Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,727 +12,710 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 29 + 22 22 23 23 ((( 24 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 25 25 ))) 26 26 27 27 ((( 28 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 29 29 ))) 30 30 31 31 ((( 32 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 ))) 34 34 35 35 ((( 36 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 37 ))) 38 38 47 + 48 +))) 39 39 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 57 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 75 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==78 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 80 +* Supply Voltage: 2.1v ~~ 3.6v 81 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 83 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 -== 1.5 Firmware Change log == 85 +* - B1 @H-FDD: 2100MHz 86 +* - B3 @H-FDD: 1800MHz 87 +* - B8 @H-FDD: 900MHz 88 +* - B5 @H-FDD: 850MHz 89 +* - B20 @H-FDD: 800MHz 90 +* - B28 @H-FDD: 700MHz 77 77 92 +Probe(% style="color:#037691" %)** Specification:** 78 78 79 - **LSE01v1.0:**Release94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 80 80 96 +[[image:image-20220708101224-1.png]] 81 81 82 82 83 -= 2. Configure LSE01 to connect to LoRaWAN network = 84 84 85 -== 2.1Howitworks ==100 +== 1.4 Applications == 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 102 +* Smart Agriculture 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 94 94 107 +== 1.5 Pin Definitions == 95 95 96 96 97 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==110 +[[image:1657246476176-652.png]] 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 100 100 101 101 102 - [[image:1654503992078-669.png]]114 += 2. Use NSE01 to communicate with IoT Server = 103 103 116 +== 2.1 How it works == 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 119 +((( 120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 121 +))) 107 107 108 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 109 110 -Each LSE01 is shipped with a sticker with the default device EUI as below: 124 +((( 125 +The diagram below shows the working flow in default firmware of NSE01: 126 +))) 111 111 112 -[[image:image-20220 606163732-6.jpeg]]128 +[[image:image-20220708101605-2.png]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 130 +((( 131 + 132 +))) 115 115 116 -**Add APP EUI in the application** 117 117 118 118 119 - [[image:1654504596150-405.png]]136 +== 2.2 Configure the NSE01 == 120 120 121 121 139 +=== 2.2.1 Test Requirement === 122 122 123 -**Add APP KEY and DEV EUI** 124 124 125 -[[image:1654504683289-357.png]] 142 +((( 143 +To use NSE01 in your city, make sure meet below requirements: 144 +))) 126 126 146 +* Your local operator has already distributed a NB-IoT Network there. 147 +* The local NB-IoT network used the band that NSE01 supports. 148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 127 127 150 +((( 151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 152 +))) 128 128 129 -**Step 2**: Power on LSE01 130 130 155 +[[image:1657249419225-449.png]] 131 131 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 133 134 -[[image:image-20220606163915-7.png]] 135 135 159 +=== 2.2.2 Insert SIM card === 136 136 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 160 ((( 161 -Temperature 162 +Insert the NB-IoT Card get from your provider. 163 +))) 162 162 163 163 ((( 164 -(Reserve, Ignore now) 165 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 166 -((( 167 -MOD & Digital Interrupt 168 - 169 -((( 170 -(Optional) 166 +User need to take out the NB-IoT module and insert the SIM card like below: 171 171 ))) 172 -))) 173 173 174 -[[image:1654504881641-514.png]] 175 175 170 +[[image:1657249468462-536.png]] 176 176 177 177 178 -=== 2.3.2 MOD~=1(Original value) === 179 179 180 - ThismodecangettheoriginalADvalueofmoistureandoriginalconductivity (with temperaturedriftcompensation).174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 181 181 182 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 183 -|=((( 184 -**Size** 185 - 186 -**(bytes)** 187 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 189 ((( 190 -Temperature 191 - 192 192 ((( 193 - (Reserve,Ignore now)178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 194 194 ))) 195 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|((( 196 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 197 -)))|((( 198 -((( 199 -MOD & Digital Interrupt 200 200 ))) 201 201 202 -(Optional) 203 -))) 204 -))) 205 205 206 - [[image:1654504907647-967.png]]183 +**Connection:** 207 207 185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 208 208 187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 209 209 210 - ===2.3.3Battery Info===189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 211 211 212 -Check the battery voltage for LSE01. 