Last modified by Mengting Qiu on 2024/04/02 16:44

From version 32.10
edited by Xiaoling
on 2022/06/07 11:39
Change comment: There is no comment for this version
To version 64.1
edited by Xiaoling
on 2022/07/08 14:21
Change comment: Uploaded new attachment "1657261278785-153.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,753 +12,660 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
61 -== 1.3 Specification ==
62 +== 1.3  Specification ==
62 62  
63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64 64  
65 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
70 70  
71 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
72 72  
73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 -**LSE01 v1.0 :**  Release
80 80  
87 +== ​1.4  Applications ==
81 81  
89 +* Smart Agriculture
82 82  
83 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
84 84  
85 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 -)))
90 90  
91 -(((
92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 -)))
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
100 100  
101 101  
102 -[[image:1654503992078-669.png]]
103 -
104 -
105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 -
107 -
108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 -
110 -Each LSE01 is shipped with a sticker with the default device EUI as below:
111 -
112 -[[image:image-20220606163732-6.jpeg]]
113 -
114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:1654504596150-405.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -[[image:1654504683289-357.png]]
126 -
127 -
128 -
129 -**Step 2**: Power on LSE01
130 -
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -[[image:image-20220606163915-7.png]]
135 -
136 -
137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 -
139 -[[image:1654504778294-788.png]]
140 -
141 -
142 -
143 -== 2.3 Uplink Payload ==
144 -
145 -(% class="wikigeneratedid" %)
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
115 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
118 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
123 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
126 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
221 221  
222 -(((
223 -
224 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
140 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235 235  
236 -**Example**:
144 +=== 2.2.2 Insert SIM card ===
237 237  
238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
146 +Insert the NB-IoT Card get from your provider.
239 239  
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
148 +User need to take out the NB-IoT module and insert the SIM card like below:
241 241  
242 242  
151 +[[image:1657249468462-536.png]]
243 243  
244 -=== 2.3.6 Soil Conductivity (EC) ===
245 245  
246 -(((
247 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
248 -)))
249 249  
250 -(((
251 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
252 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
253 253  
254 254  (((
255 -Generally, the EC value of irrigation water is less than 800uS / cm.
256 -)))
257 -
258 258  (((
259 -
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
260 260  )))
261 -
262 -(((
263 -
264 264  )))
265 265  
266 -=== 2.3.7 MOD ===
267 267  
268 -Firmware version at least v2.1 supports changing mode.
164 +**Connection:**
269 269  
270 -For example, bytes[10]=90
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
271 271  
272 -mod=(bytes[10]>>7)&0x01=1.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
273 273  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
274 274  
275 -**Downlink Command:**
276 276  
277 -If payload = 0x0A00, workmode=0
173 +In the PC, use below serial tool settings:
278 278  
279 -If** **payload =** **0x0A01, workmode=1
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
280 280  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
281 281  
185 +[[image:image-20220708110657-3.png]]
282 282  
283 -=== 2.3.8 ​Decode payload in The Things Network ===
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
284 284  
285 -While using TTN network, you can add the payload format to decode the payload.
286 286  
287 287  
288 -[[image:1654505570700-128.png]]
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
289 289  
290 -The payload decoder function for TTN is here:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
291 291  
292 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
293 293  
196 +**Use below commands:**
294 294  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
295 295  
296 -== 2.4 Uplink Interval ==
202 +For parameter description, please refer to AT command set
297 297  
298 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
204 +[[image:1657249793983-486.png]]
299 299  
300 300  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
301 301  
302 -== 2.5 Downlink Payload ==
209 +[[image:1657249831934-534.png]]
303 303  
304 -By default, LSE50 prints the downlink payload to console port.
