Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,972 +12,769 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 +== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 70 70 71 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -**LSE01 v1.0 :** Release 80 80 87 +== 1.4 Applications == 81 81 89 +* Smart Agriculture 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 84 84 85 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 97 +[[image:1657246476176-652.png]] 94 94 95 95 96 96 97 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 98 98 99 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 100 100 101 101 102 -[[image:1654503992078-669.png]] 103 - 104 - 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 - 107 - 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 - 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 111 - 112 -[[image:image-20220606163732-6.jpeg]] 113 - 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -(% class="wikigeneratedid" %) 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 115 +[[image:image-20220708101605-2.png]] 172 172 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.118 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 209 123 +== 2.2 Configure the NSE01 == 210 210 211 211 212 -=== 2. 3.4SoilMoisture ===126 +=== 2.2.1 Test Requirement === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 217 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 129 +To use NSE01 in your city, make sure meet below requirements: 221 221 222 - (((223 - 224 - )))131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 225 225 226 226 ((( 227 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 228 228 ))) 229 229 230 230 140 +[[image:1657249419225-449.png]] 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 235 235 236 - **Example**:144 +=== 2.2.2 Insert SIM card === 237 237 238 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C146 +Insert the NB-IoT Card get from your provider. 239 239 240 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C148 +User need to take out the NB-IoT module and insert the SIM card like below: 241 241 242 242 151 +[[image:1657249468462-536.png]] 243 243 244 -=== 2.3.6 Soil Conductivity (EC) === 245 245 246 -((( 247 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 248 -))) 249 249 250 -((( 251 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 253 253 254 254 ((( 255 -Generally, the EC value of irrigation water is less than 800uS / cm. 256 -))) 257 - 258 258 ((( 259 - 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 260 260 ))) 261 - 262 -((( 263 - 264 264 ))) 265 265 266 -=== 2.3.7 MOD === 267 267 268 - Firmware versionat least v2.1 supportschanging mode.164 +**Connection:** 269 269 270 - Forexample,bytes[10]=90166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 271 271 272 - mod=(bytes[10]>>7)&0x01=1.168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 273 273 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 274 274 275 -**Downlink Command:** 276 276 277 -I fpayload= 0x0A00,workmode=0173 +In the PC, use below serial tool settings: 278 278 279 -If** **payload =** **0x0A01, workmode=1 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 280 280 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 281 281 185 +[[image:image-20220708110657-3.png]] 282 282 283 - ===2.3.8 DecodepayloadinTheThingsNetwork===187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 284 284 285 -While using TTN network, you can add the payload format to decode the payload. 286 286 287 287 288 - [[image:1654505570700-128.png]]191 +=== 2.2.4 Use CoAP protocol to uplink data === 289 289 290 - Thepayload decoderfunction forTTNis here:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 291 291 292 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 293 293 196 +**Use below commands:** 294 294 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 295 295 296 - ==2.4UplinkInterval==202 +For parameter description, please refer to AT command set 297 297 298 - The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]204 +[[image:1657249793983-486.png]] 299 299 300 300 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 301 301 302 - ==2.5Downlink Payload ==209 +[[image:1657249831934-534.png]] 303 303 304 -By default, LSE50 prints the downlink payload to console port. 305 305 306 -[[image:image-20220606165544-8.png]] 307 307 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 308 308 309 - **Examples:**215 +This feature is supported since firmware version v1.0.1 310 310 311 311 312 -* **Set TDC** 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 