representative same HEX: 372 372 309 +0x72403155615900640c7817075e0a8c02f900 where: 373 373 374 -=== 2.7.1 EU863-870 (EU868) === 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 375 375 376 -(% style="color:#037691" %)** Uplink:** 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 377 377 378 -868.1 - SF7BW125 to SF12BW125 379 379 380 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 381 381 382 -868.5 - SF7BW125 to SF12BW125 383 383 384 - 867.1- SF7BW125to SF12BW125324 +== 2.4 Payload Explanation and Sensor Interface == 385 385 386 -867.3 - SF7BW125 to SF12BW125 387 387 388 - 867.5- SF7BW125toSF12BW125327 +=== 2.4.1 Device ID === 389 389 390 - 867.7-SF7BW125toSF12BW125329 +By default, the Device ID equal to the last 6 bytes of IMEI. 391 391 392 - 867.9-SF7BW125toSF12BW125331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 393 393 394 - 868.8 - FSK333 +**Example:** 395 395 335 +AT+DEUI=A84041F15612 396 396 397 - (%style="color:#037691"%)**Downlink:**337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 398 398 399 -Uplink channels 1-9 (RX1) 400 400 401 -869.525 - SF9BW125 (RX2 downlink only) 402 402 341 +=== 2.4.2 Version Info === 403 403 343 +Specify the software version: 0x64=100, means firmware version 1.00. 404 404 405 - ===2.7.2US902-928(US915)===345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 406 406 407 -Used in USA, Canada and South America. Default use CHE=2 408 408 409 -(% style="color:#037691" %)**Uplink:** 410 410 411 - 903.9- SF7BW125toSF10BW125349 +=== 2.4.3 Battery Info === 412 412 413 -904.1 - SF7BW125 to SF10BW125 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 414 414 415 -904.3 - SF7BW125 to SF10BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 416 416 417 -904.5 - SF7BW125 to SF10BW125 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 418 418 419 -904.7 - SF7BW125 to SF10BW125 420 420 421 -904.9 - SF7BW125 to SF10BW125 422 422 423 - 905.1-SF7BW125toSF10BW125365 +=== 2.4.4 Signal Strength === 424 424 425 - 905.3-SF7BW125to SF10BW125367 +NB-IoT Network signal Strength. 426 426 369 +**Ex1: 0x1d = 29** 427 427 428 -(% style="color: #037691" %)**Downlink:**371 +(% style="color:blue" %)**0**(%%) -113dBm or less 429 429 430 - 923.3- SF7BW500toSF12BW500373 +(% style="color:blue" %)**1**(%%) -111dBm 431 431 432 - 923.9- SF7BW500toSF12BW500375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 433 433 434 - 924.5- SF7BW500toSF12BW500377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 435 435 436 -9 25.1-SF7BW500toSF12BW500379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 437 437 438 -925.7 - SF7BW500 to SF12BW500 439 439 440 -926.3 - SF7BW500 to SF12BW500 441 441 442 - 926.9-SF7BW500toSF12BW500383 +=== 2.4.5 Soil Moisture === 443 443 444 -927.5 - SF7BW500 to SF12BW500 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 445 445 446 -923.3 - SF12BW500(RX2 downlink only) 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 447 447 393 +((( 394 + 395 +))) 448 448 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 449 449 450 -=== 2.7.3 CN470-510 (CN470) === 451 451 452 -Used in China, Default use CHE=1 453 453 454 - (% style="color:#037691"%)**Uplink:**403 +=== 2.4.6 Soil Temperature === 455 455 456 -486.3 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 457 457 458 -486.5 - SF7BW125 to SF12BW125 409 +((( 410 +**Example**: 411 +))) 459 459 460 -486.7 - SF7BW125 to SF12BW125 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 461 461 462 -486.9 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 463 463 464 -487.1 - SF7BW125 to SF12BW125 465 465 466 -487.3 - SF7BW125 to SF12BW125 467 467 468 -4 87.5-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 469 469 470 -487.7 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 471 471 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 472 472 473 -(% style="color:#037691" %)**Downlink:** 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 474 474 475 -506.7 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 476 476 477 -506.9 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 478 478 479 - 507.1- SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 480 480 481 - 507.3-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 482 482 483 - 507.5- SF7BW125 toSF12BW125449 +The command is: 484 484 485 - 507.7-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 486 486 487 -507.9 - SF7BW125 to SF12BW125 488 488 489 - 508.1-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 490 490 491 -505.3 - SF12BW125 (RX2 downlink only) 492 492 457 +Example: 493 493 459 +0x(00): Normal uplink packet. 494 494 495 - === 2.7.4 AU915-928(AU915)===461 +0x(01): Interrupt Uplink Packet. 496 496 497 -Default use CHE=2 498 498 499 -(% style="color:#037691" %)**Uplink:** 500 500 501 - 916.8- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 502 502 503 - 917.0-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 504 504 505 -917.2 - SF7BW125 to SF12BW125 506 506 507 - 917.4- SF7BW125 toSF12BW125470 +The 5V output time can be controlled by AT Command. 