305 305  
306 -[[image:image-20220606165544-8.png]]
307 307  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
308 308  
309 -**Examples:**
215 +This feature is supported since firmware version v1.0.1
310 310  
311 311  
312 -* **Set TDC**
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
313 313  
314 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
222 +[[image:1657249864775-321.png]]
315 315  
316 -Payload:    01 00 00 1E    TDC=30S
317 317  
318 -Payload:    01 00 00 3C    TDC=60S
225 +[[image:1657249930215-289.png]]
319 319  
320 320  
321 -* **Reset**
322 322  
323 -If payload = 0x04FF, it will reset the LSE01
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
324 324  
231 +This feature is supported since firmware version v110
325 325  
326 -* **CFM**
327 327  
328 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
329 329  
242 +[[image:1657249978444-674.png]]
330 330  
331 331  
332 -== 2.6 ​Show Data in DataCake IoT Server ==
245 +[[image:1657249990869-686.png]]
333 333  
334 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335 335  
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
336 336  
337 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
338 338  
339 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
340 340  
254 +=== 2.2.7 Use TCP protocol to uplink data ===
341 341  
342 -[[image:1654505857935-743.png]]
256 +This feature is supported since firmware version v110
343 343  
344 344  
345 -[[image:1654505874829-548.png]]
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
346 346  
347 -Step 3: Create an account or log in Datacake.
262 +[[image:1657250217799-140.png]]
348 348  
349 -Step 4: Search the LSE01 and add DevEUI.
350 350  
265 +[[image:1657250255956-604.png]]
351 351  
352 -[[image:1654505905236-553.png]]
353 353  
354 354  
355 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
269 +=== 2.2.8 Change Update Interval ===
356 356  
357 -[[image:1654505925508-181.png]]
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
358 358  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
359 359  
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
360 360  
361 -== 2.7 Frequency Plans ==
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
362 362  
363 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
364 364  
365 365  
366 -=== 2.7.1 EU863-870 (EU868) ===
285 +== 2.3  Uplink Payload ==
367 367  
368 -(% style="color:#037691" %)** Uplink:**
287 +In this mode, uplink payload includes in total 18 bytes
369 369  
370 -868.1 - SF7BW125 to SF12BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
373 373  
374 -868.5 - SF7BW125 to SF12BW125
375 375  
376 -867.1 - SF7BW125 to SF12BW125
298 +[[image:image-20220708111918-4.png]]
377 377  
378 -867.3 - SF7BW125 to SF12BW125
379 379  
380 -867.5 - SF7BW125 to SF12BW125
301 +The payload is ASCII string, representative same HEX:
381 381  
382 -867.7 - SF7BW125 to SF12BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
383 383  
384 -867.9 - SF7BW125 to SF12BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
385 385  
386 -868.8 - FSK
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
387 387  
315 +== 2.4  Payload Explanation and Sensor Interface ==
388 388  
389 -(% style="color:#037691" %)** Downlink:**
390 390  
391 -Uplink channels 1-9 (RX1)
318 +=== 2.4.1  Device ID ===
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
394 394  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
395 395  
324 +**Example:**
396 396  
397 -=== 2.7.2 US902-928(US915) ===
326 +AT+DEUI=A84041F15612
398 398  
399 -Used in USA, Canada and South America. Default use CHE=2
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
400 400  
401 -(% style="color:#037691" %)**Uplink:**
402 402  
403 -903.9 - SF7BW125 to SF10BW125
404 404  
405 -904.1 - SF7BW125 to SF10BW125
332 +=== 2.4.2  Version Info ===
406 406  
407 -904.3 - SF7BW125 to SF10BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
408 408  
409 -904.5 - SF7BW125 to SF10BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
410 410  
411 -904.7 - SF7BW125 to SF10BW125
412 412  
413 -904.9 - SF7BW125 to SF10BW125
414 414  
415 -905.1 - SF7BW125 to SF10BW125
340 +=== 2.4.3  Battery Info ===
416 416  
417 -905.3 - SF7BW125 to SF10BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
418 418  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
419 419  
420 -(% style="color:#037691" %)**Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
421 421  
422 -923.3 - SF7BW500 to SF12BW500
423 423  
424 -923.9 - SF7BW500 to SF12BW500
425 425  
426 -924.5 - SF7BW500 to SF12BW500
356 +=== 2.4. Signal Strength ===
427 427  
428 -925.1 - SF7BW500 to SF12BW500
358 +NB-IoT Network signal Strength.
