Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.10
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version
To version 65.11
edited by Xiaoling
on 2022/07/08 15:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1033 +12,804 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
64 64  
65 -[[image:image-20220606162220-5.png]]
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
71 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
90 +Probe(% style="color:#037691" %)** Specification:**
75 75  
76 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
94 +[[image:image-20220708101224-1.png]]
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
81 81  
98 +== ​1.4  Applications ==
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
84 84  
85 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
105 +== 1.5  Pin Definitions ==
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
94 94  
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
100 100  
114 +== 2.1  How it works ==
101 101  
102 -[[image:1654503992078-669.png]]
103 103  
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
104 104  
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 106  
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
123 +The diagram below shows the working flow in default firmware of NSE01:
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
126 +[[image:image-20220708101605-2.png]]
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
128 +(((
129 +
170 170  )))
171 171  
172 172  
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
134 +== 2.2 ​ Configure the NSE01 ==
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
137 +=== 2.2.1 Test Requirement ===
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
141 +To use NSE01 in your city, make sure meet below requirements:
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
205 205  
206 206  (((
207 -Ex2: 0x0B49 = 2889mV
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
208 208  )))
209 209  
210 210  
153 +[[image:1657249419225-449.png]]
211 211  
212 -=== 2.3.4 Soil Moisture ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
157 +=== 2.2.2 Insert SIM card ===
221 221  
222 222  (((
223 -
160 +Insert the NB-IoT Card get from your provider.
224 224  )))
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
164 +User need to take out the NB-IoT module and insert the SIM card like below:
228 228  )))
229 229  
230 230  
168 +[[image:1657249468462-536.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 235  
236 -**Example**:
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
237 237  
238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
239 -
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241 -
242 -
243 -
244 -=== 2.3.6 Soil Conductivity (EC) ===
245 -
246 246  (((
247 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
248 -)))
249 -
250 250  (((
251 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
252 252  )))
253 -
254 -(((
255 -Generally, the EC value of irrigation water is less than 800uS / cm.
256 256  )))
257 257  
258 -(((
259 -
260 -)))
261 261  
262 -(((
263 -
264 -)))
181 +**Connection:**
265 265  
266 -=== 2.3.7 MOD ===
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
267 267  
268 -Firmware version at least v2.1 supports changing mode.
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
269 269  
270 -For example, bytes[10]=90
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
271 271  
272 -mod=(bytes[10]>>7)&0x01=1.
273 273  
190 +In the PC, use below serial tool settings:
274 274  
275 -**Downlink Command:**
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
276 276  
277 -If payload = 0x0A00, workmode=0
198 +(((
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 +)))
278 278  
279 -If** **payload =** **0x0A01, workmode=1
202 +[[image:image-20220708110657-3.png]]
280 280  
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
281 281  
282 282  
283 -=== 2.3.8 ​Decode payload in The Things Network ===
284 284  
285 -While using TTN network, you can add the payload format to decode the payload.
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
286 286  
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
287 287  
288 -[[image:1654505570700-128.png]]
289 289  
290 -The payload decoder function for TTN is here:
213 +**Use below commands:**
291 291  
292 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
293 293  
219 +For parameter description, please refer to AT command set
294 294  
221 +[[image:1657249793983-486.png]]
295 295  
296 -== 2.4 Uplink Interval ==
297 297  
298 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
299 299  
226 +[[image:1657249831934-534.png]]
300 300  
301 301  
302 -== 2.5 Downlink Payload ==
303 303  
304 -By default, LSE50 prints the downlink payload to console port.
