Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.10
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version
To version 65.5
edited by Xiaoling
on 2022/07/08 15:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1033 +12,793 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
23 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
28 +
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 +
38 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +== 1.3  Specification ==
66 66  
67 67  
68 +(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
69 -== ​1.4 Applications ==
70 +* Supply Voltage: 2.1v ~~ 3.6v
71 +* Operating Temperature: -40 ~~ 85°C
70 70  
71 -* Smart Agriculture
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
74 +(% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 -== 1.5 Firmware Change log ==
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
84 +Probe(% style="color:#037691" %)** Specification:**
80 80  
86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
81 81  
88 +[[image:image-20220708101224-1.png]]
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
84 84  
85 -== 2.1 How it works ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
92 +== ​1.4  Applications ==
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 +* Smart Agriculture
94 94  
96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
97 +​
95 95  
99 +== 1.5  Pin Definitions ==
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 +[[image:1657246476176-652.png]]
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
106 += 2.  Use NSE01 to communicate with IoT Server =
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 +== 2.1  How it works ==
106 106  
107 107  
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
116 +(((
117 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
120 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
123 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
128 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
131 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
134 +To use NSE01 in your city, make sure meet below requirements:
221 221  
222 -(((
223 -
224 -)))
136 +* Your local operator has already distributed a NB-IoT Network there.
137 +* The local NB-IoT network used the band that NSE01 supports.
138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
145 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 235  
236 -**Example**:
149 +=== 2.2.2 Insert SIM card ===
237 237  
238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
151 +Insert the NB-IoT Card get from your provider.
239 239  
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
153 +User need to take out the NB-IoT module and insert the SIM card like below:
241 241  
242 242  
156 +[[image:1657249468462-536.png]]
243 243  
244 -=== 2.3.6 Soil Conductivity (EC) ===
245 245  
246 -(((
247 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
248 -)))
249 249  
250 -(((
251 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
252 -)))
160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
253 253  
254 254  (((
255 -Generally, the EC value of irrigation water is less than 800uS / cm.
256 -)))
257 -
258 258  (((
259 -
164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
260 260  )))
261 -
262 -(((
263 -
264 264  )))
265 265  
266 -=== 2.3.7 MOD ===
267 267  
268 -Firmware version at least v2.1 supports changing mode.
169 +**Connection:**
269 269  
270 -For example, bytes[10]=90
171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 271  
272 -mod=(bytes[10]>>7)&0x01=1.
173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 273  
175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
274 274  
275 -**Downlink Command:**
276 276  
277 -If payload = 0x0A00, workmode=0
178 +In the PC, use below serial tool settings:
278 278  
279 -If** **payload =** **0x0A01, workmode=1
180 +* Baud:  (% style="color:green" %)**9600**
181 +* Data bits:** (% style="color:green" %)8(%%)**
182 +* Stop bits: (% style="color:green" %)**1**
183 +* Parity:  (% style="color:green" %)**None**
184 +* Flow Control: (% style="color:green" %)**None**
280 280  
186 +(((
187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
188 +)))
281 281  
190 +[[image:image-20220708110657-3.png]]
282 282  
283 -=== 2.3.8 ​Decode payload in The Things Network ===
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
284 284  
285 -While using TTN network, you can add the payload format to decode the payload.
286 286  
287 287  
288 -[[image:1654505570700-128.png]]
196 +=== 2.2.4 Use CoAP protocol to uplink data ===
289 289  
290 -The payload decoder function for TTN is here:
198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
291 291  
292 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
293 293  
201 +**Use below commands:**
294 294  
203 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
295 295  
296 -== 2.4 Uplink Interval ==
207 +For parameter description, please refer to AT command set
297 297  
298 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
209 +[[image:1657249793983-486.png]]
299 299  
300 300  
212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
301 301  
302 -== 2.5 Downlink Payload ==
214 +[[image:1657249831934-534.png]]
303 303  
304 -By default, LSE50 prints the downlink payload to console port.