429 429  
430 -925.7 - SF7BW500 to SF12BW500
360 +**Ex1: 0x1d = 29**
431 431  
432 -926.3 - SF7BW500 to SF12BW500
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
433 433  
434 -926.9 - SF7BW500 to SF12BW500
364 +(% style="color:blue" %)**1**(%%)  -111dBm
435 435  
436 -927.5 - SF7BW500 to SF12BW500
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
437 437  
438 -923.3 - SF12BW500(RX2 downlink only)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
439 439  
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
440 440  
441 441  
442 -=== 2.7.3 CN470-510 (CN470) ===
443 443  
444 -Used in China, Default use CHE=1
374 +=== 2.4.5  Soil Moisture ===
445 445  
446 -(% style="color:#037691" %)**Uplink:**
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
447 447  
448 -486.3 - SF7BW125 to SF12BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
449 449  
450 -486.5 - SF7BW125 to SF12BW125
384 +(((
385 +
386 +)))
451 451  
452 -486.7 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
453 453  
454 -486.9 - SF7BW125 to SF12BW125
455 455  
456 -487.1 - SF7BW125 to SF12BW125
457 457  
458 -487.3 - SF7BW125 to SF12BW125
394 +=== 2.4. Soil Temperature ===
459 459  
460 -487.5 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
461 461  
462 -487.7 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
463 463  
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
466 466  
467 -506.7 - SF7BW125 to SF12BW125
468 468  
469 -506.9 - SF7BW125 to SF12BW125
470 470  
471 -507.1 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
472 472  
473 -507.3 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
474 474  
475 -507.5 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
476 476  
477 -507.7 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
478 478  
479 -507.9 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
480 480  
481 -508.1 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
482 482  
483 -505.3 - SF12BW125 (RX2 downlink only)
436 +=== 2.4.8  Digital Interrupt ===
484 484  
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
485 485  
440 +The command is:
486 486  
487 -=== 2.7.4 AU915-928(AU915) ===
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 488  
489 -Default use CHE=2
490 490  
491 -(% style="color:#037691" %)**Uplink:**
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
492 492  
493 -916.8 - SF7BW125 to SF12BW125
494 494  
495 -917.0 - SF7BW125 to SF12BW125
448 +Example:
496 496  
497 -917.2 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
498 498  
499 -917.4 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
500 500  
501 -917.6 - SF7BW125 to SF12BW125
502 502  
503 -917.8 - SF7BW125 to SF12BW125
504 504  
505 -918.0 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
506 506  
507 -918.2 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
508 508  
509 509  
510 -(% style="color:#037691" %)**Downlink:**
461 +The 5V output time can be controlled by AT Command.
511 511  
512 -923.3 - SF7BW500 to SF12BW500
463 +(% style="color:blue" %)**AT+5VT=1000**
513 513  
514 -923.9 - SF7BW500 to SF12BW500
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
515 515  
516 -924.5 - SF7BW500 to SF12BW500
517 517  
518 -925.1 - SF7BW500 to SF12BW500
519 519  
520 -925.7 - SF7BW500 to SF12BW500
469 +== 2.5  Downlink Payload ==
521 521  
522 -926.3 - SF7BW500 to SF12BW500
471 +By default, NSE01 prints the downlink payload to console port.