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
305 305  
306 -[[image:image-20220606165544-8.png]]
232 +This feature is supported since firmware version v1.0.1
307 307  
308 308  
309 -**Examples:**
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
310 310  
239 +[[image:1657249864775-321.png]]
311 311  
312 -* **Set TDC**
313 313  
314 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
242 +[[image:1657249930215-289.png]]
315 315  
316 -Payload:    01 00 00 1E    TDC=30S
317 317  
318 -Payload:    01 00 00 3C    TDC=60S
319 319  
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
320 320  
321 -* **Reset**
248 +This feature is supported since firmware version v110
322 322  
323 -If payload = 0x04FF, it will reset the LSE01
324 324  
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
325 325  
326 -* **CFM**
259 +[[image:1657249978444-674.png]]
327 327  
328 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
329 329  
262 +[[image:1657249990869-686.png]]
330 330  
331 331  
332 -== 2.6 ​Show Data in DataCake IoT Server ==
265 +(((
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +)))
333 333  
334 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335 335  
336 336  
337 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
271 +=== 2.2.7 Use TCP protocol to uplink data ===
338 338  
339 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
273 +This feature is supported since firmware version v110
340 340  
341 341  
342 -[[image:1654505857935-743.png]]
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
343 343  
279 +[[image:1657250217799-140.png]]
344 344  
345 -[[image:1654505874829-548.png]]
346 346  
347 -Step 3: Create an account or log in Datacake.
282 +[[image:1657250255956-604.png]]
348 348  
349 -Step 4: Search the LSE01 and add DevEUI.
350 350  
351 351  
352 -[[image:1654505905236-553.png]]
286 +=== 2.2.8 Change Update Interval ===
353 353  
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
354 354  
355 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
356 356  
357 -[[image:1654505925508-181.png]]
292 +(((
293 +(% style="color:red" %)**NOTE:**
294 +)))
358 358  
296 +(((
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
298 +)))
359 359  
360 360  
361 -== 2.7 Frequency Plans ==
362 362  
363 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
302 +== 2.3  Uplink Payload ==
364 364  
304 +In this mode, uplink payload includes in total 18 bytes
365 365  
366 -=== 2.7.1 EU863-870 (EU868) ===
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
367 367  
368 -(% style="color:#037691" %)** Uplink:**
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
369 369  
370 -868.1 - SF7BW125 to SF12BW125
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
315 +[[image:image-20220708111918-4.png]]
373 373  
374 -868.5 - SF7BW125 to SF12BW125
375 375  
376 -867.1 - SF7BW125 to SF12BW125
318 +The payload is ASCII string, representative same HEX:
377 377  
378 -867.3 - SF7BW125 to SF12BW125
320 +0x72403155615900640c7817075e0a8c02f900 where:
379 379  
380 -867.5 - SF7BW125 to SF12BW125
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
381 381  
382 -867.7 - SF7BW125 to SF12BW125
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
383 383  
384 -867.9 - SF7BW125 to SF12BW125
385 385  
386 -868.8 - FSK
333 +== 2.4  Payload Explanation and Sensor Interface ==
387 387  
388 388  
389 -(% style="color:#037691" %)** Downlink:**
336 +=== 2.4.1  Device ID ===
390 390  
391 -Uplink channels 1-9 (RX1)
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
394 394  
342 +**Example:**
395 395  
344 +AT+DEUI=A84041F15612
396 396  
397 -=== 2.7.2 US902-928(US915) ===
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
398 398  
399 -Used in USA, Canada and South America. Default use CHE=2
400 400  
401 -(% style="color:#037691" %)**Uplink:**
402 402  
403 -903.9 - SF7BW125 to SF10BW125
350 +=== 2.4.2  Version Info ===
404 404  
405 -904.1 - SF7BW125 to SF10BW125
352 +Specify the software version: 0x64=100, means firmware version 1.00.
406 406  
407 -904.3 - SF7BW125 to SF10BW125
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
408 408  
409 -904.5 - SF7BW125 to SF10BW125
410 410  
411 -904.7 - SF7BW125 to SF10BW125
412 412  
413 -904.9 - SF7BW125 to SF10BW125
358 +=== 2.4. Battery Info ===
414 414  
415 -905.1 - SF7BW125 to SF10BW125
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
416 416  
417 -905.3 - SF7BW125 to SF10BW125
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
418 418  
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
419 419  
420 -(% style="color:#037691" %)**Downlink:**
421 421  
422 -923.3 - SF7BW500 to SF12BW500
423 423  
424 -923.9 - SF7BW500 to SF12BW500
374 +=== 2.4.4  Signal Strength ===
425 425  
426 -924.5 - SF7BW500 to SF12BW500
376 +NB-IoT Network signal Strength.