508 508 509 - 917.6- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 510 510 511 - 917.8-SF7BW125 toSF12BW125474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 512 512 513 -918.0 - SF7BW125 to SF12BW125 514 514 515 -918.2 - SF7BW125 to SF12BW125 516 516 478 +== 2.5 Downlink Payload == 517 517 518 - (% style="color:#037691"%)**Downlink:**480 +By default, NSE01 prints the downlink payload to console port. 519 519 520 - 923.3- SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 521 521 522 -923.9 - SF7BW500 to SF12BW500 523 523 524 -924.5 - SF7BW500 to SF12BW500 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 525 525 526 -925.1 - SF7BW500 to SF12BW500 489 +((( 490 + 491 +))) 527 527 528 -925.7 - SF7BW500 to SF12BW500 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 529 529 530 -926.3 - SF7BW500 to SF12BW500 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 531 531 532 -926.9 - SF7BW500 to SF12BW500 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 533 533 534 -927.5 - SF7BW500 to SF12BW500 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 535 535 536 -923.3 - SF12BW500(RX2 downlink only) 509 +((( 510 + 511 +))) 537 537 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 538 538 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 539 539 540 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 541 541 542 -(% style="color: #037691" %)**Default Uplink channel:**522 +* (% style="color:blue" %)**INTMOD** 543 543 544 - 923.2-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 545 545 546 -923.4 - SF7BW125 to SF10BW125 547 547 548 548 549 - (% style="color:#037691"%)**AdditionalUplink Channel**:528 +== 2.6 LED Indicator == 550 550 551 -(OTAA mode, channel added by JoinAccept message) 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 552 552 553 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 554 554 555 -922.2 - SF7BW125 to SF10BW125 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 556 556 557 -922.4 - SF7BW125 to SF10BW125 558 558 559 -922.6 - SF7BW125 to SF10BW125 560 560 561 -922.8 - SF7BW125 to SF10BW125 562 562 563 - 923.0 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 564 564 565 - 922.0- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 566 566 547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 567 567 568 - (% style="color:#037691" %)**AS923 ~~ AS925for Brunei, Cambodia, HongKong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:549 +[[image:1657259653666-883.png]] 569 569 570 -923.6 - SF7BW125 to SF10BW125 571 571 572 -923.8 - SF7BW125 to SF10BW125 552 +((( 553 + 573 573 574 -924.0 - SF7BW125 to SF10BW125 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 575 575 576 -924.2 - SF7BW125 to SF10BW125 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 577 577 578 -9 24.4-SF7BW125 to SF10BW125564 +[[image:1654506665940-119.png]] 579 579 580 -924.6 - SF7BW125 to SF10BW125 566 +((( 567 + 568 +))) 581 581 582 582 583 - (% style="color:#037691"%)**Downlink:**571 +== 2.8 Firmware Change Log == 584 584 585 -Uplink channels 1-8 (RX1) 586 586 587 - 923.2-SF10BW125(RX2)574 +Download URL & Firmware Change log 588 588 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 589 589 590 590 591 - ===2.7.6KR920-923 (KR920)===579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 592 592 593 -Default channel: 594 594 595 -922.1 - SF7BW125 to SF12BW125 596 596 597 - 922.3- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 598 598 599 - 922.5 - SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 600 600 601 601 602 - (%style="color:#037691"%)**Uplink:(OTAAmode,channel addedbyJoinAccept message)**588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 603 603 604 -922.1 - SF7BW125 to SF12BW125 605 605 606 - 922.3-SF7BW125toSF12BW125591 +The battery is designed to last for several years depends on the actually use environment and update interval. 607 607 608 -922.5 - SF7BW125 to SF12BW125 609 609 610 - 922.7-SF7BW125toSF12BW125594 +The battery related documents as below: 611 611 612 -922.9 - SF7BW125 to SF12BW125 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 613 613 614 -923.1 - SF7BW125 to SF12BW125 615 - 616 -923.3 - SF7BW125 to SF12BW125 617 - 618 - 619 -(% style="color:#037691" %)**Downlink:** 620 - 621 -Uplink channels 1-7(RX1) 622 - 623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 - 625 - 626 - 627 -=== 2.7.7 IN865-867 (IN865) === 628 - 629 -(% style="color:#037691" %)** Uplink:** 630 - 631 -865.0625 - SF7BW125 to SF12BW125 632 - 633 -865.4025 - SF7BW125 to SF12BW125 634 - 635 -865.9850 - SF7BW125 to SF12BW125 636 - 637 - 638 -(% style="color:#037691" %) **Downlink:** 639 - 640 -Uplink channels 1-3 (RX1) 641 - 642 -866.550 - SF10BW125 (RX2) 643 - 644 - 645 - 646 - 647 -== 2.8 LED Indicator == 648 - 649 -The LSE01 has an internal LED which is to show the status of different state. 