Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,1030 +12,805 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 60 60 61 -== 1.3 Specification == 62 62 63 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 64 65 -[[image:image-20220606162220-5.png]] 66 66 64 +== 1.3 Specification == 67 67 68 68 69 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 72 72 73 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 - 75 75 76 -== 1.5 Firmware Change log == 77 77 74 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 80 80 81 81 82 82 83 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 84 84 85 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -((( 88 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 -))) 89 +[[image:image-20220708101224-1.png]] 90 90 91 -((( 92 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 -))) 94 94 95 95 93 +== 1.4 Applications == 96 96 97 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 98 98 99 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 100 100 100 +== 1.5 Pin Definitions == 101 101 102 -[[image:1654503992078-669.png]] 103 103 103 +[[image:1657246476176-652.png]] 104 104 105 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 106 107 107 108 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 109 109 110 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 111 111 112 -[[image:image-20220606163732-6.jpeg]] 113 113 114 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:1654504596150-405.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 -[[image:1654504683289-357.png]] 126 - 127 - 128 - 129 -**Step 2**: Power on LSE01 130 - 131 - 132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 - 134 -[[image:image-20220606163915-7.png]] 135 - 136 - 137 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 - 139 -[[image:1654504778294-788.png]] 140 - 141 - 142 - 143 -== 2.3 Uplink Payload == 144 - 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 - 147 -LSE01 will uplink payload via LoRaWAN with below payload format: 148 - 149 - 150 -Uplink payload includes in total 11 bytes. 151 - 152 - 153 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 -|=((( 155 -**Size** 156 - 157 -**(bytes)** 158 -)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 -|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 160 160 ((( 161 -Temperature 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 162 162 163 -((( 164 -(Reserve, Ignore now) 165 -)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 166 -((( 167 -MOD & Digital Interrupt 168 168 169 169 ((( 170 - (Optional)118 +The diagram below shows the working flow in default firmware of NSE01: 171 171 ))) 172 -))) 173 173 174 -[[image: 1654504881641-514.png]]121 +[[image:image-20220708101605-2.png]] 175 175 176 - 177 - 178 -=== 2.3.2 MOD~=1(Original value) === 179 - 180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 181 - 182 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 183 -|=((( 184 -**Size** 185 - 186 -**(bytes)** 187 -)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 189 ((( 190 -Temperature 191 - 192 -((( 193 -(Reserve, Ignore now) 124 + 194 194 ))) 195 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|((( 196 -[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 197 -)))|((( 198 -((( 199 -MOD & Digital Interrupt 200 -))) 201 201 202 -(Optional) 203 -))) 204 -))) 205 205 206 -[[image:1654504907647-967.png]] 207 207 129 +== 2.2 Configure the NSE01 == 208 208 209 209 210 -=== 2. 3.3Battery Info===132 +=== 2.2.1 Test Requirement === 211 211 212 -Check the battery voltage for LSE01. 213 213 214 -E x1:0x0B45=2885mV135 +To use NSE01 in your city, make sure meet below requirements: 215 215 216 -Ex2: 0x0B49 = 2889mV 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 217 217 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 143 +))) 218 218 219 219 220 - === 2.3.4 Soil Moisture===146 +[[image:1657249419225-449.png]] 221 221 222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 223 223 224 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 225 225 150 +=== 2.2.2 Insert SIM card === 226 226 227 - (%style="color:#4f81bd"%)**05DC(H)=1500(D)/100 = 15%.**152 +Insert the NB-IoT Card get from your provider. 