427 427  
428 -925.1 - SF7BW500 to SF12BW500
378 +**Ex1: 0x1d = 29**
429 429  
430 -925.7 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
431 431  
432 -926.3 - SF7BW500 to SF12BW500
382 +(% style="color:blue" %)**1**(%%)  -111dBm
433 433  
434 -926.9 - SF7BW500 to SF12BW500
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
435 435  
436 -927.5 - SF7BW500 to SF12BW500
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
437 437  
438 -923.3 - SF12BW500(RX2 downlink only)
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
439 439  
440 440  
441 441  
442 -=== 2.7.3 CN470-510 (CN470) ===
392 +=== 2.4.5  Soil Moisture ===
443 443  
444 -Used in China, Default use CHE=1
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
445 445  
446 -(% style="color:#037691" %)**Uplink:**
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
447 447  
448 -486.3 - SF7BW125 to SF12BW125
402 +(((
403 +
404 +)))
449 449  
450 -486.5 - SF7BW125 to SF12BW125
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
451 451  
452 -486.7 - SF7BW125 to SF12BW125
453 453  
454 -486.9 - SF7BW125 to SF12BW125
455 455  
456 -487.1 - SF7BW125 to SF12BW125
412 +=== 2.4. Soil Temperature ===
457 457  
458 -487.3 - SF7BW125 to SF12BW125
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
459 459  
460 -487.5 - SF7BW125 to SF12BW125
418 +(((
419 +**Example**:
420 +)))
461 461  
462 -487.7 - SF7BW125 to SF12BW125
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
463 463  
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
466 466  
467 -506.7 - SF7BW125 to SF12BW125
468 468  
469 -506.9 - SF7BW125 to SF12BW125
432 +=== 2.4.7  Soil Conductivity (EC) ===
470 470  
471 -507.1 - SF7BW125 to SF12BW125
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
472 472  
473 -507.3 - SF7BW125 to SF12BW125
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
474 474  
475 -507.5 - SF7BW125 to SF12BW125
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
476 476  
477 -507.7 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
478 478  
479 -507.9 - SF7BW125 to SF12BW125
450 +(((
451 +
452 +)))
480 480  
481 -508.1 - SF7BW125 to SF12BW125
454 +=== 2.4.8  Digital Interrupt ===
482 482  
483 -505.3 - SF12BW125 (RX2 downlink only)
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
484 484  
458 +The command is:
485 485  
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
486 486  
487 -=== 2.7.4 AU915-928(AU915) ===
488 488  
489 -Default use CHE=2
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
490 490  
491 -(% style="color:#037691" %)**Uplink:**
492 492  
493 -916.8 - SF7BW125 to SF12BW125
466 +Example:
494 494  
495 -917.0 - SF7BW125 to SF12BW125
468 +0x(00): Normal uplink packet.
496 496  
497 -917.2 - SF7BW125 to SF12BW125
470 +0x(01): Interrupt Uplink Packet.
498 498  
499 -917.4 - SF7BW125 to SF12BW125
500 500  
501 -917.6 - SF7BW125 to SF12BW125
502 502  
503 -917.8 - SF7BW125 to SF12BW125
474 +=== 2.4.9  ​+5V Output ===
504 504  
505 -918.0 - SF7BW125 to SF12BW125
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
506 506  
507 -918.2 - SF7BW125 to SF12BW125
508 508  
479 +The 5V output time can be controlled by AT Command.
509 509  
510 -(% style="color:#037691" %)**Downlink:**
481 +(% style="color:blue" %)**AT+5VT=1000**
511 511  
512 -923.3 - SF7BW500 to SF12BW500
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
513 513  
514 -923.9 - SF7BW500 to SF12BW500
515 515  
516 -924.5 - SF7BW500 to SF12BW500
517 517  
518 -925.1 - SF7BW500 to SF12BW500
487 +== 2.5  Downlink Payload ==
519 519  
520 -925.7 - SF7BW500 to SF12BW500
489 +By default, NSE01 prints the downlink payload to console port.