213 213 214 - Ex1:0x0B45=2885mV192 +In the PC, use below serial tool settings: 215 215 216 -Ex2: 0x0B49 = 2889mV 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 217 217 218 - 219 - 220 -=== 2.3.4 Soil Moisture === 221 - 222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 223 - 224 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 225 - 226 - 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 - 229 - 230 - 231 -=== 2.3.5 Soil Temperature === 232 - 233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 234 - 235 -**Example**: 236 - 237 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 238 - 239 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 240 - 241 - 242 - 243 -=== 2.3.6 Soil Conductivity (EC) === 244 - 245 245 ((( 246 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 247 247 ))) 248 248 249 -((( 250 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 251 -))) 204 +[[image:image-20220708110657-3.png]] 252 252 253 253 ((( 254 - Generally,theECvalueofirrigationwaterisless than800uS/207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 255 255 ))) 256 256 257 -((( 258 - 259 -))) 260 260 261 -((( 262 - 263 -))) 264 264 265 -=== 2. 3.7MOD===212 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 267 - Firmwareversion atleastv2.1supportschangingmode.214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 268 268 269 -For example, bytes[10]=90 270 270 271 - mod=(bytes[10]>>7)&0x01=1.217 +**Use below commands:** 272 272 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 274 - **DownlinkCommand:**223 +For parameter description, please refer to AT command set 275 275 276 - If payload = 0x0A00, workmode=0225 +[[image:1657249793983-486.png]] 277 277 278 -If** **payload =** **0x0A01, workmode=1 279 279 228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 230 +[[image:1657249831934-534.png]] 281 281 282 -=== 2.3.8 Decode payload in The Things Network === 283 283 284 -While using TTN network, you can add the payload format to decode the payload. 285 285 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 286 286 287 - [[image:1654505570700-128.png]]236 +This feature is supported since firmware version v1.0.1 288 288 289 -The payload decoder function for TTN is here: 290 290 291 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 292 243 +[[image:1657249864775-321.png]] 293 293 294 294 295 - ==2.4Uplink Interval ==246 +[[image:1657249930215-289.png]] 296 296 297 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 298 298 299 299 250 +=== 2.2.6 Use MQTT protocol to uplink data === 300 300 301 - ==2.5DownlinkPayload==252 +This feature is supported since firmware version v110 302 302 303 -By default, LSE50 prints the downlink payload to console port. 304 304 305 -[[image:image-20220606165544-8.png]] 255 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 263 +[[image:1657249978444-674.png]] 307 307 308 -**Examples:** 309 309 266 +[[image:1657249990869-686.png]] 310 310 311 -* **Set TDC** 312 312 313 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 269 +((( 270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 +))) 314 314 315 -Payload: 01 00 00 1E TDC=30S 316 316 317 -Payload: 01 00 00 3C TDC=60S 318 318 275 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - ***Reset**277 +This feature is supported since firmware version v110 321 321 322 -If payload = 0x04FF, it will reset the LSE01 323 323 280 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 325 - * **CFM**283 +[[image:1657250217799-140.png]] 326 326 327 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 328 328 286 +[[image:1657250255956-604.png]] 329 329 330 330 331 -== 2.6 Show Data in DataCake IoT Server == 332 332 333 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:290 +=== 2.2.8 Change Update Interval === 334 334 292 +User can use below command to change the (% style="color:green" %)**uplink interval**. 