313 313 314 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.222 +[[image:1657249864775-321.png]] 315 315 316 -Payload: 01 00 00 1E TDC=30S 317 317 318 - Payload:0100 00 3C TDC=60S225 +[[image:1657249930215-289.png]] 319 319 320 320 321 -* **Reset** 322 322 323 - Ifpayload=0x04FF,itwillreset theLSE01229 +=== 2.2.6 Use MQTT protocol to uplink data === 324 324 231 +This feature is supported since firmware version v110 325 325 326 -* **CFM** 327 327 328 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 329 329 242 +[[image:1657249978444-674.png]] 330 330 331 331 332 - == 2.6 Show Datain DataCakeIoT Server ==245 +[[image:1657249990869-686.png]] 333 333 334 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 335 335 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 336 336 337 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 338 338 339 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 340 340 254 +=== 2.2.7 Use TCP protocol to uplink data === 341 341 342 - [[image:1654505857935-743.png]]256 +This feature is supported since firmware version v110 343 343 344 344 345 -[[image:1654505874829-548.png]] 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 346 346 347 - Step 3: Create an account or login Datacake.262 +[[image:1657250217799-140.png]] 348 348 349 -Step 4: Search the LSE01 and add DevEUI. 350 350 265 +[[image:1657250255956-604.png]] 351 351 352 -[[image:1654505905236-553.png]] 353 353 354 354 355 - Afteradded,thesensordata arriveTTN, itwill also arriveandshow in Mydevices.269 +=== 2.2.8 Change Update Interval === 356 356 357 - [[image:1654505925508-181.png]]271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 358 358 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 359 359 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 360 360 361 -== 2.7 Frequency Plans == 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 362 362 363 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 364 364 365 365 366 -== =2.7.1 EU863-870(EU868)===285 +== 2.3 Uplink Payload == 367 367 368 - (%style="color:#037691"%)** Uplink:**287 +In this mode, uplink payload includes in total 18 bytes 369 369 370 -868.1 - SF7BW125 to SF12BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 371 371 372 - 868.3-SF7BW125toSF12BW125andSF7BW250295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 373 373 374 -868.5 - SF7BW125 to SF12BW125 375 375 376 - 867.1-SF7BW125 to SF12BW125298 +[[image:image-20220708111918-4.png]] 377 377 378 -867.3 - SF7BW125 to SF12BW125 379 379 380 - 867.5-SF7BW125toSF12BW125301 +The payload is ASCII string, representative same HEX: 381 381 382 - 867.7 - SF7BW125to SF12BW125303 +0x72403155615900640c7817075e0a8c02f900 where: 383 383 384 -867.9 - SF7BW125 to SF12BW125 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 385 385 386 -868.8 - FSK 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 387 387 315 +== 2.4 Payload Explanation and Sensor Interface == 388 388 389 -(% style="color:#037691" %)** Downlink:** 390 390 391 - Uplinkchannels1-9(RX1)318 +=== 2.4.1 Device ID === 392 392 393 - 869.525 - SF9BW125(RX2downlinkonly)320 +By default, the Device ID equal to the last 6 bytes of IMEI. 394 394 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 395 395 324 +**Example:** 396 396 397 - === 2.7.2US902-928(US915) ===326 +AT+DEUI=A84041F15612 398 398 399 - Used inUSA, Canada andSouthAmerica.DefaultuseCHE=2328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 400 400 401 -(% style="color:#037691" %)**Uplink:** 402 402 403 -903.9 - SF7BW125 to SF10BW125 404 404 405 - 904.1 - SF7BW125toSF10BW125332 +=== 2.4.2 Version Info === 406 406 407 - 904.3-SF7BW125toSF10BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 408 408 409 - 904.5-SF7BW125toSF10BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 410 410 411 -904.7 - SF7BW125 to SF10BW125 412 412 413 -904.9 - SF7BW125 to SF10BW125 414 414 415 - 905.1- SF7BW125toSF10BW125340 +=== 2.4.3 Battery Info === 416 416 417 -905.3 - SF7BW125 to SF10BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 418 418 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 419 419 420 -(% style="color:#037691" %)**Downlink:** 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 421 421 422 -923.3 - SF7BW500 to SF12BW500 423 423 424 -923.9 - SF7BW500 to SF12BW500 425 425 426 - 924.5-SF7BW500toSF12BW500356 +=== 2.4.4 Signal Strength === 427 427 428 - 925.1-SF7BW500to SF12BW500358 +NB-IoT Network signal Strength. 