521 521  
522 -926.3 - SF7BW500 to SF12BW500
491 +[[image:image-20220708133731-5.png]]
523 523  
524 -926.9 - SF7BW500 to SF12BW500
525 525  
526 -927.5 - SF7BW500 to SF12BW500
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
527 527  
528 -923.3 - SF12BW500(RX2 downlink only)
498 +(((
499 +
500 +)))
529 529  
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
530 530  
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
531 531  
532 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
533 533  
534 -(% style="color:#037691" %)**Default Uplink channel:**
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
535 535  
536 -923.2 - SF7BW125 to SF10BW125
518 +(((
519 +
520 +)))
537 537  
538 -923.4 - SF7BW125 to SF10BW125
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
539 539  
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
540 540  
541 -(% style="color:#037691" %)**Additional Uplink Channel**:
542 542  
543 -(OTAA mode, channel added by JoinAccept message)
531 +* (% style="color:blue" %)**INTMOD**
544 544  
545 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
546 546  
547 -922.2 - SF7BW125 to SF10BW125
548 548  
549 -922.4 - SF7BW125 to SF10BW125
550 550  
551 -922.6 - SF7BW125 to SF10BW125
537 +== 2.6  ​LED Indicator ==
552 552  
553 -922.8 - SF7BW125 to SF10BW125
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
554 554  
555 -923.0 - SF7BW125 to SF10BW125
556 556  
557 -922.0 - SF7BW125 to SF10BW125
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
558 558  
559 559  
560 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561 561  
562 -923.6 - SF7BW125 to SF10BW125
563 563  
564 -923.8 - SF7BW125 to SF10BW125
552 +== 2.7  Installation in Soil ==
565 565  
566 -924.0 - SF7BW125 to SF10BW125
554 +__**Measurement the soil surface**__
567 567  
568 -924.2 - SF7BW125 to SF10BW125
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
569 569  
570 -924.4 - SF7BW125 to SF10BW125
558 +[[image:1657259653666-883.png]] ​
571 571  
572 -924.6 - SF7BW125 to SF10BW125
573 573  
561 +(((
562 +
574 574  
575 -(% style="color:#037691" %)** Downlink:**
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
576 576  
577 -Uplink channels 1-8 (RX1)
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
578 578  
579 -923.2 - SF10BW125 (RX2)
573 +[[image:1654506665940-119.png]]
580 580  
575 +(((
576 +
577 +)))
581 581  
582 582  
583 -=== 2.7.6 KR920-923 (KR920) ===
580 +== 2. ​Firmware Change Log ==
584 584  
585 -Default channel:
586 586  
587 -922.1 - SF7BW125 to SF12BW125
583 +Download URL & Firmware Change log
588 588  
589 -922.3 - SF7BW125 to SF12BW125
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
590 590  
591 -922.5 - SF7BW125 to SF12BW125
592 592  
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
593 593  
594 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
595 595  
596 -922.1 - SF7BW125 to SF12BW125
597 597  
598 -922.3 - SF7BW125 to SF12BW125
592 +== 2. Battery Analysis ==
599 599  
600 -922.5 - SF7BW125 to SF12BW125
594 +=== 2.9.1  ​Battery Type ===
601 601  
602 -922.7 - SF7BW125 to SF12BW125
603 603  
604 -922.9 - SF7BW125 to SF12BW125
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
605 605  
606 -923.1 - SF7BW125 to SF12BW125
607 607  
608 -923.3 - SF7BW125 to SF12BW125
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
609 609  
610 610  
611 -(% style="color:#037691" %)**Downlink:**
603 +The battery related documents as below:
612 612  
613 -Uplink channels 1-7(RX1)
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
614 614  
615 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616 -
617 -
618 -
619 -=== 2.7.7 IN865-867 (IN865) ===
620 -
621 -(% style="color:#037691" %)** Uplink:**
622 -
623 -865.0625 - SF7BW125 to SF12BW125
624 -
625 -865.4025 - SF7BW125 to SF12BW125
626 -
627 -865.9850 - SF7BW125 to SF12BW125
628 -
629 -
630 -(% style="color:#037691" %) **Downlink:**
631 -
632 -Uplink channels 1-3 (RX1)
633 -
634 -866.550 - SF10BW125 (RX2)
635 -
636 -
637 -
638 -
639 -== 2.8 LED Indicator ==
640 -
641 -The LSE01 has an internal LED which is to show the status of different state.
642 -
643 -* Blink once when device power on.
644 -* Solid ON for 5 seconds once device successful Join the network.
645 -* Blink once when device transmit a packet.