335 335 336 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.294 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 337 337 338 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 296 +((( 297 +(% style="color:red" %)**NOTE:** 298 +))) 339 339 300 +((( 301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 +))) 340 340 341 -[[image:1654505857935-743.png]] 342 342 343 343 344 - [[image:1654505874829-548.png]]306 +== 2.3 Uplink Payload == 345 345 346 - Step3: Createan accountorloginDatacake.308 +In this mode, uplink payload includes in total 18 bytes 347 347 348 -Step 4: Search the LSE01 and add DevEUI. 310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 +|=(% style="width: 60px;" %)((( 312 +**Size(bytes)** 313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 349 349 316 +((( 317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 +))) 350 350 351 -[[image:1654505905236-553.png]] 352 352 321 +[[image:image-20220708111918-4.png]] 353 353 354 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 355 355 356 - [[image:1654505925508-181.png]]324 +The payload is ASCII string, representative same HEX: 357 357 326 +0x72403155615900640c7817075e0a8c02f900 where: 358 358 328 +* Device ID: 0x 724031556159 = 724031556159 329 +* Version: 0x0064=100=1.0.0 359 359 360 -== 2.7 Frequency Plans == 331 +* BAT: 0x0c78 = 3192 mV = 3.192V 332 +* Singal: 0x17 = 23 333 +* Soil Moisture: 0x075e= 1886 = 18.86 % 334 +* Soil Temperature:0x0a8c =2700=27 °C 335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 +* Interrupt: 0x00 = 0 361 361 362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 363 363 364 364 365 -=== 2.7.1 EU863-870 (EU868) === 366 366 367 - (%style="color:#037691"%)** Uplink:**341 +== 2.4 Payload Explanation and Sensor Interface == 368 368 369 -868.1 - SF7BW125 to SF12BW125 370 370 371 - 868.3- SF7BW125 to SF12BW125andSF7BW250344 +=== 2.4.1 Device ID === 372 372 373 -868.5 - SF7BW125 to SF12BW125 346 +((( 347 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 +))) 374 374 375 -867.1 - SF7BW125 to SF12BW125 350 +((( 351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 +))) 376 376 377 -867.3 - SF7BW125 to SF12BW125 354 +((( 355 +**Example:** 356 +))) 378 378 379 -867.5 - SF7BW125 to SF12BW125 358 +((( 359 +AT+DEUI=A84041F15612 360 +))) 380 380 381 -867.7 - SF7BW125 to SF12BW125 362 +((( 363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 +))) 382 382 383 -867.9 - SF7BW125 to SF12BW125 384 384 385 -868.8 - FSK 386 386 368 +=== 2.4.2 Version Info === 387 387 388 -(% style="color:#037691" %)** Downlink:** 370 +((( 371 +Specify the software version: 0x64=100, means firmware version 1.00. 372 +))) 389 389 390 -Uplink channels 1-9 (RX1) 374 +((( 375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 +))) 391 391 392 -869.525 - SF9BW125 (RX2 downlink only) 393 393 394 394 380 +=== 2.4.3 Battery Info === 395 395 396 -=== 2.7.2 US902-928(US915) === 382 +((( 383 +Check the battery voltage for LSE01. 384 +))) 397 397 398 -Used in USA, Canada and South America. Default use CHE=2 386 +((( 387 +Ex1: 0x0B45 = 2885mV 388 +))) 399 399 400 -(% style="color:#037691" %)**Uplink:** 390 +((( 391 +Ex2: 0x0B49 = 2889mV 392 +))) 401 401 402 -903.9 - SF7BW125 to SF10BW125 403 403 404 -904.1 - SF7BW125 to SF10BW125 405 405 406 - 904.3-SF7BW125toSF10BW125396 +=== 2.4.4 Signal Strength === 407 407 408 -904.5 - SF7BW125 to SF10BW125 398 +((( 399 +NB-IoT Network signal Strength. 