429 429 430 - 925.7- SF7BW500toSF12BW500360 +**Ex1: 0x1d = 29** 431 431 432 - 926.3-SF7BW500toSF12BW500362 +(% style="color:blue" %)**0**(%%) -113dBm or less 433 433 434 - 926.9- SF7BW500toSF12BW500364 +(% style="color:blue" %)**1**(%%) -111dBm 435 435 436 - 927.5- SF7BW500toSF12BW500366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 437 437 438 - 923.3-SF12BW500(RX2downlinkonly)368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 439 439 370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 440 440 441 441 442 -=== 2.7.3 CN470-510 (CN470) === 443 443 444 - UsedinChina, DefaultuseCHE=1374 +=== 2.4.5 Soil Moisture === 445 445 446 -(% style="color:#037691" %)**Uplink:** 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 447 447 448 -486.3 - SF7BW125 to SF12BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 449 449 450 -486.5 - SF7BW125 to SF12BW125 384 +((( 385 + 386 +))) 451 451 452 -486.7 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 453 453 454 -486.9 - SF7BW125 to SF12BW125 455 455 456 -487.1 - SF7BW125 to SF12BW125 457 457 458 -4 87.3-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 459 459 460 -487.5 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 461 461 462 -487.7 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 463 463 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 464 464 465 -(% style="color:#037691" %)**Downlink:** 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 466 466 467 -506.7 - SF7BW125 to SF12BW125 468 468 469 -506.9 - SF7BW125 to SF12BW125 470 470 471 - 507.1-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 472 472 473 -507.3 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 474 474 475 -507.5 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 476 476 477 -507.7 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 478 478 479 -507.9 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 480 480 481 -508.1 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 482 482 483 - 505.3- SF12BW125(RX2 downlinkonly)436 +=== 2.4.8 Digital Interrupt === 484 484 438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 485 485 440 +The command is: 486 486 487 -== =2.7.4AU915-928(AU915)===442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 488 488 489 -Default use CHE=2 490 490 491 - (%style="color:#037691"%)**Uplink:**445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 492 492 493 -916.8 - SF7BW125 to SF12BW125 494 494 495 - 917.0 - SF7BW125 to SF12BW125448 +Example: 496 496 497 - 917.2-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 498 498 499 - 917.4-SF7BW125to SF12BW125452 +0x(01): Interrupt Uplink Packet. 500 500 501 -917.6 - SF7BW125 to SF12BW125 502 502 503 -917.8 - SF7BW125 to SF12BW125 504 504 505 - 918.0- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 506 506 507 - 918.2-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 508 508 509 509 510 - (%style="color:#037691"%)**Downlink:**461 +The 5V output time can be controlled by AT Command. 511 511 512 - 923.3- SF7BW500toSF12BW500463 +(% style="color:blue" %)**AT+5VT=1000** 513 513 514 - 923.9-SF7BW500 toSF12BW500465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 515 515 516 -924.5 - SF7BW500 to SF12BW500 517 517 518 -925.1 - SF7BW500 to SF12BW500 519 519 520 - 925.7 - SF7BW500toSF12BW500469 +== 2.5 Downlink Payload == 521 521 522 - 926.3-SF7BW500toSF12BW500471 +By default, NSE01 prints the downlink payload to console port. 523 523 524 - 926.9-SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 525 525 526 -927.5 - SF7BW500 to SF12BW500 527 527 528 -923.3 - SF12BW500(RX2 downlink only) 476 +((( 477 +(% style="color:blue" %)**Examples:** 478 +))) 529 529 480 +((( 481 + 482 +))) 530 530 484 +* ((( 485 +(% style="color:blue" %)**Set TDC** 486 +))) 531 531 532 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 488 +((( 489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 490 +))) 533 533 534 -(% style="color:#037691" %)**Default Uplink channel:** 492 +((( 493 +Payload: 01 00 00 1E TDC=30S 494 +))) 535 535 536 -923.2 - SF7BW125 to SF10BW125 496 +((( 497 +Payload: 01 00 00 3C TDC=60S 498 +))) 537 537 538 -923.4 - SF7BW125 to SF10BW125 500 +((( 501 + 502 +))) 539 539 504 +* ((( 505 +(% style="color:blue" %)**Reset** 506 +))) 540 540 541 -(% style="color:#037691" %)**Additional Uplink Channel**: 508 +((( 509 +If payload = 0x04FF, it will reset the NSE01 510 +))) 542 542 543 -(OTAA mode, channel added by JoinAccept message) 544 544 545 -(% style="color: #037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:513 +* (% style="color:blue" %)**INTMOD** 546 546 547 - 922.2-SF7BW125toSF10BW125515 +Downlink Payload: 06000003, Set AT+INTMOD=3 548 548 549 -922.4 - SF7BW125 to SF10BW125 550 550 551 -922.6 - SF7BW125 to SF10BW125 552 552 553 - 922.8-SF7BW125toSF10BW125519 +== 2.6 LED Indicator == 554 554 555 -923.0 - SF7BW125 to SF10BW125 521 +((( 522 +The NSE01 has an internal LED which is to show the status of different state. 