Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.11
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version
To version 64.1
edited by Xiaoling
on 2022/07/08 14:21
Change comment: Uploaded new attachment "1657261278785-153.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,61 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
63 63  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
66 66  
67 67  
68 68  
69 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
70 70  
71 71  * Smart Agriculture
72 72  
... ... @@ -73,700 +73,579 @@
73 73  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 74  ​
75 75  
76 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
80 80  
81 81  
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
84 84  
85 -== 2.1 How it works ==
103 +== 2.1  How it works ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 91  (((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
93 93  )))
94 94  
95 95  
96 -
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 -
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100 -
101 -
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
112 +The diagram below shows the working flow in default firmware of NSE01:
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
115 +[[image:image-20220708101605-2.png]]
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
117 +(((
118 +
170 170  )))
171 171  
172 172  
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
123 +== 2.2 ​ Configure the NSE01 ==
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
126 +=== 2.2.1 Test Requirement ===
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
129 +To use NSE01 in your city, make sure meet below requirements:
190 190  
191 -(Optional)
192 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
193 193  
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
140 +[[image:1657249419225-449.png]]
209 209  
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
144 +=== 2.2.2 Insert SIM card ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
146 +Insert the NB-IoT Card get from your provider.
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
148 +User need to take out the NB-IoT module and insert the SIM card like below:
221 221  
222 -(((
223 -
224 -)))
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
151 +[[image:1657249468462-536.png]]
229 229  
230 230  
231 231  
232 -=== 2.3.5 Soil Temperature ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
233 233  
234 234  (((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 -
238 238  (((
239 -**Example**:
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
240 240  )))
241 -
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 244  )))
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
249 249  
164 +**Connection:**
250 250  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
173 +In the PC, use below serial tool settings:
265 265  
266 -(((
267 -
268 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
269 269  
270 270  (((
271 -
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
185 +[[image:image-20220708110657-3.png]]
275 275  
276 -Firmware version at least v2.1 supports changing mode.
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
277 277  
278 -For example, bytes[10]=90
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
281 281  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
282 282  
283 -**Downlink Command:**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
284 284  
285 -If payload = 0x0A00, workmode=0
286 286  
287 -If** **payload =** **0x0A01, workmode=1
196 +**Use below commands:**
288 288  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
289 289  
202 +For parameter description, please refer to AT command set
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
204 +[[image:1657249793983-486.png]]
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
294 294  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
295 295  
296 -[[image:1654505570700-128.png]]
209 +[[image:1657249831934-534.png]]
297 297  
298 -The payload decoder function for TTN is here:
299 299  
300 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
301 301  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
302 302  
215 +This feature is supported since firmware version v1.0.1
303 303  
304 -== 2.4 Uplink Interval ==
305 305  
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
307 307  
222 +[[image:1657249864775-321.png]]
308 308  
309 309  
310 -== 2.5 Downlink Payload ==
225 +[[image:1657249930215-289.png]]
311 311  
312 -By default, LSE50 prints the downlink payload to console port.
313 313  
314 -[[image:image-20220606165544-8.png]]
315 315  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
316 316  
317 -**Examples:**
231 +This feature is supported since firmware version v110
318 318  
319 319  
320 -* **Set TDC**
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
321 321  
322 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
242 +[[image:1657249978444-674.png]]
323 323  
324 -Payload:    01 00 00 1E    TDC=30S
325 325  
326 -Payload:    01 00 00 3C    TDC=60S
245 +[[image:1657249990869-686.png]]
327 327  
328 328  
329 -* **Reset**
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
330 330  
331 -If payload = 0x04FF, it will reset the LSE01
332 332  
333 333  
334 -* **CFM**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
335 335  
336 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
256 +This feature is supported since firmware version v110
337 337  
338 338  
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
339 339  
340 -== 2.6 ​Show Data in DataCake IoT Server ==
262 +[[image:1657250217799-140.png]]
341 341  
342 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
343 343  
265 +[[image:1657250255956-604.png]]
344 344  
345 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
346 346  
347 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
348 348  
269 +=== 2.2.8 Change Update Interval ===
349 349  
350 -[[image:1654505857935-743.png]]
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
351 351  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
352 352  
353 -[[image:1654505874829-548.png]]
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
354 354  
355 -Step 3: Create an account or log in Datacake.
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
356 356  
357 -Step 4: Search the LSE01 and add DevEUI.