305 305  
306 -[[image:image-20220606165544-8.png]]
307 307  
218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
308 308  
309 -**Examples:**
220 +This feature is supported since firmware version v1.0.1
310 310  
311 311  
312 -* **Set TDC**
223 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
313 313  
314 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
227 +[[image:1657249864775-321.png]]
315 315  
316 -Payload:    01 00 00 1E    TDC=30S
317 317  
318 -Payload:    01 00 00 3C    TDC=60S
230 +[[image:1657249930215-289.png]]
319 319  
320 320  
321 -* **Reset**
322 322  
323 -If payload = 0x04FF, it will reset the LSE01
234 +=== 2.2.6 Use MQTT protocol to uplink data ===
324 324  
236 +This feature is supported since firmware version v110
325 325  
326 -* **CFM**
327 327  
328 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
329 329  
247 +[[image:1657249978444-674.png]]
330 330  
331 331  
332 -== 2.6 ​Show Data in DataCake IoT Server ==
250 +[[image:1657249990869-686.png]]
333 333  
334 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335 335  
253 +(((
254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
255 +)))
336 336  
337 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
338 338  
339 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
340 340  
259 +=== 2.2.7 Use TCP protocol to uplink data ===
341 341  
342 -[[image:1654505857935-743.png]]
261 +This feature is supported since firmware version v110
343 343  
344 344  
345 -[[image:1654505874829-548.png]]
264 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
346 346  
347 -Step 3: Create an account or log in Datacake.
267 +[[image:1657250217799-140.png]]
348 348  
349 -Step 4: Search the LSE01 and add DevEUI.
350 350  
270 +[[image:1657250255956-604.png]]
351 351  
352 -[[image:1654505905236-553.png]]
353 353  
354 354  
355 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
274 +=== 2.2.8 Change Update Interval ===
356 356  
357 -[[image:1654505925508-181.png]]
276 +User can use below command to change the (% style="color:green" %)**uplink interval**.
358 358  
278 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
359 359  
280 +(((
281 +(% style="color:red" %)**NOTE:**
282 +)))
360 360  
361 -== 2.7 Frequency Plans ==
284 +(((
285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
286 +)))
362 362  
363 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
364 364  
365 365  
366 -=== 2.7.1 EU863-870 (EU868) ===
290 +== 2.3  Uplink Payload ==
367 367  
368 -(% style="color:#037691" %)** Uplink:**
292 +In this mode, uplink payload includes in total 18 bytes
369 369  
370 -868.1 - SF7BW125 to SF12BW125
294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 +|=(% style="width: 50px;" %)(((
296 +**Size(bytes)**
297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
373 373  
374 -868.5 - SF7BW125 to SF12BW125
375 375  
376 -867.1 - SF7BW125 to SF12BW125
303 +[[image:image-20220708111918-4.png]]
377 377  
378 -867.3 - SF7BW125 to SF12BW125
379 379  
380 -867.5 - SF7BW125 to SF12BW125
306 +The payload is ASCII string, representative same HEX:
381 381  
382 -867.7 - SF7BW125 to SF12BW125
308 +0x72403155615900640c7817075e0a8c02f900 where:
383 383  
384 -867.9 - SF7BW125 to SF12BW125
310 +* Device ID: 0x 724031556159 = 724031556159
311 +* Version: 0x0064=100=1.0.0
385 385  
386 -868.8 - FSK
313 +* BAT: 0x0c78 = 3192 mV = 3.192V
314 +* Singal: 0x17 = 23
315 +* Soil Moisture: 0x075e= 1886 = 18.86  %
316 +* Soil Temperature:0x0a8c =2700=27 °C
317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 +* Interrupt: 0x00 = 0
387 387  
388 388  
389 -(% style="color:#037691" %)** Downlink:**
390 390  
391 -Uplink channels 1-9 (RX1)
322 +== 2.4  Payload Explanation and Sensor Interface ==
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
394 394  
325 +=== 2.4.1  Device ID ===
395 395  
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
396 396  
397 -=== 2.7.2 US902-928(US915) ===
329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
398 398  
399 -Used in USA, Canada and South America. Default use CHE=2
331 +**Example:**
400 400  
401 -(% style="color:#037691" %)**Uplink:**
333 +AT+DEUI=A84041F15612
402 402  
403 -903.9 - SF7BW125 to SF10BW125
335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
404 404  
405 -904.1 - SF7BW125 to SF10BW125
406 406  
407 -904.3 - SF7BW125 to SF10BW125
408 408  
409 -904.5 - SF7BW125 to SF10BW125
339 +=== 2.4.2  Version Info ===
410 410  
411 -904.7 - SF7BW125 to SF10BW125
341 +Specify the software version: 0x64=100, means firmware version 1.00.