400 +))) 409 409 410 -904.7 - SF7BW125 to SF10BW125 402 +((( 403 +**Ex1: 0x1d = 29** 404 +))) 411 411 412 -904.9 - SF7BW125 to SF10BW125 406 +((( 407 +(% style="color:blue" %)**0**(%%) -113dBm or less 408 +))) 413 413 414 -905.1 - SF7BW125 to SF10BW125 410 +((( 411 +(% style="color:blue" %)**1**(%%) -111dBm 412 +))) 415 415 416 -905.3 - SF7BW125 to SF10BW125 414 +((( 415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 +))) 417 417 418 +((( 419 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 +))) 418 418 419 -(% style="color:#037691" %)**Downlink:** 422 +((( 423 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 +))) 420 420 421 -923.3 - SF7BW500 to SF12BW500 422 422 423 -923.9 - SF7BW500 to SF12BW500 424 424 425 - 924.5-SF7BW500toSF12BW500428 +=== 2.4.5 Soil Moisture === 426 426 427 -925.1 - SF7BW500 to SF12BW500 430 +((( 431 +((( 432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 +))) 434 +))) 428 428 429 -925.7 - SF7BW500 to SF12BW500 436 +((( 437 +((( 438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 +))) 440 +))) 430 430 431 -926.3 - SF7BW500 to SF12BW500 442 +((( 443 + 444 +))) 432 432 433 -926.9 - SF7BW500 to SF12BW500 446 +((( 447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 +))) 434 434 435 -927.5 - SF7BW500 to SF12BW500 436 436 437 -923.3 - SF12BW500(RX2 downlink only) 438 438 452 +=== 2.4.6 Soil Temperature === 439 439 454 +((( 455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 +))) 440 440 441 -=== 2.7.3 CN470-510 (CN470) === 458 +((( 459 +**Example**: 460 +))) 442 442 443 -Used in China, Default use CHE=1 462 +((( 463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 +))) 444 444 445 -(% style="color:#037691" %)**Uplink:** 466 +((( 467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 +))) 446 446 447 -486.3 - SF7BW125 to SF12BW125 448 448 449 -486.5 - SF7BW125 to SF12BW125 450 450 451 -4 86.7-SF7BW125toSF12BW125472 +=== 2.4.7 Soil Conductivity (EC) === 452 452 453 -486.9 - SF7BW125 to SF12BW125 474 +((( 475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 +))) 454 454 455 -487.1 - SF7BW125 to SF12BW125 478 +((( 479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 +))) 456 456 457 -487.3 - SF7BW125 to SF12BW125 482 +((( 483 +Generally, the EC value of irrigation water is less than 800uS / cm. 484 +))) 458 458 459 -487.5 - SF7BW125 to SF12BW125 486 +((( 487 + 488 +))) 460 460 461 -487.7 - SF7BW125 to SF12BW125 490 +((( 491 + 492 +))) 462 462 494 +=== 2.4.8 Digital Interrupt === 463 463 464 -(% style="color:#037691" %)**Downlink:** 496 +((( 497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 +))) 465 465 466 -506.7 - SF7BW125 to SF12BW125 500 +((( 501 +The command is: 502 +))) 467 467 468 -506.9 - SF7BW125 to SF12BW125 504 +((( 505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 +))) 469 469 470 -507.1 - SF7BW125 to SF12BW125 471 471 472 -507.3 - SF7BW125 to SF12BW125 509 +((( 510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 +))) 473 473 474 -507.5 - SF7BW125 to SF12BW125 475 475 476 -507.7 - SF7BW125 to SF12BW125 514 +((( 515 +Example: 516 +))) 477 477 478 -507.9 - SF7BW125 to SF12BW125 518 +((( 519 +0x(00): Normal uplink packet. 520 +))) 479 479 480 -508.1 - SF7BW125 to SF12BW125 522 +((( 523 +0x(01): Interrupt Uplink Packet. 524 +))) 481 481 482 -505.3 - SF12BW125 (RX2 downlink only) 483 483 484 484 528 +=== 2.4.9 +5V Output === 485 485 486 -=== 2.7.4 AU915-928(AU915) === 530 +((( 531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 +))) 487 487 488 -Default use CHE=2 489 489 490 -(% style="color:#037691" %)**Uplink:** 535 +((( 536 +The 5V output time can be controlled by AT Command. 537 +))) 491 491 492 -916.8 - SF7BW125 to SF12BW125 539 +((( 540 +(% style="color:blue" %)**AT+5VT=1000** 541 +))) 493 493 494 -917.0 - SF7BW125 to SF12BW125 543 +((( 544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 +))) 495 495 496 -917.2 - SF7BW125 to SF12BW125 497 497 498 -917.4 - SF7BW125 to SF12BW125 499 499 500 - 917.6- SF7BW125toSF12BW125549 +== 2.5 Downlink Payload == 501 501 502 - 917.8-SF7BW125toSF12BW125551 +By default, NSE01 prints the downlink payload to console port. 503 503 504 - 918.0-SF7BW125 to SF12BW125553 +[[image:image-20220708133731-5.png]] 505 505 506 -918.2 - SF7BW125 to SF12BW125 507 507 556 +((( 557 +(% style="color:blue" %)**Examples:** 558 +))) 508 508 509 -(% style="color:#037691" %)**Downlink:** 560 +((( 561 + 562 +))) 510 510 511 -923.3 - SF7BW500 to SF12BW500 564 +* ((( 565 +(% style="color:blue" %)**Set TDC** 566 +))) 512 512 513 -923.9 - SF7BW500 to SF12BW500 568 +((( 569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 +))) 514 514 515 -924.5 - SF7BW500 to SF12BW500 572 +((( 573 +Payload: 01 00 00 1E TDC=30S 574 +))) 516 516 517 -925.1 - SF7BW500 to SF12BW500 576 +((( 577 +Payload: 