358 358  
359 359  
360 -[[image:1654505905236-553.png]]
285 +== 2.3  Uplink Payload ==
361 361  
287 +In this mode, uplink payload includes in total 18 bytes
362 362  
363 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
364 364  
365 -[[image:1654505925508-181.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
366 366  
367 367  
298 +[[image:image-20220708111918-4.png]]
368 368  
369 -== 2.7 Frequency Plans ==
370 370  
371 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
301 +The payload is ASCII string, representative same HEX:
372 372  
303 +0x72403155615900640c7817075e0a8c02f900 where:
373 373  
374 -=== 2.7.1 EU863-870 (EU868) ===
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
375 375  
376 -(% style="color:#037691" %)** Uplink:**
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
377 377  
378 -868.1 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
379 379  
380 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
381 381  
382 -868.5 - SF7BW125 to SF12BW125
318 +=== 2.4.1  Device ID ===
383 383  
384 -867.1 - SF7BW125 to SF12BW125
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
385 385  
386 -867.3 - SF7BW125 to SF12BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
387 387  
388 -867.5 - SF7BW125 to SF12BW125
324 +**Example:**
389 389  
390 -867.7 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
391 391  
392 -867.9 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
393 393  
394 -868.8 - FSK
395 395  
396 396  
397 -(% style="color:#037691" %)** Downlink:**
332 +=== 2.4.2  Version Info ===
398 398  
399 -Uplink channels 1-9 (RX1)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
400 400  
401 -869.525 - SF9BW125 (RX2 downlink only)
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
402 402  
403 403  
404 404  
405 -=== 2.7.2 US902-928(US915) ===
340 +=== 2.4. Battery Info ===
406 406  
407 -Used in USA, Canada and South America. Default use CHE=2
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
408 408  
409 -(% style="color:#037691" %)**Uplink:**
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
410 410  
411 -903.9 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
412 412  
413 -904.1 - SF7BW125 to SF10BW125
414 414  
415 -904.3 - SF7BW125 to SF10BW125
416 416  
417 -904.5 - SF7BW125 to SF10BW125
356 +=== 2.4. Signal Strength ===
418 418  
419 -904.7 - SF7BW125 to SF10BW125
358 +NB-IoT Network signal Strength.
420 420  
421 -904.9 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
422 422  
423 -905.1 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
424 424  
425 -905.3 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
426 426  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
427 427  
428 -(% style="color:#037691" %)**Downlink:**
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
429 429  
430 -923.3 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
431 431  
432 -923.9 - SF7BW500 to SF12BW500
433 433  
434 -924.5 - SF7BW500 to SF12BW500
435 435  
436 -925.1 - SF7BW500 to SF12BW500
374 +=== 2.4.5  Soil Moisture ===
437 437  
438 -925.7 - SF7BW500 to SF12BW500
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
439 439  
440 -926.3 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
441 441  
442 -926.9 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
443 443  
444 -927.5 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
445 445  
446 -923.3 - SF12BW500(RX2 downlink only)
447 447  
448 448  
394 +=== 2.4.6  Soil Temperature ===
449 449  
450 -=== 2.7.3 CN470-510 (CN470) ===
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
451 451  
452 -Used in China, Default use CHE=1
400 +(((
401 +**Example**:
402 +)))
453 453  
454 -(% style="color:#037691" %)**Uplink:**
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
455 455  
456 -486.3 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
457 457  
458 -486.5 - SF7BW125 to SF12BW125
459 459  
460 -486.7 - SF7BW125 to SF12BW125
461 461  
462 -486.9 - SF7BW125 to SF12BW125
414 +=== 2.4. Soil Conductivity (EC) ===
463 463  
464 -487.1 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
465 465  
466 -487.3 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
467 467  
468 -487.5 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
469 469  
470 -487.7 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
471 471  
432 +(((
433 +
434 +)))
472 472  
473 -(% style="color:#037691" %)**Downlink:**
436 +=== 2.4.8  Digital Interrupt ===
474 474  
475 -506.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
476 476  
477 -506.9 - SF7BW125 to SF12BW125
440 +The command is:
478 478  
479 -507.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
480 480  
481 -507.3 - SF7BW125 to SF12BW125
482 482  
483 -507.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
484 484  
485 -507.7 - SF7BW125 to SF12BW125
486 486  
487 -507.9 - SF7BW125 to SF12BW125
448 +Example:
488 488  
489 -508.1 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
490 490  
491 -505.3 - SF12BW125 (RX2 downlink only)
452 +0x(01): Interrupt Uplink Packet.