412 412  
413 -904.9 - SF7BW125 to SF10BW125
343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
414 414  
415 -905.1 - SF7BW125 to SF10BW125
416 416  
417 -905.3 - SF7BW125 to SF10BW125
418 418  
347 +=== 2.4.3  Battery Info ===
419 419  
420 -(% style="color:#037691" %)**Downlink:**
349 +(((
350 +Check the battery voltage for LSE01.
351 +)))
421 421  
422 -923.3 - SF7BW500 to SF12BW500
353 +(((
354 +Ex1: 0x0B45 = 2885mV
355 +)))
423 423  
424 -923.9 - SF7BW500 to SF12BW500
357 +(((
358 +Ex2: 0x0B49 = 2889mV
359 +)))
425 425  
426 -924.5 - SF7BW500 to SF12BW500
427 427  
428 -925.1 - SF7BW500 to SF12BW500
429 429  
430 -925.7 - SF7BW500 to SF12BW500
363 +=== 2.4.4  Signal Strength ===
431 431  
432 -926.3 - SF7BW500 to SF12BW500
365 +NB-IoT Network signal Strength.
433 433  
434 -926.9 - SF7BW500 to SF12BW500
367 +**Ex1: 0x1d = 29**
435 435  
436 -927.5 - SF7BW500 to SF12BW500
369 +(% style="color:blue" %)**0**(%%)  -113dBm or less
437 437  
438 -923.3 - SF12BW500(RX2 downlink only)
371 +(% style="color:blue" %)**1**(%%)  -111dBm
439 439  
373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
440 440  
375 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
441 441  
442 -=== 2.7.3 CN470-510 (CN470) ===
377 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
443 443  
444 -Used in China, Default use CHE=1
445 445  
446 -(% style="color:#037691" %)**Uplink:**
447 447  
448 -486.3 - SF7BW125 to SF12BW125
381 +=== 2.4. Soil Moisture ===
449 449  
450 -486.5 - SF7BW125 to SF12BW125
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
451 451  
452 -486.7 - SF7BW125 to SF12BW125
387 +(((
388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 +)))
453 453  
454 -486.9 - SF7BW125 to SF12BW125
391 +(((
392 +
393 +)))
455 455  
456 -487.1 - SF7BW125 to SF12BW125
395 +(((
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 +)))
457 457  
458 -487.3 - SF7BW125 to SF12BW125
459 459  
460 -487.5 - SF7BW125 to SF12BW125
461 461  
462 -487.7 - SF7BW125 to SF12BW125
401 +=== 2.4. Soil Temperature ===
463 463  
403 +(((
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
407 +(((
408 +**Example**:
409 +)))
466 466  
467 -506.7 - SF7BW125 to SF12BW125
411 +(((
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 +)))
468 468  
469 -506.9 - SF7BW125 to SF12BW125
415 +(((
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 +)))
470 470  
471 -507.1 - SF7BW125 to SF12BW125
472 472  
473 -507.3 - SF7BW125 to SF12BW125
474 474  
475 -507.5 - SF7BW125 to SF12BW125
421 +=== 2.4.7  Soil Conductivity (EC) ===
476 476  
477 -507.7 - SF7BW125 to SF12BW125
423 +(((
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 +)))
478 478  
479 -507.9 - SF7BW125 to SF12BW125
427 +(((
428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 +)))
480 480  
481 -508.1 - SF7BW125 to SF12BW125
431 +(((
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
433 +)))
482 482  
483 -505.3 - SF12BW125 (RX2 downlink only)
435 +(((
436 +
437 +)))
484 484  
439 +(((
440 +
441 +)))
485 485  
443 +=== 2.4.8  Digital Interrupt ===
486 486  
487 -=== 2.7.4 AU915-928(AU915) ===
445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
488 488  
489 -Default use CHE=2
447 +The command is:
490 490  
491 -(% style="color:#037691" %)**Uplink:**
449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
492 492  
493 -916.8 - SF7BW125 to SF12BW125
494 494  
495 -917.0 - SF7BW125 to SF12BW125
452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
496 496  
497 -917.2 - SF7BW125 to SF12BW125
498 498  
499 -917.4 - SF7BW125 to SF12BW125
455 +Example:
500 500  
501 -917.6 - SF7BW125 to SF12BW125
457 +0x(00): Normal uplink packet.