228 228 154 +User need to take out the NB-IoT module and insert the SIM card like below: 229 229 230 230 231 - === 2.3.5 Soil Temperature===157 +[[image:1657249468462-536.png]] 232 232 233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 234 234 235 -**Example**: 236 236 237 - Ifpayloadis0105H:((0x0105&0x8000)>>15=== 0),temp=0105(H)/100=2.61 °C161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 238 238 239 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 240 - 241 - 242 - 243 -=== 2.3.6 Soil Conductivity (EC) === 244 - 245 245 ((( 246 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 247 -))) 248 - 249 249 ((( 250 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 251 251 ))) 252 - 253 -((( 254 -Generally, the EC value of irrigation water is less than 800uS / cm. 255 255 ))) 256 256 257 -((( 258 - 259 -))) 260 260 261 -((( 262 - 263 -))) 170 +**Connection:** 264 264 265 -= ==2.3.7MOD===172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 266 266 267 - Firmwareversionatst v2.1 supportschanging mode.174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 268 268 269 - Forexample,bytes[10]=90176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 270 270 271 -mod=(bytes[10]>>7)&0x01=1. 272 272 179 +In the PC, use below serial tool settings: 273 273 274 -**Downlink Command:** 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 275 275 276 -If payload = 0x0A00, workmode=0 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 277 277 278 - If** **payload =** **0x0A01, workmode=1191 +[[image:image-20220708110657-3.png]] 279 279 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 280 280 281 281 282 -=== 2.3.8 Decode payload in The Things Network === 283 283 284 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.197 +=== 2.2.4 Use CoAP protocol to uplink data === 285 285 199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 286 286 287 -[[image:1654505570700-128.png]] 288 288 289 - Thepayloaddecoder function for TTN ishere:202 +**Use below commands:** 290 290 291 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 292 292 208 +For parameter description, please refer to AT command set 293 293 210 +[[image:1657249793983-486.png]] 294 294 295 -== 2.4 Uplink Interval == 296 296 297 - TheLSE01 by defaultuplinkthe sensordata every20 minutes. Usercan change thisintervalbyATCommandor LoRaWANDownlinkCommand.Seethislink: [[Change UplinkInterval>>doc:Main.End Device AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 298 298 215 +[[image:1657249831934-534.png]] 299 299 300 300 301 -== 2.5 Downlink Payload == 302 302 303 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 304 304 305 - [[image:image-20220606165544-8.png]]221 +This feature is supported since firmware version v1.0.1 306 306 307 307 308 -**Examples:** 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 309 309 228 +[[image:1657249864775-321.png]] 310 310 311 -* **Set TDC** 312 312 313 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.231 +[[image:1657249930215-289.png]] 314 314 315 -Payload: 01 00 00 1E TDC=30S 316 316 317 -Payload: 01 00 00 3C TDC=60S 318 318 235 +=== 2.2.6 Use MQTT protocol to uplink data === 319 319 320 - ***Reset**237 +This feature is supported since firmware version v110 321 321 322 -If payload = 0x04FF, it will reset the LSE01 323 323 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 324 324 325 - * **CFM**248 +[[image:1657249978444-674.png]] 326 326 327 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 328 328 251 +[[image:1657249990869-686.png]] 329 329 330 330 331 -== 2.6 Show Data in DataCake IoT Server == 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 332 332 333 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 334 334 335 335 336 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.260 +=== 2.2.7 Use TCP protocol to uplink data === 337 337 338 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:262 +This feature is supported since firmware version v110 339 339 340 340 341 -[[image:1654505857935-743.png]] 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 342 342 268 +[[image:1657250217799-140.png]] 343 343 344 -[[image:1654505874829-548.png]] 345 345 346 - Step 3: Create an account or login Datacake.271 +[[image:1657250255956-604.png]] 347 347 348 -Step 4: Search the LSE01 and add DevEUI. 