492 492  
493 493  
494 494  
495 -=== 2.7.4 AU915-928(AU915) ===
456 +=== 2.4.9  ​+5V Output ===
496 496  
497 -Default use CHE=2
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
498 498  
499 -(% style="color:#037691" %)**Uplink:**
500 500  
501 -916.8 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
502 502  
503 -917.0 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
504 504  
505 -917.2 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
506 506  
507 -917.4 - SF7BW125 to SF12BW125
508 508  
509 -917.6 - SF7BW125 to SF12BW125
510 510  
511 -917.8 - SF7BW125 to SF12BW125
469 +== 2.5  Downlink Payload ==
512 512  
513 -918.0 - SF7BW125 to SF12BW125
471 +By default, NSE01 prints the downlink payload to console port.
514 514  
515 -918.2 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
516 516  
517 517  
518 -(% style="color:#037691" %)**Downlink:**
519 519  
520 -923.3 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
521 521  
522 -923.9 - SF7BW500 to SF12BW500
481 +(((
482 +
483 +)))
523 523  
524 -924.5 - SF7BW500 to SF12BW500
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
525 525  
526 -925.1 - SF7BW500 to SF12BW500
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
527 527  
528 -925.7 - SF7BW500 to SF12BW500
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
529 529  
530 -926.3 - SF7BW500 to SF12BW500
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
531 531  
532 -926.9 - SF7BW500 to SF12BW500
501 +(((
502 +
503 +)))
533 533  
534 -927.5 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
535 535  
536 -923.3 - SF12BW500(RX2 downlink only)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
537 537  
538 538  
514 +* (% style="color:blue" %)**INTMOD**
539 539  
540 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
541 541  
542 -(% style="color:#037691" %)**Default Uplink channel:**
543 543  
544 -923.2 - SF7BW125 to SF10BW125
545 545  
546 -923.4 - SF7BW125 to SF10BW125
520 +== 2. ​LED Indicator ==
547 547  
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
548 548  
549 -(% style="color:#037691" %)**Additional Uplink Channel**:
550 550  
551 -(OTAA mode, channel added by JoinAccept message)
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
552 552  
553 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
554 554  
555 -922.2 - SF7BW125 to SF10BW125
556 556  
557 -922.4 - SF7BW125 to SF10BW125
558 558  
559 -922.6 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
560 560  
561 -922.8 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
562 562  
563 -923.0 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
564 564  
565 -922.0 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
566 566  
567 567  
568 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
544 +(((
545 +
569 569  
570 -923.6 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
571 571  
572 -923.8 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
573 573  
574 -924.0 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
575 575  
576 -924.2 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
577 577  
578 -924.4 - SF7BW125 to SF10BW125
579 579  
580 -924.6 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
581 581  
582 582  
583 -(% style="color:#037691" %)** Downlink:**
566 +Download URL & Firmware Change log
584 584  
585 -Uplink channels 1-8 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
586 586  
587 -923.2 - SF10BW125 (RX2)
588 588  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
589 589  
590 590  
591 -=== 2.7.6 KR920-923 (KR920) ===
592 592  
593 -Default channel:
575 +== 2.9  ​Battery Analysis ==
594 594  
595 -922.1 - SF7BW125 to SF12BW125
577 +=== 2.9.1  Battery Type ===
596 596  
597 -922.3 - SF7BW125 to SF12BW125
598 598  
599 -922.5 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
600 600  
601 601  
602 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
603 603  
604 -922.1 - SF7BW125 to SF12BW125
605 605  
606 -922.3 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
607 607  
608 -922.5 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 609  
610 -922.7 - SF7BW125 to SF12BW125
611 -
612 -922.9 - SF7BW125 to SF12BW125
613 -
614 -923.1 - SF7BW125 to SF12BW125
615 -
616 -923.3 - SF7BW125 to SF12BW125
617 -
618 -
619 -(% style="color:#037691" %)**Downlink:**
620 -
621 -Uplink channels 1-7(RX1)
622 -
623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 -
625 -
626 -
627 -=== 2.7.7 IN865-867 (IN865) ===
628 -
629 -(% style="color:#037691" %)** Uplink:**
630 -
631 -865.0625 - SF7BW125 to SF12BW125
632 -
633 -865.4025 - SF7BW125 to SF12BW125
634 -
635 -865.9850 - SF7BW125 to SF12BW125
636 -
637 -
638 -(% style="color:#037691" %) **Downlink:**
639 -
640 -Uplink channels 1-3 (RX1)
641 -
642 -866.550 - SF10BW125 (RX2)
643 -
644 -
645 -
646 -
647 -== 2.8 LED Indicator ==
648 -
649 -The LSE01 has an internal LED which is to show the status of different state.
650 -
651 -* Blink once when device power on.