646 -
647 -
648 -
649 -== 2.9 Installation in Soil ==
650 -
651 -**Measurement the soil surface**
652 -
653 -
654 -[[image:1654506634463-199.png]] ​
655 -
656 656  (((
657 -(((
658 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
610 +[[image:image-20220708140453-6.png]]
659 659  )))
660 -)))
661 661  
662 662  
663 -[[image:1654506665940-119.png]]
664 664  
665 -(((
666 -Dig a hole with diameter > 20CM.
667 -)))
615 +=== 2.9.2  Power consumption Analyze ===
668 668  
669 669  (((
670 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
671 671  )))
672 672  
673 673  
674 -== 2.10 ​Firmware Change Log ==
675 -
676 676  (((
677 -**Firmware download link:**
623 +Instruction to use as below:
678 678  )))
679 679  
680 680  (((
681 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
682 682  )))
683 683  
684 -(((
685 -
686 -)))
687 687  
688 688  (((
689 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
690 690  )))
691 691  
692 -(((
693 -
635 +* (((
636 +Product Model
694 694  )))
695 -
696 -(((
697 -**V1.0.**
638 +* (((
639 +Uplink Interval
698 698  )))
641 +* (((
642 +Working Mode
643 +)))
699 699  
700 700  (((
701 -Release
646 +And the Life expectation in difference case will be shown on the right.
702 702  )))
703 703  
649 +[[image:image-20220708141352-7.jpeg]]
704 704  
705 -== 2.11 ​Battery Analysis ==
706 706  
707 -=== 2.11.1 ​Battery Type ===
708 708  
709 -(((
710 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 -)))
653 +=== 2.9.3  ​Battery Note ===
712 712  
713 713  (((
714 -The battery is designed to last for more than 5 years for the LSN50.
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 715  )))
716 716  
717 -(((
718 -(((
719 -The battery-related documents are as below:
720 -)))
721 -)))
722 722  
723 -* (((
724 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
725 -)))
726 -* (((
727 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
728 -)))
729 -* (((
730 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
731 -)))
732 732  
733 - [[image:image-20220606171726-9.png]]
661 +=== 2.9.4  Replace the battery ===
734 734  
735 -
736 -
737 -=== 2.11.2 ​Battery Note ===
738 -
739 739  (((
740 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
741 741  )))
742 742  
743 743  
744 744  
745 -=== 2.11.3 Replace the battery ===
669 += 3. ​ Access NB-IoT Module =
746 746  
747 747  (((
748 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
672 +Users can directly access the AT command set of the NB-IoT module.
749 749  )))
750 750  
751 751  (((
752 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
753 753  )))
754 754  
755 -(((
756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
757 -)))
679 +[[image:1657261278785-153.png]]
758 758  
759 759  
760 760  
761 -= 3. Using the AT Commands =
683 += 4.  Using the AT Commands =
762 762  
763 -== 3.1 Access AT Commands ==
685 +== 4.1  Access AT Commands ==
764 764  
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
765 765  
766 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
767 767  
768 -[[image:1654501986557-872.png||height="391" width="800"]]
690 +AT+<CMD>?  : Help on <CMD>
769 769  
692 +AT+<CMD>         : Run <CMD>
770 770  
771 -Or if you have below board, use below connection:
694 +AT+<CMD>=<value> : Set the value
772 772  
696 +AT+<CMD>=?  : Get the value
773 773  
774 -[[image:1654502005655-729.png||height="503" width="801"]]
775 775  
776 -
777 -
778 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
779 -
780 -
781 - [[image:1654502050864-459.png||height="564" width="806"]]
782 -
783 -
784 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
785 -
786 -
787 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
788 -
789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
790 -
791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
792 -
793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
794 -
795 -
796 796  (% style="color:#037691" %)**General Commands**(%%)      
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
801 801  
802 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
805 805  
709 +AT+CFG  : Print all configurations
806 806  
807 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
840 840  
742 +AT+CLIENT               : Get or Set MQTT client
841 841  
842 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
873 -
874 -
875 -(% style="color:#037691" %)**Information** 
876 -
877 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
878 -
879 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
880 -
881 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
882 -
883 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
884 -
885 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
886 -
887 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
888 -