349 349 350 350 351 - [[image:1654505905236-553.png]]275 +=== 2.2.8 Change Update Interval === 352 352 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 353 353 354 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 355 355 356 -[[image:1654505925508-181.png]] 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 357 357 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 358 358 359 359 360 -== 2.7 Frequency Plans == 361 361 362 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.291 +== 2.3 Uplink Payload == 363 363 293 +In this mode, uplink payload includes in total 18 bytes 364 364 365 -=== 2.7.1 EU863-870 (EU868) === 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 366 366 367 - (%style="color:#037691"%)** Uplink:**301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 368 368 369 -868.1 - SF7BW125 to SF12BW125 370 370 371 - 868.3-SF7BW125 to SF12BW125 and SF7BW250304 +[[image:image-20220708111918-4.png]] 372 372 373 -868.5 - SF7BW125 to SF12BW125 374 374 375 - 867.1-SF7BW125toSF12BW125307 +The payload is ASCII string, representative same HEX: 376 376 377 - 867.3- SF7BW125to SF12BW125309 +0x72403155615900640c7817075e0a8c02f900 where: 378 378 379 -867.5 - SF7BW125 to SF12BW125 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 380 380 381 -867.7 - SF7BW125 to SF12BW125 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 382 382 383 -867.9 - SF7BW125 to SF12BW125 384 384 385 -868.8 - FSK 386 386 387 387 388 - (%style="color:#037691"%)**Downlink:**324 +== 2.4 Payload Explanation and Sensor Interface == 389 389 390 -Uplink channels 1-9 (RX1) 391 391 392 - 869.525- SF9BW125 (RX2 downlinkonly)327 +=== 2.4.1 Device ID === 393 393 329 +By default, the Device ID equal to the last 6 bytes of IMEI. 394 394 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 395 395 396 - === 2.7.2 US902-928(US915) ===333 +**Example:** 397 397 398 - Used in USA, Canada and South America.Default use CHE=2335 +AT+DEUI=A84041F15612 399 399 400 - (%style="color:#037691"%)**Uplink:**337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 401 401 402 -903.9 - SF7BW125 to SF10BW125 403 403 404 -904.1 - SF7BW125 to SF10BW125 405 405 406 - 904.3 - SF7BW125toSF10BW125341 +=== 2.4.2 Version Info === 407 407 408 - 904.5-SF7BW125toSF10BW125343 +Specify the software version: 0x64=100, means firmware version 1.00. 409 409 410 - 904.7-SF7BW125toSF10BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 411 411 412 -904.9 - SF7BW125 to SF10BW125 413 413 414 -905.1 - SF7BW125 to SF10BW125 415 415 416 - 905.3- SF7BW125toSF10BW125349 +=== 2.4.3 Battery Info === 417 417 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 418 418 419 -(% style="color:#037691" %)**Downlink:** 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 420 420 421 -923.3 - SF7BW500 to SF12BW500 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 422 422 423 -923.9 - SF7BW500 to SF12BW500 424 424 425 -924.5 - SF7BW500 to SF12BW500 426 426 427 - 925.1-SF7BW500toSF12BW500365 +=== 2.4.4 Signal Strength === 428 428 429 - 925.7-SF7BW500to SF12BW500367 +NB-IoT Network signal Strength. 430 430 431 - 926.3- SF7BW500toSF12BW500369 +**Ex1: 0x1d = 29** 432 432 433 - 926.9-SF7BW500toSF12BW500371 +(% style="color:blue" %)**0**(%%) -113dBm or less 434 434 435 - 927.5- SF7BW500toSF12BW500373 +(% style="color:blue" %)**1**(%%) -111dBm 436 436 437 - 923.3 -SF12BW500(RX2downlinkonly)375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 438 438 377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 439 439 379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 440 440 441 -=== 2.7.3 CN470-510 (CN470) === 442 442 443 -Used in China, Default use CHE=1 444 444 445 - (% style="color:#037691"%)**Uplink:**383 +=== 2.4.5 Soil Moisture === 446 446 447 -486.3 - SF7BW125 to SF12BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 448 448 449 -486.5 - SF7BW125 to SF12BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 450 450 451 -486.7 - SF7BW125 to SF12BW125 393 +((( 394 + 395 +))) 452 452 453 -486.9 - SF7BW125 to SF12BW125 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 454 454 455 -487.1 - SF7BW125 to SF12BW125 456 456 457 -487.3 - SF7BW125 to SF12BW125 458 458 459 -4 87.5-SF7BW125toSF12BW125403 +=== 2.4.6 Soil Temperature === 460 460 461 -487.7 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 462 462 409 +((( 410 +**Example**: 411 +))) 463 463 464 -(% style="color:#037691" %)**Downlink:** 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 465 465 466 -506.7 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 467 467 468 -506.9 - SF7BW125 to SF12BW125 469 469 470 -507.1 - SF7BW125 to SF12BW125 471 471 472 - 507.3-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 473 473 474 -507.5 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 475 475 476 -507.7 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 477 477 478 -507.9 - SF7BW125 to