650 - 651 -* Blink once when device power on. 652 -* Solid ON for 5 seconds once device successful Join the network. 653 -* Blink once when device transmit a packet. 654 - 655 - 656 - 657 -== 2.9 Installation in Soil == 658 - 659 -**Measurement the soil surface** 660 - 661 - 662 -[[image:1654506634463-199.png]] 663 - 664 664 ((( 665 -((( 666 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 667 667 ))) 668 -))) 669 669 670 670 671 -[[image:1654506665940-119.png]] 672 672 673 -((( 674 -Dig a hole with diameter > 20CM. 675 -))) 606 +=== 2.9.2 Power consumption Analyze === 676 676 677 677 ((( 678 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 679 679 ))) 680 680 681 681 682 -== 2.10 Firmware Change Log == 683 - 684 684 ((( 685 - **Firmware downloadlink:**614 +Instruction to use as below: 686 686 ))) 687 687 688 688 ((( 689 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 690 690 ))) 691 691 692 -((( 693 - 694 -))) 695 695 696 696 ((( 697 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 698 ))) 699 699 700 -((( 701 - 626 +* ((( 627 +Product Model 702 702 ))) 703 - 704 -((( 705 -**V1.0.** 629 +* ((( 630 +Uplink Interval 706 706 ))) 632 +* ((( 633 +Working Mode 634 +))) 707 707 708 708 ((( 709 - Release637 +And the Life expectation in difference case will be shown on the right. 710 710 ))) 711 711 640 +[[image:image-20220708141352-7.jpeg]] 712 712 713 -== 2.11 Battery Analysis == 714 714 715 -=== 2.11.1 Battery Type === 716 716 717 -((( 718 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 719 -))) 644 +=== 2.9.3 Battery Note === 720 720 721 721 ((( 722 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 723 723 ))) 724 724 725 -((( 726 -((( 727 -The battery-related documents are as below: 728 -))) 729 -))) 730 730 731 -* ((( 732 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 733 -))) 734 -* ((( 735 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 736 -))) 737 -* ((( 738 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 739 -))) 740 740 741 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 742 742 743 - 744 - 745 -=== 2.11.2 Battery Note === 746 - 747 747 ((( 748 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 749 749 ))) 750 750 751 751 752 752 753 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 754 754 755 755 ((( 756 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 757 757 ))) 758 758 759 759 ((( 760 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 761 761 ))) 762 762 763 -((( 764 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 765 -))) 670 +[[image:1657261278785-153.png]] 766 766 767 767 768 768 769 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 770 770 771 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 772 772 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 773 773 774 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 775 775 776 - [[image:1654501986557-872.png||height="391"width="800"]]681 +AT+<CMD>? : Help on <CMD> 777 777 683 +AT+<CMD> : Run <CMD> 778 778 779 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 780 780 687 +AT+<CMD>=? : Get the value 781 781 782 -[[image:1654502005655-729.png||height="503" width="801"]] 783 783 784 - 785 - 786 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 787 - 788 - 789 - [[image:1654502050864-459.png||height="564" width="806"]] 790 - 791 - 792 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 793 - 794 - 795 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 796 - 797 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 798 - 799 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 800 - 801 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 802 - 803 - 804 804 (% style="color:#037691" %)**General Commands**(%%) 805 805 806 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 807 807 808 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 809 809 810 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 813 813 700 +AT+CFG : Print all configurations 814 814 815 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 834 834 835 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 840 840 841 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 846 846 847 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 848 848 733 +AT+CLIENT : Get or Set MQTT client 849 849 850 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 859 859 860 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 869 869 870 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 871 871 872 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 873 873 874 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 877 - 878 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 879 - 880 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 881 - 882 - 883 -(% style="color:#037691" %)**Information** 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 886 - 887 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 888 - 889 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 890 - 891 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 892 - 893 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 894 - 895 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 896 - 897 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 898 - 899 - 900 -= 4. FAQ = 901 - 902 -== 4.1 How to change the LoRa Frequency Bands/Region? == 903 - 904 904 ((( 905 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 906 -When downloading the images, choose the required image file for download. 