556 556 557 -922.0 - SF7BW125 to SF10BW125 558 558 525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 526 +* Then the LED will be on for 1 second means device is boot normally. 527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 528 +* For each uplink probe, LED will be on for 500ms. 529 +))) 559 559 560 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 561 561 562 -923.6 - SF7BW125 to SF10BW125 563 563 564 -923.8 - SF7BW125 to SF10BW125 565 565 566 - 924.0 - SF7BW125to SF10BW125534 +== 2.7 Installation in Soil == 567 567 568 - 924.2- SF7BW125toSF10BW125536 +__**Measurement the soil surface**__ 569 569 570 - 924.4-SF7BW125SF10BW125538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 571 571 572 - 924.6- SF7BW125to SF10BW125540 +[[image:1657259653666-883.png]] 573 573 574 574 575 -(% style="color:#037691" %)** Downlink:** 543 +((( 544 + 576 576 577 -Uplink channels 1-8 (RX1) 546 +((( 547 +Dig a hole with diameter > 20CM. 548 +))) 578 578 579 -923.2 - SF10BW125 (RX2) 550 +((( 551 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 552 +))) 553 +))) 580 580 555 +[[image:1654506665940-119.png]] 581 581 557 +((( 558 + 559 +))) 582 582 583 -=== 2.7.6 KR920-923 (KR920) === 584 584 585 - Defaultchannel:562 +== 2.8 Firmware Change Log == 586 586 587 -922.1 - SF7BW125 to SF12BW125 588 588 589 - 922.3-SF7BW125toSF12BW125565 +Download URL & Firmware Change log 590 590 591 - 922.5-F7BW125toSF12BW125567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 592 592 593 593 594 - (%style="color:#037691"%)**Uplink: (OTAA mode, channel added by JoinAcceptmessage)**570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 595 595 596 -922.1 - SF7BW125 to SF12BW125 597 597 598 -922.3 - SF7BW125 to SF12BW125 599 599 600 - 922.5- SF7BW125toSF12BW125574 +== 2.9 Battery Analysis == 601 601 602 - 922.7 - SF7BW125toSF12BW125576 +=== 2.9.1 Battery Type === 603 603 604 -922.9 - SF7BW125 to SF12BW125 605 605 606 - 923.1-SF7BW125to SF12BW125579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 607 607 608 -923.3 - SF7BW125 to SF12BW125 609 609 582 +The battery is designed to last for several years depends on the actually use environment and update interval. 610 610 611 -(% style="color:#037691" %)**Downlink:** 612 612 613 - Uplink channels1-7(RX1)585 +The battery related documents as below: 614 614 615 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 616 616 617 - 618 - 619 -=== 2.7.7 IN865-867 (IN865) === 620 - 621 -(% style="color:#037691" %)** Uplink:** 622 - 623 -865.0625 - SF7BW125 to SF12BW125 624 - 625 -865.4025 - SF7BW125 to SF12BW125 626 - 627 -865.9850 - SF7BW125 to SF12BW125 628 - 629 - 630 -(% style="color:#037691" %) **Downlink:** 631 - 632 -Uplink channels 1-3 (RX1) 633 - 634 -866.550 - SF10BW125 (RX2) 635 - 636 - 637 - 638 - 639 -== 2.8 LED Indicator == 640 - 641 -The LSE01 has an internal LED which is to show the status of different state. 642 - 643 -* Blink once when device power on. 644 -* Solid ON for 5 seconds once device successful Join the network. 645 -* Blink once when device transmit a packet. 646 - 647 - 648 - 649 -== 2.9 Installation in Soil == 650 - 651 -**Measurement the soil surface** 652 - 653 - 654 -[[image:1654506634463-199.png]] 655 - 656 656 ((( 657 -((( 658 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 592 +[[image:image-20220708140453-6.png]] 659 659 ))) 660 -))) 661 661 662 662 663 -[[image:1654506665940-119.png]] 664 664 665 -((( 666 -Dig a hole with diameter > 20CM. 667 -))) 597 +=== 2.9.2 Power consumption Analyze === 668 668 669 669 ((( 670 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 671 671 ))) 672 672 673 673 674 -== 2.10 Firmware Change Log == 675 - 676 676 ((( 677 - **Firmware downloadlink:**605 +Instruction to use as below: 678 678 ))) 679 679 680 680 ((( 681 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]609 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 682 682 ))) 683 683 684 -((( 685 - 686 -))) 687 687 688 688 ((( 689 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 690 690 ))) 691 691 692 -((( 693 - 617 +* ((( 618 +Product Model 694 694 ))) 695 - 696 -((( 697 -**V1.0.** 620 +* ((( 621 +Uplink Interval 698 698 ))) 623 +* ((( 624 +Working Mode 625 +))) 699 699 700 700 ((( 701 - Release628 +And the Life expectation in difference case will be shown on the right. 