502 502  
503 -917.8 - SF7BW125 to SF12BW125
459 +0x(01): Interrupt Uplink Packet.
504 504  
505 -918.0 - SF7BW125 to SF12BW125
506 506  
507 -918.2 - SF7BW125 to SF12BW125
508 508  
463 +=== 2.4.9  ​+5V Output ===
509 509  
510 -(% style="color:#037691" %)**Downlink:**
465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
511 511  
512 -923.3 - SF7BW500 to SF12BW500
513 513  
514 -923.9 - SF7BW500 to SF12BW500
468 +The 5V output time can be controlled by AT Command.
515 515  
516 -924.5 - SF7BW500 to SF12BW500
470 +(% style="color:blue" %)**AT+5VT=1000**
517 517  
518 -925.1 - SF7BW500 to SF12BW500
472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
519 519  
520 -925.7 - SF7BW500 to SF12BW500
521 521  
522 -926.3 - SF7BW500 to SF12BW500
523 523  
524 -926.9 - SF7BW500 to SF12BW500
476 +== 2.5  Downlink Payload ==
525 525  
526 -927.5 - SF7BW500 to SF12BW500
478 +By default, NSE01 prints the downlink payload to console port.
527 527  
528 -923.3 - SF12BW500(RX2 downlink only)
480 +[[image:image-20220708133731-5.png]]
529 529  
530 530  
483 +(((
484 +(% style="color:blue" %)**Examples:**
485 +)))
531 531  
532 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
487 +(((
488 +
489 +)))
533 533  
534 -(% style="color:#037691" %)**Default Uplink channel:**
491 +* (((
492 +(% style="color:blue" %)**Set TDC**
493 +)))
535 535  
536 -923.2 - SF7BW125 to SF10BW125
495 +(((
496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 +)))
537 537  
538 -923.4 - SF7BW125 to SF10BW125
499 +(((
500 +Payload:    01 00 00 1E    TDC=30S
501 +)))
539 539  
503 +(((
504 +Payload:    01 00 00 3C    TDC=60S
505 +)))
540 540  
541 -(% style="color:#037691" %)**Additional Uplink Channel**:
507 +(((
508 +
509 +)))
542 542  
543 -(OTAA mode, channel added by JoinAccept message)
511 +* (((
512 +(% style="color:blue" %)**Reset**
513 +)))
544 544  
545 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
515 +(((
516 +If payload = 0x04FF, it will reset the NSE01
517 +)))
546 546  
547 -922.2 - SF7BW125 to SF10BW125
548 548  
549 -922.4 - SF7BW125 to SF10BW125
520 +* (% style="color:blue" %)**INTMOD**
550 550  
551 -922.6 - SF7BW125 to SF10BW125
522 +Downlink Payload: 06000003, Set AT+INTMOD=3
552 552  
553 -922.8 - SF7BW125 to SF10BW125
554 554  
555 -923.0 - SF7BW125 to SF10BW125
556 556  
557 -922.0 - SF7BW125 to SF10BW125
526 +== 2. ​LED Indicator ==
558 558  
528 +(((
529 +The NSE01 has an internal LED which is to show the status of different state.
559 559  
560 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561 561  
562 -923.6 - SF7BW125 to SF10BW125
532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 +* Then the LED will be on for 1 second means device is boot normally.
534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 +* For each uplink probe, LED will be on for 500ms.
536 +)))
563 563  
564 -923.8 - SF7BW125 to SF10BW125
565 565  
566 -924.0 - SF7BW125 to SF10BW125
567 567  
568 -924.2 - SF7BW125 to SF10BW125
569 569  
570 -924.4 - SF7BW125 to SF10BW125
541 +== 2.7  Installation in Soil ==
571 571  
572 -924.6 - SF7BW125 to SF10BW125
543 +__**Measurement the soil surface**__
573 573  
545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
574 574  
575 -(% style="color:#037691" %)** Downlink:**
547 +[[image:1657259653666-883.png]] ​
576 576  
577 -Uplink channels 1-8 (RX1)
578 578  
579 -923.2 - SF10BW125 (RX2)
550 +(((
551 +
580 580  
553 +(((
554 +Dig a hole with diameter > 20CM.