01 00 00 3C TDC=60S 578 +))) 518 518 519 -925.7 - SF7BW500 to SF12BW500 580 +((( 581 + 582 +))) 520 520 521 -926.3 - SF7BW500 to SF12BW500 584 +* ((( 585 +(% style="color:blue" %)**Reset** 586 +))) 522 522 523 -926.9 - SF7BW500 to SF12BW500 588 +((( 589 +If payload = 0x04FF, it will reset the NSE01 590 +))) 524 524 525 -927.5 - SF7BW500 to SF12BW500 526 526 527 - 923.3- SF12BW500(RX2downlinkonly)593 +* (% style="color:blue" %)**INTMOD** 528 528 595 +((( 596 +Downlink Payload: 06000003, Set AT+INTMOD=3 597 +))) 529 529 530 530 531 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 532 532 533 - (% style="color:#037691"%)**DefaultUplinkchannel:**601 +== 2.6 LED Indicator == 534 534 535 -923.2 - SF7BW125 to SF10BW125 603 +((( 604 +The NSE01 has an internal LED which is to show the status of different state. 536 536 537 -923.4 - SF7BW125 to SF10BW125 538 538 607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 +* Then the LED will be on for 1 second means device is boot normally. 609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 +* For each uplink probe, LED will be on for 500ms. 611 +))) 539 539 540 -(% style="color:#037691" %)**Additional Uplink Channel**: 541 541 542 -(OTAA mode, channel added by JoinAccept message) 543 543 544 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 545 545 546 - 922.2 - SF7BW125to SF10BW125616 +== 2.7 Installation in Soil == 547 547 548 - 922.4- SF7BW125toSF10BW125618 +__**Measurement the soil surface**__ 549 549 550 -922.6 - SF7BW125 to SF10BW125 620 +((( 621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 +))) 551 551 552 - 922.8 - SF7BW125to SF10BW125624 +[[image:1657259653666-883.png]] 553 553 554 -923.0 - SF7BW125 to SF10BW125 555 555 556 -922.0 - SF7BW125 to SF10BW125 627 +((( 628 + 557 557 630 +((( 631 +Dig a hole with diameter > 20CM. 632 +))) 558 558 559 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 634 +((( 635 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 +))) 637 +))) 560 560 561 - 923.6 - SF7BW125to SF10BW125639 +[[image:1654506665940-119.png]] 562 562 563 -923.8 - SF7BW125 to SF10BW125 641 +((( 642 + 643 +))) 564 564 565 -924.0 - SF7BW125 to SF10BW125 566 566 567 - 924.2- SF7BW125toSF10BW125646 +== 2.8 Firmware Change Log == 568 568 569 -924.4 - SF7BW125 to SF10BW125 570 570 571 - 924.6-SF7BW125toSF10BW125649 +Download URL & Firmware Change log 572 572 651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 573 573 574 -(% style="color:#037691" %)** Downlink:** 575 575 576 -Up linkchannels 1-8 (RX1)654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 577 577 578 -923.2 - SF10BW125 (RX2) 579 579 580 580 658 +== 2.9 Battery Analysis == 581 581 582 -=== 2. 7.6KR920-923(KR920)===660 +=== 2.9.1 Battery Type === 583 583 584 -Default channel: 585 585 586 -922.1 - SF7BW125 to SF12BW125 587 - 588 -922.3 - SF7BW125 to SF12BW125 589 - 590 -922.5 - SF7BW125 to SF12BW125 591 - 592 - 593 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 594 - 595 -922.1 - SF7BW125 to SF12BW125 596 - 597 -922.3 - SF7BW125 to SF12BW125 598 - 599 -922.5 - SF7BW125 to SF12BW125 600 - 601 -922.7 - SF7BW125 to SF12BW125 602 - 603 -922.9 - SF7BW125 to SF12BW125 604 - 605 -923.1 - SF7BW125 to SF12BW125 606 - 607 -923.3 - SF7BW125 to SF12BW125 608 - 609 - 610 -(% style="color:#037691" %)**Downlink:** 611 - 612 -Uplink channels 1-7(RX1) 613 - 614 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 615 - 616 - 617 - 618 -=== 2.7.7 IN865-867 (IN865) === 619 - 620 -(% style="color:#037691" %)** Uplink:** 621 - 622 -865.0625 - SF7BW125 to SF12BW125 623 - 624 -865.4025 - SF7BW125 to SF12BW125 625 - 626 -865.9850 - SF7BW125 to SF12BW125 627 - 628 - 629 -(% style="color:#037691" %) **Downlink:** 630 - 631 -Uplink channels 1-3 (RX1) 632 - 633 -866.550 - SF10BW125 (RX2) 634 - 635 - 636 - 637 - 638 -== 2.8 LED Indicator == 639 - 640 -The LSE01 has an internal LED which is to show the status of different state. 641 - 642 -* Blink once when device power on. 643 -* Solid ON for 5 seconds once device successful Join the network. 644 -* Blink once when device transmit a packet. 