652 -* Solid ON for 5 seconds once device successful Join the network.
653 -* Blink once when device transmit a packet.
654 -
655 -
656 -
657 -== 2.9 Installation in Soil ==
658 -
659 -**Measurement the soil surface**
660 -
661 -
662 -[[image:1654506634463-199.png]] ​
663 -
664 664  (((
665 -(((
666 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
667 667  )))
668 -)))
669 669  
670 670  
671 -[[image:1654506665940-119.png]]
672 672  
673 -(((
674 -Dig a hole with diameter > 20CM.
675 -)))
598 +=== 2.9.2  Power consumption Analyze ===
676 676  
677 677  (((
678 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
679 679  )))
680 680  
681 681  
682 -== 2.10 ​Firmware Change Log ==
683 -
684 684  (((
685 -**Firmware download link:**
606 +Instruction to use as below:
686 686  )))
687 687  
688 688  (((
689 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
690 690  )))
691 691  
692 -(((
693 -
694 -)))
695 695  
696 696  (((
697 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
698 698  )))
699 699  
700 -(((
701 -
618 +* (((
619 +Product Model
702 702  )))
703 -
704 -(((
705 -**V1.0.**
621 +* (((
622 +Uplink Interval
706 706  )))
624 +* (((
625 +Working Mode
626 +)))
707 707  
708 708  (((
709 -Release
629 +And the Life expectation in difference case will be shown on the right.
710 710  )))
711 711  
632 +[[image:image-20220708141352-7.jpeg]]
712 712  
713 -== 2.11 ​Battery Analysis ==
714 714  
715 -=== 2.11.1 ​Battery Type ===
716 716  
717 -(((
718 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
719 -)))
636 +=== 2.9.3  ​Battery Note ===
720 720  
721 721  (((
722 -The battery is designed to last for more than 5 years for the LSN50.
639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
723 723  )))
724 724  
725 -(((
726 -(((
727 -The battery-related documents are as below:
728 -)))
729 -)))
730 730  
731 -* (((
732 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
733 -)))
734 -* (((
735 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
736 -)))
737 -* (((
738 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
739 -)))
740 740  
741 - [[image:image-20220606171726-9.png]]
644 +=== 2.9.4  Replace the battery ===
742 742  
743 -
744 -
745 -=== 2.11.2 ​Battery Note ===
746 -
747 747  (((
748 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
749 749  )))
750 750  
751 751  
752 752  
753 -=== 2.11.3 Replace the battery ===
652 += 3. ​ Access NB-IoT Module =
754 754  
755 755  (((
756 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +Users can directly access the AT command set of the NB-IoT module.
757 757  )))
758 758  
759 759  (((
760 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]
761 761  )))
762 762  
763 -(((
764 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
765 -)))
662 +[[image:1657261119050-993.png]]
766 766  
664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]]
767 767  
768 768  
769 -= 3. ​Using the AT Commands =
770 770  
771 771  == 3.1 Access AT Commands ==
772 772  
... ... @@ -789,7 +789,7 @@
789 789   [[image:1654502050864-459.png||height="564" width="806"]]
790 790  
791 791  
792 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
793 793  
794 794  
795 795  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -947,19 +947,14 @@
947 947  
948 948  (((
949 949  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
950 -)))
951 951  
952 -(% class="box infomessage" %)
953 -(((
954 -**AT+CHE=2**
848 +* (% style="color:#037691" %)**AT+CHE=2**
849 +* (% style="color:#037691" %)**ATZ**
955 955  )))
956 956  
957 -(% class="box infomessage" %)
958 958  (((
959 -**ATZ**
960 -)))
853 +
961 961  
962 -(((
963 963  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
964 964  )))
965 965  
... ... @@ -974,18 +974,22 @@
974 974  [[image:image-20220606154825-4.png]]
975 975  
976 976  
869 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
977 977  
871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
872 +
873 +
978 978  = 5. Trouble Shooting =
979 979  
980 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
876 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
981 981  
982 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
983 983  
984 984  
985 -== 5.2 AT Command input doesnt work ==
881 +== 5.2 AT Command input doesn't work ==
986 986  
987 987  (((
988 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
989 989  )))
990 990  
991 991  
... ... @@ -1067,7 +1067,6 @@
1067 1067  * (((
1068 1068  Weight / pcs : g
1069 1069  
1070 -
1071 1071  
1072 1072  )))
1073 1073  
... ... @@ -1075,8 +1075,3 @@
1075 1075  
1076 1076  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1077 1077  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1078 -
1079 -
1080 -~)~)~)
1081 -~)~)~)
1082 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content