555 +)))
581 581  
557 +(((
558 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 +)))
560 +)))
582 582  
583 -=== 2.7.6 KR920-923 (KR920) ===
562 +[[image:1654506665940-119.png]]
584 584  
585 -Default channel:
564 +(((
565 +
566 +)))
586 586  
587 -922.1 - SF7BW125 to SF12BW125
588 588  
589 -922.3 - SF7BW125 to SF12BW125
569 +== 2. Firmware Change Log ==
590 590  
591 -922.5 - SF7BW125 to SF12BW125
592 592  
572 +Download URL & Firmware Change log
593 593  
594 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
595 595  
596 -922.1 - SF7BW125 to SF12BW125
597 597  
598 -922.3 - SF7BW125 to SF12BW125
577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
599 599  
600 -922.5 - SF7BW125 to SF12BW125
601 601  
602 -922.7 - SF7BW125 to SF12BW125
603 603  
604 -922.9 - SF7BW125 to SF12BW125
581 +== 2.9  Battery Analysis ==
605 605  
606 -923.1 - SF7BW125 to SF12BW125
583 +=== 2.9.1  Battery Type ===
607 607  
608 -923.3 - SF7BW125 to SF12BW125
609 609  
586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
610 610  
611 -(% style="color:#037691" %)**Downlink:**
612 612  
613 -Uplink channels 1-7(RX1)
589 +The battery is designed to last for several years depends on the actually use environment and update interval
614 614  
615 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616 616  
592 +The battery related documents as below:
617 617  
594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
618 618  
619 -=== 2.7.7 IN865-867 (IN865) ===
620 -
621 -(% style="color:#037691" %)** Uplink:**
622 -
623 -865.0625 - SF7BW125 to SF12BW125
624 -
625 -865.4025 - SF7BW125 to SF12BW125
626 -
627 -865.9850 - SF7BW125 to SF12BW125
628 -
629 -
630 -(% style="color:#037691" %) **Downlink:**
631 -
632 -Uplink channels 1-3 (RX1)
633 -
634 -866.550 - SF10BW125 (RX2)
635 -
636 -
637 -
638 -
639 -== 2.8 LED Indicator ==
640 -
641 -The LSE01 has an internal LED which is to show the status of different state.
642 -
643 -* Blink once when device power on.
644 -* Solid ON for 5 seconds once device successful Join the network.
645 -* Blink once when device transmit a packet.
646 -
647 -
648 -
649 -== 2.9 Installation in Soil ==
650 -
651 -**Measurement the soil surface**
652 -
653 -
654 -[[image:1654506634463-199.png]] ​
655 -
656 656  (((
657 -(((
658 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 +[[image:image-20220708140453-6.png]]
659 659  )))
660 -)))
661 661  
662 662  
663 -[[image:1654506665940-119.png]]
664 664  
665 -(((
666 -Dig a hole with diameter > 20CM.
667 -)))
604 +=== 2.9.2  Power consumption Analyze ===
668 668  
669 669  (((
670 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
671 671  )))
672 672  
673 673  
674 -== 2.10 ​Firmware Change Log ==
675 -
676 676  (((
677 -**Firmware download link:**
612 +Instruction to use as below:
678 678  )))
679 679  
680 680  (((
681 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
616 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
682 682  )))
683 683  
684 -(((
685 -
686 -)))
687 687  
688 688  (((
689 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
690 690  )))
691 691  
692 -(((
693 -
624 +* (((
625 +Product Model
694 694  )))
695 -
696 -(((
697 -**V1.0.**
627 +* (((
628 +Uplink Interval
698 698  )))
630 +* (((
631 +Working Mode
632 +)))
699 699  
700 700  (((
701 -Release
635 +And the Life expectation in difference case will be shown on the right.
702 702  )))
703 703  
638 +[[image:image-20220708141352-7.jpeg]]
704 704  
705 -== 2.11 ​Battery Analysis ==
706 706  
707 -=== 2.11.1 ​Battery Type ===
708 708  
709 -(((
710 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 -)))
642 +=== 2.9.3  ​Battery Note ===
712 712  
713 713  (((
714 -The battery is designed to last for more than 5 years for the LSN50.