645 - 646 -== 2.9 Installation in Soil == 647 - 648 -**Measurement the soil surface** 649 - 650 - 651 -[[image:1654506634463-199.png]] 652 - 653 653 ((( 654 -((( 655 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 656 656 ))) 657 -))) 658 658 659 659 660 -[[image:1654506665940-119.png]] 661 - 662 662 ((( 663 - Dig aholewithdiameter>20CM.669 +The battery is designed to last for several years depends on the actually use environment and update interval. 664 664 ))) 665 665 666 -((( 667 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 668 -))) 669 669 670 - 671 -== 2.10 Firmware Change Log == 672 - 673 673 ((( 674 - **Firmware downloadlink:**674 +The battery related documents as below: 675 675 ))) 676 676 677 - (((678 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]679 - )))677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 680 681 681 ((( 682 - 682 +[[image:image-20220708140453-6.png]] 683 683 ))) 684 684 685 -((( 686 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 687 -))) 688 688 689 -((( 690 - 691 -))) 692 692 693 -((( 694 -**V1.0.** 695 -))) 687 +=== 2.9.2 Power consumption Analyze === 696 696 697 697 ((( 698 - Release690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 699 699 ))) 700 700 701 701 702 -== 2.11 Battery Analysis == 703 - 704 -=== 2.11.1 Battery Type === 705 - 706 706 ((( 707 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.695 +Instruction to use as below: 708 708 ))) 709 709 710 710 ((( 711 - Thebatterys designedlastforrethan5 years fortheSN50.699 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 712 712 ))) 713 713 702 + 714 714 ((( 715 -((( 716 -The battery-related documents are as below: 704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 717 717 ))) 718 -))) 719 719 720 720 * ((( 721 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],708 +Product Model 722 722 ))) 723 723 * ((( 724 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],711 +Uplink Interval 725 725 ))) 726 726 * ((( 727 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]714 +Working Mode 728 728 ))) 729 729 730 - [[image:image-20220606171726-9.png]] 717 +((( 718 +And the Life expectation in difference case will be shown on the right. 719 +))) 731 731 721 +[[image:image-20220708141352-7.jpeg]] 732 732 733 733 734 -=== 2.11.2 Battery Note === 735 735 725 +=== 2.9.3 Battery Note === 726 + 736 736 ((( 737 737 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 738 738 ))) ... ... @@ -739,303 +739,176 @@ 739 739 740 740 741 741 742 -=== 2. 11.3Replace the battery ===733 +=== 2.9.4 Replace the battery === 743 743 744 744 ((( 745 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 746 746 ))) 747 747 739 + 740 + 741 += 3. Access NB-IoT Module = 742 + 748 748 ((( 749 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.744 +Users can directly access the AT command set of the NB-IoT module. 750 750 ))) 751 751 752 752 ((( 753 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 754 754 ))) 755 755 751 +[[image:1657261278785-153.png]] 756 756 757 757 758 -= 3. Using the AT Commands = 759 759 760 -= =3.1AccessAT Commands ==755 += 4. Using the AT Commands = 761 761 757 +== 4.1 Access AT Commands == 762 762 763 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 764 764 765 -[[image:1654501986557-872.png||height="391" width="800"]] 766 766 762 +AT+<CMD>? : Help on <CMD> 767 767 768 - Orifyouhavebelowboard,usebelowconnection:764 +AT+<CMD> : Run <CMD> 769 769 766 +AT+<CMD>=<value> : Set the value 770 770 771 - [[image:1654502005655-729.png||height="503"width="801"]]768 +AT+<CMD>=? : Get the value 772 772 773 773 774 - 775 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 776 - 777 - 778 - [[image:1654502050864-459.png||height="564" width="806"]] 779 - 780 - 781 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 782 - 783 - 784 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 785 - 786 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 787 - 788 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 789 - 790 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 791 - 792 - 793 793 (% style="color:#037691" %)**General Commands**(%%) 794 794 795 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention773 +AT : Attention 796 796 797 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help775 +AT? : Short Help 798 798 799 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset777 +ATZ : MCU Reset 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval779 +AT+TDC : Application Data Transmission Interval 802 802 781 +AT+CFG : Print all configurations 803 803 804 - (%style="color:#037691"%)**Keys,IDsand EUIs management**783 +AT+CFGMOD : Working mode selection 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI785 +AT+INTMOD : Set the trigger interrupt mode 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey787 +AT+5VT : Set extend the time of 5V power 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key789 +AT+PRO : Choose agreement 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress791 +AT+WEIGRE : Get weight or set weight to 0 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI793 +AT+WEIGAP : Get or Set the GapValue of weight 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)795 +AT+RXDL : Extend the sending and receiving time 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network797 +AT+CNTFAC : Get or set counting parameters 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode799 +AT+SERVADDR : Server Address 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 823 823 824 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network802 +(% style="color:#037691" %)**COAP Management** 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode804 +AT+URI : Resource parameters 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 829 829 830 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format807 +(% style="color:#037691" %)**UDP Management** 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat809 +AT+CFM : Upload confirmation mode (only valid for UDP) 833 833 834 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 835 835 836 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data812 +(% style="color:#037691" %)**MQTT Management** 837 837 814 +AT+CLIENT : Get or Set MQTT client 838 838 839 - (%style="color:#037691"%)**LoRaNetworkManagement**816 +AT+UNAME : Get or Set MQTT Username 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate818 +AT+PWD : Get or Set MQTT password 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA820 +AT+PUBTOPIC : Get or Set MQTT publish topic 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting822 +AT+SUBTOPIC : Get or Set MQTT subscription topic 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 848 848 849 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink825 +(% style="color:#037691" %)**Information** 850 850 851 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink827 +AT+FDR : Factory Data Reset 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1829 +AT+PWORD : Serial Access Password 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 858 858 859 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1833 += 5. FAQ = 860 860 861 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2835 +== 5.1 How to Upgrade Firmware == 862 862 863 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 870 - 871 - 872 -(% style="color:#037691" %)**Information** 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 875 - 876 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 877 - 878 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 879 - 880 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 881 - 882 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 883 - 884 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 885 - 886 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 887 - 888 - 889 -= 4. FAQ = 890 - 891 -== 4.1 How to change the LoRa Frequency Bands/Region? == 892 - 893 893 ((( 894 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 895 -When downloading the images, choose the required image file for download. 