523 523  
524 -926.9 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
525 525  
526 -927.5 - SF7BW500 to SF12BW500
527 527  
528 -923.3 - SF12BW500(RX2 downlink only)
529 529  
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
530 530  
481 +(((
482 +
483 +)))
531 531  
532 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
533 533  
534 -(% style="color:#037691" %)**Default Uplink channel:**
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
535 535  
536 -923.2 - SF7BW125 to SF10BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
537 537  
538 -923.4 - SF7BW125 to SF10BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
539 539  
501 +(((
502 +
503 +)))
540 540  
541 -(% style="color:#037691" %)**Additional Uplink Channel**:
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
542 542  
543 -(OTAA mode, channel added by JoinAccept message)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
544 544  
545 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 546  
547 -922.2 - SF7BW125 to SF10BW125
514 +* (% style="color:blue" %)**INTMOD**
548 548  
549 -922.4 - SF7BW125 to SF10BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
550 550  
551 -922.6 - SF7BW125 to SF10BW125
552 552  
553 -922.8 - SF7BW125 to SF10BW125
554 554  
555 -923.0 - SF7BW125 to SF10BW125
520 +== 2. ​LED Indicator ==
556 556  
557 -922.0 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
558 558  
559 559  
560 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
561 561  
562 -923.6 - SF7BW125 to SF10BW125
563 563  
564 -923.8 - SF7BW125 to SF10BW125
565 565  
566 -924.0 - SF7BW125 to SF10BW125
567 567  
568 -924.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
569 569  
570 -924.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
571 571  
572 -924.6 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
573 573  
541 +[[image:1657259653666-883.png]] ​
574 574  
575 -(% style="color:#037691" %)** Downlink:**
576 576  
577 -Uplink channels 1-8 (RX1)
544 +(((
545 +
578 578  
579 -923.2 - SF10BW125 (RX2)
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
580 580  
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
581 581  
556 +[[image:1654506665940-119.png]]
582 582  
583 -=== 2.7.6 KR920-923 (KR920) ===
558 +(((
559 +
560 +)))
584 584  
585 -Default channel:
586 586  
587 -922.1 - SF7BW125 to SF12BW125
563 +== 2. Firmware Change Log ==
588 588  
589 -922.3 - SF7BW125 to SF12BW125
590 590  
591 -922.5 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
592 592  
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
593 593  
594 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
595 595  
596 -922.1 - SF7BW125 to SF12BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
597 597  
598 -922.3 - SF7BW125 to SF12BW125
599 599  
600 -922.5 - SF7BW125 to SF12BW125
601 601  
602 -922.7 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
603 603  
604 -922.9 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
605 605  
606 -923.1 - SF7BW125 to SF12BW125
607 607  
608 -923.3 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
609 609  
610 610  
611 -(% style="color:#037691" %)**Downlink:**
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
612 612  
613 -Uplink channels 1-7(RX1)
614 614  
615 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
586 +The battery related documents as below:
616 616  
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
617 617  
618 -
619 -=== 2.7.7 IN865-867 (IN865) ===
620 -
621 -(% style="color:#037691" %)** Uplink:**
622 -
623 -865.0625 - SF7BW125 to SF12BW125
624 -
625 -865.4025 - SF7BW125 to SF12BW125
626 -
627 -865.9850 - SF7BW125 to SF12BW125
628 -
629 -
630 -(% style="color:#037691" %) **Downlink:**
631 -
632 -Uplink channels 1-3 (RX1)
633 -
634 -866.550 - SF10BW125 (RX2)
635 -
636 -
637 -
638 -
639 -== 2.8 LED Indicator ==
640 -
641 -The LSE01 has an internal LED which is to show the status of different state.
642 -
643 -* Blink once when device power on.
644 -* Solid ON for 5 seconds once device successful Join the network.
645 -* Blink once when device transmit a packet.
646 -
647 -
648 -
649 -== 2.9 Installation in Soil ==
650 -
651 -**Measurement the soil surface**
652 -
653 -
654 -[[image:1654506634463-199.png]] ​
655 -
656 656  (((
657 -(((
658 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
659 659  )))
660 -)))
661 661  
662 662  
663 -[[image:1654506665940-119.png]]
664 664  
665 -(((
666 -Dig a hole with diameter > 20CM.