645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 715  )))
716 716  
717 -(((
718 -(((
719 -The battery-related documents are as below:
720 -)))
721 -)))
722 722  
723 -* (((
724 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
725 -)))
726 -* (((
727 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
728 -)))
729 -* (((
730 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
731 -)))
732 732  
733 - [[image:image-20220606171726-9.png]]
650 +=== 2.9.4  Replace the battery ===
734 734  
735 -
736 -
737 -=== 2.11.2 ​Battery Note ===
738 -
739 739  (((
740 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
741 741  )))
742 742  
743 743  
744 744  
745 -=== 2.11.3 Replace the battery ===
658 += 3. ​ Access NB-IoT Module =
746 746  
747 747  (((
748 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
661 +Users can directly access the AT command set of the NB-IoT module.
749 749  )))
750 750  
751 751  (((
752 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
753 753  )))
754 754  
755 -(((
756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
757 -)))
668 +[[image:1657261278785-153.png]]
758 758  
759 759  
760 760  
761 -= 3. Using the AT Commands =
672 += 4.  Using the AT Commands =
762 762  
763 -== 3.1 Access AT Commands ==
674 +== 4.1  Access AT Commands ==
764 764  
676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
765 765  
766 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
767 767  
768 -[[image:1654501986557-872.png||height="391" width="800"]]
679 +AT+<CMD>?  : Help on <CMD>
769 769  
681 +AT+<CMD>         : Run <CMD>
770 770  
771 -Or if you have below board, use below connection:
683 +AT+<CMD>=<value> : Set the value
772 772  
685 +AT+<CMD>=?  : Get the value
773 773  
774 -[[image:1654502005655-729.png||height="503" width="801"]]
775 775  
776 -
777 -
778 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
779 -
780 -
781 - [[image:1654502050864-459.png||height="564" width="806"]]
782 -
783 -
784 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
785 -
786 -
787 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
788 -
789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
790 -
791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
792 -
793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
794 -
795 -
796 796  (% style="color:#037691" %)**General Commands**(%%)      
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
690 +AT  : Attention       
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
692 +AT?  : Short Help     
801 801  
802 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
694 +ATZ  : MCU Reset    
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
696 +AT+TDC  : Application Data Transmission Interval
805 805  
698 +AT+CFG  : Print all configurations
806 806  
807 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
700 +AT+CFGMOD           : Working mode selection
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
702 +AT+INTMOD            : Set the trigger interrupt mode
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
704 +AT+5VT  : Set extend the time of 5V power  
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
706 +AT+PRO  : Choose agreement
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
708 +AT+WEIGRE  : Get weight or set weight to 0
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
710 +AT+WEIGAP  : Get or Set the GapValue of weight
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
712 +AT+RXDL  : Extend the sending and receiving time
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
714 +AT+CNTFAC  : Get or set counting parameters
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
716 +AT+SERVADDR  : Server Address
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
719 +(% style="color:#037691" %)**COAP Management**      
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
721 +AT+URI            : Resource parameters
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
724 +(% style="color:#037691" %)**UDP Management**
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
726 +AT+CFM          : Upload confirmation mode (only valid for UDP)
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
729 +(% style="color:#037691" %)**MQTT Management**
840 840  
731 +AT+CLIENT               : Get or Set MQTT client
841 841  
842 -(% style="color:#037691" %)**LoRa Network Management**
733 +AT+UNAME  : Get or Set MQTT Username
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
735 +AT+PWD                  : Get or Set MQTT password
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
737 +AT+PUBTOPI : Get or Set MQTT publish topic
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
739 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
742 +(% style="color:#037691" %)**Information**          
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
744 +AT+FDR  : Factory Data Reset
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
746 +AT+PWOR : Serial Access Password
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
750 += ​5.  FAQ =
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
752 +== 5.1 How to Upgrade Firmware ==
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
873 -
874 -
875 -(% style="color:#037691" %)**Information** 
876 -
877 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
878 -