702 702 ))) 703 703 631 +[[image:image-20220708141352-7.jpeg]] 704 704 705 -== 2.11 Battery Analysis == 706 706 707 -=== 2.11.1 Battery Type === 708 708 709 -((( 710 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 711 -))) 635 +=== 2.9.3 Battery Note === 712 712 713 713 ((( 714 -The battery is designed to last for more than5 yearsfor theLSN50.638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 715 715 ))) 716 716 717 -((( 718 -((( 719 -The battery-related documents are as below: 720 -))) 721 -))) 722 722 723 -* ((( 724 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 725 -))) 726 -* ((( 727 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 728 -))) 729 -* ((( 730 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 731 -))) 732 732 733 - [[image:image-20220606171726-9.png]]643 +=== 2.9.4 Replace the battery === 734 734 735 - 736 - 737 -=== 2.11.2 Battery Note === 738 - 739 739 ((( 740 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 741 741 ))) 742 742 743 743 744 744 745 -= ==2.11.3Replacethebattery===651 += 3. Access NB-IoT Module = 746 746 747 747 ((( 748 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.654 +Users can directly access the AT command set of the NB-IoT module. 749 749 ))) 750 750 751 751 ((( 752 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 753 753 ))) 754 754 755 -((( 756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 757 -))) 661 +[[image:1657261278785-153.png]] 758 758 759 759 760 760 761 -= 3.Using the AT Commands =665 += 4. Using the AT Commands = 762 762 763 -== 3.1 Access AT Commands ==667 +== 4.1 Access AT Commands == 764 764 669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 765 765 766 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 767 767 768 - [[image:1654501986557-872.png||height="391"width="800"]]672 +AT+<CMD>? : Help on <CMD> 769 769 674 +AT+<CMD> : Run <CMD> 770 770 771 - Orifyouhavebelowboard,usebelowconnection:676 +AT+<CMD>=<value> : Set the value 772 772 678 +AT+<CMD>=? : Get the value 773 773 774 -[[image:1654502005655-729.png||height="503" width="801"]] 775 775 776 - 777 - 778 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 - 780 - 781 - [[image:1654502050864-459.png||height="564" width="806"]] 782 - 783 - 784 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 - 786 - 787 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 - 789 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 - 791 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 - 793 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 - 795 - 796 796 (% style="color:#037691" %)**General Commands**(%%) 797 797 798 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention683 +AT : Attention 799 799 800 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help685 +AT? : Short Help 801 801 802 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset687 +ATZ : MCU Reset 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval689 +AT+TDC : Application Data Transmission Interval 805 805 691 +AT+CFG : Print all configurations 806 806 807 - (%style="color:#037691"%)**Keys,IDsand EUIs management**693 +AT+CFGMOD : Working mode selection 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI695 +AT+INTMOD : Set the trigger interrupt mode 810 810 811 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey697 +AT+5VT : Set extend the time of 5V power 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key699 +AT+PRO : Choose agreement 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress701 +AT+WEIGRE : Get weight or set weight to 0 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI703 +AT+WEIGAP : Get or Set the GapValue of weight 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)705 +AT+RXDL : Extend the sending and receiving time 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network707 +AT+CNTFAC : Get or set counting parameters 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode709 +AT+SERVADDR : Server Address 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 826 826 827 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network712 +(% style="color:#037691" %)**COAP Management** 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode714 +AT+URI : Resource parameters 830 830 831 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 832 832 833 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format717 +(% style="color:#037691" %)**UDP Management** 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat719 +AT+CFM : Upload confirmation mode (only valid for UDP) 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 838 838 839 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data722 +(% style="color:#037691" %)**MQTT Management** 840 840 724 +AT+CLIENT : Get or Set MQTT client 841 841 842 - (%style="color:#037691"%)**LoRaNetworkManagement**726 +AT+UNAME : Get or Set MQTT Username 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate728 +AT+PWD : Get or Set MQTT password 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA730 +AT+PUBTOPIC : Get or Set MQTT publish topic 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting732 +AT+SUBTOPIC : Get or Set MQTT subscription topic 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 851 851 852 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink735 +(% style="color:#037691" %)**Information** 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink737 +AT+FDR : Factory Data Reset 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1739 +AT+PWORD : Serial Access Password 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 861 861 862 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1743 += 5. FAQ = 863 863 864 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2745 +== 5.1 How to Upgrade Firmware == 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 - 870 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 - 872 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 - 874 - 875 -(% style="color:#037691" %)**Information** 876 - 877 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 - 879 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 - 881 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 - 883 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 - 885 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 - 887 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 - 889 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 - 891 - 892 -= 4. FAQ = 893 - 894 -== 4.1 How to change the LoRa Frequency Bands/Region? == 895 - 896 896 ((( 897 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 -When downloading the images, choose the required image file for download. 749 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 899 899 ))) 900 900 901 901 ((( 902 - 753 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 903 903 ))) 904 904 905 905 ((( 906 - Howto setup LSE01to work in8channelmodeBy default,thefrequencybands US915, AU915, CN470 work in 72 frequencies.Many gateways are 8 channel gateways,and in thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.757 +Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 907 907 ))) 908 908 909 -((( 910 - 911 -))) 912 912 913 913 ((( 914 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 -))) 916 - 917 -((( 918 918 919 919 ))) 920 920 921 -((( 922 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 923 -))) 924 - 925 -[[image:image-20220606154726-3.png]] 926 - 927 - 928 -When you use the TTN network, the US915 frequency bands use are: 929 - 930 -* 903.9 - SF7BW125 to SF10BW125 931 -* 904.1 - SF7BW125 to SF10BW125 932 -* 904.3 - SF7BW125 to SF10BW125 933 -* 904.5 - SF7BW125 to SF10BW125 934 -* 904.7 - SF7BW125 to SF10BW125 935 -* 904.9 - SF7BW125 to SF10BW125 936 -* 905.1 - SF7BW125 to SF10BW125 937 -* 905.3 - SF7BW125 to SF10BW125 938 -* 904.6 - SF8BW500 939 - 940 -((( 941 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 942 -))) 943 - 944 -(% class="box infomessage" %) 945 -((( 946 -**AT+CHE=2** 947 -))) 948 - 949 -(% class="box infomessage" %) 950 -((( 951 -**ATZ** 952 -))) 953 - 954 -((( 955 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 -))) 957 - 958 -((( 959 - 960 -))) 961 - 962 -((( 963 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 -))) 965 - 966 -[[image:image-20220606154825-4.png]] 967 - 968 - 969 - 970 970 = 5. Trouble Shooting = 971 971 972 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==767 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 973 973 974 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.769 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 975 975 976 976 977 -== 5.2 AT Command input doesn ’t work ==772 +== 5.2 AT Command input doesn't work == 978 978 979 979 ((( 980 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.775 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 981 ))) 982 982 983 983 ... ... @@ -1059,7 +1059,6 @@ 1059 1059 * ((( 1060 1060 Weight / pcs : g 1061 1061 1062 - 1063 1063 1064 1064 ))) 1065 1065 ... ... @@ -1067,8 +1067,3 @@ 1067 1067 1068 1068 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1069 1069 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 - 1071 - 1072 -~)~)~) 1073 -~)~)~) 1074 -~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content