889 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
890 -
891 -
892 -= ​4. FAQ =
893 -
894 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
895 -
896 896  (((
897 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
898 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
899 899  )))
900 900  
901 901  (((
902 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
903 903  )))
904 904  
905 905  (((
906 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
907 907  )))
908 908  
909 -(((
910 -
911 -)))
912 912  
913 -(((
914 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
915 -)))
916 916  
917 -(((
918 -
919 -)))
780 += 6.  Trouble Shooting =
920 920  
921 -(((
922 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
923 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
924 924  
925 -[[image:image-20220606154726-3.png]]
926 926  
927 -
928 -When you use the TTN network, the US915 frequency bands use are:
929 -
930 -* 903.9 - SF7BW125 to SF10BW125
931 -* 904.1 - SF7BW125 to SF10BW125
932 -* 904.3 - SF7BW125 to SF10BW125
933 -* 904.5 - SF7BW125 to SF10BW125
934 -* 904.7 - SF7BW125 to SF10BW125
935 -* 904.9 - SF7BW125 to SF10BW125
936 -* 905.1 - SF7BW125 to SF10BW125
937 -* 905.3 - SF7BW125 to SF10BW125
938 -* 904.6 - SF8BW500
939 -
785 +(% class="wikigeneratedid" %)
940 940  (((
941 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
942 942  )))
943 943  
944 -(% class="box infomessage" %)
945 -(((
946 -**AT+CHE=2**
947 -)))
948 948  
949 -(% class="box infomessage" %)
950 -(((
951 -**ATZ**
952 -)))
953 953  
954 -(((
955 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
956 -)))
792 +== 6.2  AT Command input doesn't work ==
957 957  
958 958  (((
959 -
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
960 960  )))
961 961  
962 -(((
963 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
964 -)))
965 965  
966 -[[image:image-20220606154825-4.png]]
967 967  
800 += 7. ​ Order Info =
968 968  
969 969  
970 -= 5. Trouble Shooting =
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
971 971  
972 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
973 973  
974 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
975 -
976 -
977 -== 5.2 AT Command input doesn’t work ==
978 -
979 -(((
980 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
981 -)))
982 -
983 -
984 -== 5.3 Device rejoin in at the second uplink packet ==
985 -
986 -(% style="color:#4f81bd" %)**Issue describe as below:**
987 -
988 -[[image:1654500909990-784.png]]
989 -
990 -
991 -(% style="color:#4f81bd" %)**Cause for this issue:**
992 -
993 -(((
994 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
995 -)))
996 -
997 -
998 -(% style="color:#4f81bd" %)**Solution: **
999 -
1000 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1001 -
1002 -[[image:1654500929571-736.png||height="458" width="832"]]
1003 -
1004 -
1005 -= 6. ​Order Info =
1006 -
1007 -
1008 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1009 -
1010 -
1011 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1012 -
1013 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1014 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1015 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1016 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1017 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1018 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1019 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1020 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1021 -
1022 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1023 -
1024 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1025 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1026 -
1027 1027  (% class="wikigeneratedid" %)
1028 1028  (((
1029 1029  
1030 1030  )))
1031 1031  
1032 -= 7. Packing Info =
811 += 8.  Packing Info =
1033 1033  
1034 1034  (((
1035 1035  
1036 1036  
1037 1037  (% style="color:#037691" %)**Package Includes**:
1038 -)))
1039 1039  
1040 -* (((
1041 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1042 1042  )))
1043 1043  
1044 1044  (((
... ... @@ -1045,30 +1045,20 @@
1045 1045  
1046 1046  
1047 1047  (% style="color:#037691" %)**Dimension and weight**:
1048 -)))
1049 1049  
1050 -* (((
1051 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1052 1052  )))
1053 -* (((
1054 -Device Weight: g
1055 -)))
1056 -* (((
1057 -Package Size / pcs : cm
1058 -)))
1059 -* (((
1060 -Weight / pcs : g
1061 1061  
833 +(((
834 +
1062 1062  
836 +
1063 1063  
1064 1064  )))
1065 1065  
1066 -= 8. Support =
840 += 9.  Support =
1067 1067  
1068 1068  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1069 1069  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1070 -
1071 -
1072 -~)~)~)
1073 -~)~)~)
1074 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content