879 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
880 -
881 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
882 -
883 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
884 -
885 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
886 -
887 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
888 -
889 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
890 -
891 -
892 -= ​4. FAQ =
893 -
894 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
895 -
896 896  (((
897 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
898 -When downloading the images, choose the required image file for download. ​
756 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
899 899  )))
900 900  
901 901  (((
902 -
760 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
903 903  )))
904 904  
905 905  (((
906 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
907 907  )))
908 908  
909 -(((
910 -
911 -)))
912 912  
913 -(((
914 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
915 -)))
916 916  
917 -(((
918 -
919 -)))
769 += 6.  Trouble Shooting =
920 920  
921 -(((
922 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
923 -)))
771 +== 6.1  ​Connection problem when uploading firmware ==
924 924  
925 -[[image:image-20220606154726-3.png]]
926 926  
927 -
928 -When you use the TTN network, the US915 frequency bands use are:
929 -
930 -* 903.9 - SF7BW125 to SF10BW125
931 -* 904.1 - SF7BW125 to SF10BW125
932 -* 904.3 - SF7BW125 to SF10BW125
933 -* 904.5 - SF7BW125 to SF10BW125
934 -* 904.7 - SF7BW125 to SF10BW125
935 -* 904.9 - SF7BW125 to SF10BW125
936 -* 905.1 - SF7BW125 to SF10BW125
937 -* 905.3 - SF7BW125 to SF10BW125
938 -* 904.6 - SF8BW500
939 -
774 +(% class="wikigeneratedid" %)
940 940  (((
941 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
942 942  )))
943 943  
944 -(% class="box infomessage" %)
945 -(((
946 -**AT+CHE=2**
947 -)))
948 948  
949 -(% class="box infomessage" %)
950 -(((
951 -**ATZ**
952 -)))
953 953  
954 -(((
955 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
956 -)))
781 +== 6.2  AT Command input doesn't work ==
957 957  
958 958  (((
959 -
784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
960 960  )))
961 961  
962 -(((
963 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
964 -)))
965 965  
966 -[[image:image-20220606154825-4.png]]
967 967  
789 += 7. ​ Order Info =
968 968  
969 969  
970 -= 5. Trouble Shooting =
792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
971 971  
972 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
973 973  
974 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
975 -
976 -
977 -== 5.2 AT Command input doesn’t work ==
978 -
979 -(((
980 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
981 -)))
982 -
983 -
984 -== 5.3 Device rejoin in at the second uplink packet ==
985 -
986 -(% style="color:#4f81bd" %)**Issue describe as below:**
987 -
988 -[[image:1654500909990-784.png]]
989 -
990 -
991 -(% style="color:#4f81bd" %)**Cause for this issue:**
992 -
993 -(((
994 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
995 -)))
996 -
997 -
998 -(% style="color:#4f81bd" %)**Solution: **
999 -
1000 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1001 -
1002 -[[image:1654500929571-736.png||height="458" width="832"]]
1003 -
1004 -
1005 -= 6. ​Order Info =
1006 -
1007 -
1008 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1009 -
1010 -
1011 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1012 -
1013 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1014 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1015 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1016 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1017 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1018 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1019 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1020 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1021 -
1022 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1023 -
1024 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1025 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1026 -
1027 1027  (% class="wikigeneratedid" %)
1028 1028  (((
1029 1029  
1030 1030  )))
1031 1031  
1032 -= 7. Packing Info =
800 += 8.  Packing Info =
1033 1033  
1034 1034  (((
1035 1035  
1036 1036  
1037 1037  (% style="color:#037691" %)**Package Includes**:
1038 -)))
1039 1039  
1040 -* (((
1041 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
807 +
808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 +* External antenna x 1
1042 1042  )))
1043 1043  
1044 1044  (((
... ... @@ -1045,30 +1045,20 @@
1045 1045  
1046 1046  
1047 1047  (% style="color:#037691" %)**Dimension and weight**:
1048 -)))
1049 1049  
1050 -* (((
1051 -Device Size: cm
817 +
818 +* Size: 195 x 125 x 55 mm
819 +* Weight:   420g
1052 1052  )))
1053 -* (((
1054 -Device Weight: g
1055 -)))
1056 -* (((
1057 -Package Size / pcs : cm
1058 -)))
1059 -* (((
1060 -Weight / pcs : g
1061 1061  
822 +(((
823 +
1062 1062  
825 +
1063 1063  
1064 1064  )))
1065 1065  
1066 -= 8. Support =
829 += 9.  Support =
1067 1067  
1068 1068  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1069 1069  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1070 -
1071 -
1072 -~)~)~)
1073 -~)~)~)
1074 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content