839 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 896 896 ))) 897 897 898 898 ((( 899 - 843 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 900 900 ))) 901 901 902 902 ((( 903 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 904 904 ))) 905 905 906 -((( 907 - 908 -))) 909 909 910 -((( 911 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 912 -))) 913 913 914 -((( 915 - 916 -))) 852 +== 5.2 Can I calibrate NSE01 to different soil types? == 917 917 918 918 ((( 919 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.855 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 920 920 ))) 921 921 922 -[[image:image-20220606154726-3.png]] 923 923 859 += 6. Trouble Shooting = 924 924 925 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:861 +== 6.1 Connection problem when uploading firmware == 926 926 927 -* 903.9 - SF7BW125 to SF10BW125 928 -* 904.1 - SF7BW125 to SF10BW125 929 -* 904.3 - SF7BW125 to SF10BW125 930 -* 904.5 - SF7BW125 to SF10BW125 931 -* 904.7 - SF7BW125 to SF10BW125 932 -* 904.9 - SF7BW125 to SF10BW125 933 -* 905.1 - SF7BW125 to SF10BW125 934 -* 905.3 - SF7BW125 to SF10BW125 935 -* 904.6 - SF8BW500 936 936 937 937 ((( 938 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:865 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 939 939 ))) 940 940 941 -(% class=" boxinfomessage" %)868 +(% class="wikigeneratedid" %) 942 942 ((( 943 -**AT+CHE=2** 944 -))) 945 - 946 -(% class="box infomessage" %) 947 -((( 948 -**ATZ** 949 -))) 950 - 951 -((( 952 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 953 -))) 954 - 955 -((( 956 956 957 957 ))) 958 958 959 -((( 960 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 961 -))) 962 962 963 - [[image:image-20220606154825-4.png]]874 +== 6.2 AT Command input doesn't work == 964 964 965 - 966 - 967 -= 5. Trouble Shooting = 968 - 969 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 970 - 971 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 972 - 973 - 974 -== 5.2 AT Command input doesn’t work == 975 - 976 976 ((( 977 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 978 -))) 877 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 979 979 980 - 981 -== 5.3 Device rejoin in at the second uplink packet == 982 - 983 -(% style="color:#4f81bd" %)**Issue describe as below:** 984 - 985 -[[image:1654500909990-784.png]] 986 - 987 - 988 -(% style="color:#4f81bd" %)**Cause for this issue:** 989 - 990 -((( 991 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 879 + 992 992 ))) 993 993 994 994 995 - (% style="color:#4f81bd"%)**Solution:**883 += 7. Order Info = 996 996 997 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 998 998 999 - [[image:1654500929571-736.png||height="458" width="832"]]886 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1000 1000 1001 1001 1002 -= 6. Order Info = 1003 - 1004 - 1005 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1006 - 1007 - 1008 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1009 - 1010 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1011 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1012 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1013 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1014 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1015 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1016 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1017 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1018 - 1019 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1020 - 1021 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1022 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1023 - 1024 1024 (% class="wikigeneratedid" %) 1025 1025 ((( 1026 1026 1027 1027 ))) 1028 1028 1029 -= 7. Packing Info =894 += 8. Packing Info = 1030 1030 1031 1031 ((( 1032 1032 1033 1033 1034 1034 (% style="color:#037691" %)**Package Includes**: 1035 -))) 1036 1036 1037 -* (((1038 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1901 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 902 +* External antenna x 1 1039 1039 ))) 1040 1040 1041 1041 ((( ... ... @@ -1042,27 +1042,19 @@ 1042 1042 1043 1043 1044 1044 (% style="color:#037691" %)**Dimension and weight**: 1045 -))) 1046 1046 1047 -* (((1048 - DeviceSize:cm910 +* Size: 195 x 125 x 55 mm 911 +* Weight: 420g 1049 1049 ))) 1050 -* ((( 1051 -Device Weight: g 1052 -))) 1053 -* ((( 1054 -Package Size / pcs : cm 1055 -))) 1056 -* ((( 1057 -Weight / pcs : g 1058 1058 914 +((( 915 + 1059 1059 917 + 1060 1060 1061 1061 ))) 1062 1062 1063 -= 8. Support =921 += 9. Support = 1064 1064 1065 1065 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1066 1066 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1067 - 1068 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content