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 907 907 ))) 908 908 909 909 ((( 910 - 762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 911 911 ))) 912 912 913 913 ((( 914 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 915 915 ))) 916 916 917 -((( 918 - 919 -))) 920 920 921 -((( 922 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 -))) 924 924 925 -((( 926 - 927 -))) 771 += 6. Trouble Shooting = 928 928 929 -((( 930 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 931 -))) 773 +== 6.1 Connection problem when uploading firmware == 932 932 933 -[[image:image-20220606154726-3.png]] 934 934 935 - 936 -When you use the TTN network, the US915 frequency bands use are: 937 - 938 -* 903.9 - SF7BW125 to SF10BW125 939 -* 904.1 - SF7BW125 to SF10BW125 940 -* 904.3 - SF7BW125 to SF10BW125 941 -* 904.5 - SF7BW125 to SF10BW125 942 -* 904.7 - SF7BW125 to SF10BW125 943 -* 904.9 - SF7BW125 to SF10BW125 944 -* 905.1 - SF7BW125 to SF10BW125 945 -* 905.3 - SF7BW125 to SF10BW125 946 -* 904.6 - SF8BW500 947 - 776 +(% class="wikigeneratedid" %) 948 948 ((( 949 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 950 950 ))) 951 951 952 -(% class="box infomessage" %) 953 -((( 954 -**AT+CHE=2** 955 -))) 956 956 957 -(% class="box infomessage" %) 958 -((( 959 -**ATZ** 960 -))) 961 961 962 -((( 963 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 964 -))) 783 +== 6.2 AT Command input doesn't work == 965 965 966 966 ((( 967 - 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 968 968 ))) 969 969 970 -((( 971 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 972 -))) 973 973 974 -[[image:image-20220606154825-4.png]] 975 975 791 += 7. Order Info = 976 976 977 977 978 - = 5. TroubleShooting=794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 979 979 980 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 981 981 982 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 983 - 984 - 985 -== 5.2 AT Command input doesn’t work == 986 - 987 -((( 988 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 989 -))) 990 - 991 - 992 -== 5.3 Device rejoin in at the second uplink packet == 993 - 994 -(% style="color:#4f81bd" %)**Issue describe as below:** 995 - 996 -[[image:1654500909990-784.png]] 997 - 998 - 999 -(% style="color:#4f81bd" %)**Cause for this issue:** 1000 - 1001 -((( 1002 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1003 -))) 1004 - 1005 - 1006 -(% style="color:#4f81bd" %)**Solution: ** 1007 - 1008 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1009 - 1010 -[[image:1654500929571-736.png||height="458" width="832"]] 1011 - 1012 - 1013 -= 6. Order Info = 1014 - 1015 - 1016 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1017 - 1018 - 1019 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1020 - 1021 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1022 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1023 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1024 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1025 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1026 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1027 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1028 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1029 - 1030 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1031 - 1032 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1033 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1034 - 1035 1035 (% class="wikigeneratedid" %) 1036 1036 ((( 1037 1037 1038 1038 ))) 1039 1039 1040 -= 7. Packing Info =802 += 8. Packing Info = 1041 1041 1042 1042 ((( 1043 1043 1044 1044 1045 1045 (% style="color:#037691" %)**Package Includes**: 1046 -))) 1047 1047 1048 -* ((( 1049 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 1050 1050 ))) 1051 1051 1052 1052 ((( ... ... @@ -1053,30 +1053,20 @@ 1053 1053 1054 1054 1055 1055 (% style="color:#037691" %)**Dimension and weight**: 1056 -))) 1057 1057 1058 -* ((( 1059 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1060 1060 ))) 1061 -* ((( 1062 -Device Weight: g 1063 -))) 1064 -* ((( 1065 -Package Size / pcs : cm 1066 -))) 1067 -* ((( 1068 -Weight / pcs : g 1069 1069 824 +((( 825 + 1070 1070 827 + 1071 1071 1072 1072 ))) 1073 1073 1074 -= 8. Support =831 += 9. Support = 1075 1075 1076 1076 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1077 1077 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 - 1079 - 1080 -~)~)~) 1081 -~)~)~) 1082 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content