667 -)))
598 +=== 2.9.2  Power consumption Analyze ===
668 668  
669 669  (((
670 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
671 671  )))
672 672  
673 673  
674 -== 2.10 ​Firmware Change Log ==
675 -
676 676  (((
677 -**Firmware download link:**
606 +Instruction to use as below:
678 678  )))
679 679  
680 680  (((
681 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
682 682  )))
683 683  
684 -(((
685 -
686 -)))
687 687  
688 688  (((
689 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
690 690  )))
691 691  
692 -(((
693 -
618 +* (((
619 +Product Model
694 694  )))
695 -
696 -(((
697 -**V1.0.**
621 +* (((
622 +Uplink Interval
698 698  )))
624 +* (((
625 +Working Mode
626 +)))
699 699  
700 700  (((
701 -Release
629 +And the Life expectation in difference case will be shown on the right.
702 702  )))
703 703  
632 +[[image:image-20220708141352-7.jpeg]]
704 704  
705 -== 2.11 ​Battery Analysis ==
706 706  
707 -=== 2.11.1 ​Battery Type ===
708 708  
709 -(((
710 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 -)))
636 +=== 2.9.3  ​Battery Note ===
712 712  
713 713  (((
714 -The battery is designed to last for more than 5 years for the LSN50.
639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 715  )))
716 716  
717 -(((
718 -(((
719 -The battery-related documents are as below:
720 -)))
721 -)))
722 722  
723 -* (((
724 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
725 -)))
726 -* (((
727 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
728 -)))
729 -* (((
730 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
731 -)))
732 732  
733 - [[image:image-20220606171726-9.png]]
644 +=== 2.9.4  Replace the battery ===
734 734  
735 -
736 -
737 -=== 2.11.2 ​Battery Note ===
738 -
739 739  (((
740 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
741 741  )))
742 742  
743 743  
744 744  
745 -=== 2.11.3 Replace the battery ===
652 += 3. ​ Access NB-IoT Module =
746 746  
747 747  (((
748 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +Users can directly access the AT command set of the NB-IoT module.
749 749  )))
750 750  
751 751  (((
752 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]
753 753  )))
754 754  
755 -(((
756 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
757 -)))
662 +[[image:1657261119050-993.png]]
758 758  
664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]]
759 759  
760 760  
761 -= 3. ​Using the AT Commands =
762 762  
763 763  == 3.1 Access AT Commands ==
764 764  
... ... @@ -781,7 +781,7 @@
781 781   [[image:1654502050864-459.png||height="564" width="806"]]
782 782  
783 783  
784 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
785 785  
786 786  
787 787  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -939,19 +939,14 @@
939 939  
940 940  (((
941 941  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
942 -)))
943 943  
944 -(% class="box infomessage" %)
945 -(((
946 -**AT+CHE=2**
848 +* (% style="color:#037691" %)**AT+CHE=2**
849 +* (% style="color:#037691" %)**ATZ**
947 947  )))
948 948  
949 -(% class="box infomessage" %)
950 950  (((
951 -**ATZ**
952 -)))
853 +
953 953  
954 -(((
955 955  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
956 956  )))
957 957  
... ... @@ -966,18 +966,22 @@
966 966  [[image:image-20220606154825-4.png]]
967 967  
968 968  
869 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
969 969  
871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
872 +
873 +
970 970  = 5. Trouble Shooting =
971 971  
972 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
876 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
973 973  
974 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
975 975  
976 976  
977 -== 5.2 AT Command input doesnt work ==
881 +== 5.2 AT Command input doesn't work ==
978 978  
979 979  (((
980 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
981 981  )))
982 982  
983 983  
... ... @@ -1059,7 +1059,6 @@
1059 1059  * (((
1060 1060  Weight / pcs : g
1061 1061  
1062 -
1063 1063  
1064 1064  )))
1065 1065  
... ... @@ -1067,8 +1067,3 @@
1067 1067  
1068 1068  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1069 1069  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1070 -
1071 -
1072 -~)~)~)
1073 -~)~)~)
1074 -~)~)~)
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content