SF12BW125 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 479 479 480 -508.1 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 481 481 482 -505.3 - SF12BW125 (RX2 downlink only) 441 +((( 442 + 443 +))) 483 483 445 +=== 2.4.8 Digital Interrupt === 484 484 447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 485 485 486 - ===2.7.4AU915-928(AU915) ===449 +The command is: 487 487 488 -Defau ltuse CHE=2451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 489 489 490 -(% style="color:#037691" %)**Uplink:** 491 491 492 - 916.8-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 493 493 494 -917.0 - SF7BW125 to SF12BW125 495 495 496 - 917.2 - SF7BW125 to SF12BW125457 +Example: 497 497 498 - 917.4-SF7BW125to SF12BW125459 +0x(00): Normal uplink packet. 499 499 500 - 917.6-SF7BW125to SF12BW125461 +0x(01): Interrupt Uplink Packet. 501 501 502 -917.8 - SF7BW125 to SF12BW125 503 503 504 -918.0 - SF7BW125 to SF12BW125 505 505 506 - 918.2- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 507 507 467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 508 508 509 -(% style="color:#037691" %)**Downlink:** 510 510 511 - 923.3- SF7BW500toSF12BW500470 +The 5V output time can be controlled by AT Command. 512 512 513 - 923.9- SF7BW500toSF12BW500472 +(% style="color:blue" %)**AT+5VT=1000** 514 514 515 - 924.5-SF7BW500 toSF12BW500474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 516 516 517 -925.1 - SF7BW500 to SF12BW500 518 518 519 -925.7 - SF7BW500 to SF12BW500 520 520 521 - 926.3 - SF7BW500toSF12BW500478 +== 2.5 Downlink Payload == 522 522 523 - 926.9-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 524 524 525 - 927.5-SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 526 526 527 -923.3 - SF12BW500(RX2 downlink only) 528 528 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 529 529 489 +((( 490 + 491 +))) 530 530 531 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 532 532 533 -(% style="color:#037691" %)**Default Uplink channel:** 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 534 534 535 -923.2 - SF7BW125 to SF10BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 536 536 537 -923.4 - SF7BW125 to SF10BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 538 538 509 +((( 510 + 511 +))) 539 539 540 -(% style="color:#037691" %)**Additional Uplink Channel**: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 541 541 542 -(OTAA mode, channel added by JoinAccept message) 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 543 543 544 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 545 545 546 - 922.2-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 547 547 548 - 922.4-SF7BW125toSF10BW125524 +Downlink Payload: 06000003, Set AT+INTMOD=3 549 549 550 -922.6 - SF7BW125 to SF10BW125 551 551 552 -922.8 - SF7BW125 to SF10BW125 553 553 554 - 923.0-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 555 555 556 -922.0 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 557 557 558 558 559 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 560 560 561 -923.6 - SF7BW125 to SF10BW125 562 562 563 -923.8 - SF7BW125 to SF10BW125 564 564 565 -924.0 - SF7BW125 to SF10BW125 566 566 567 - 924.2 - SF7BW125to SF10BW125543 +== 2.7 Installation in Soil == 568 568 569 - 924.4- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 570 570 571 - 924.6-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 572 572 549 +[[image:1657259653666-883.png]] 573 573 574 -(% style="color:#037691" %)** Downlink:** 575 575 576 -Uplink channels 1-8 (RX1) 552 +((( 553 + 577 577 578 -923.2 - SF10BW125 (RX2) 555 +((( 556 +Dig a hole with diameter > 20CM. 557 +))) 579 579 559 +((( 560 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 580 580 564 +[[image:1654506665940-119.png]] 581 581 582 -=== 2.7.6 KR920-923 (KR920) === 566 +((( 567 + 568 +))) 583 583 584 -Default channel: 585 585 586 - 922.1- SF7BW125toSF12BW125571 +== 2.8 Firmware Change Log == 587 587 588 -922.3 - SF7BW125 to SF12BW125 589 589 590 - 922.5-SF7BW125toSF12BW125574 +Download URL & Firmware Change log 591 591 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 592 592 593 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 594 594 595 - 922.1- SF7BW125toSF12BW125579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 596 596 597 -922.3 - SF7BW125 to SF12BW125 598 598 599 -922.5 - SF7BW125 to SF12BW125 600 600 601 - 922.7- SF7BW125toSF12BW125583 +== 2.9 Battery Analysis == 602 602 603 - 922.9- SF7BW125toSF12BW125585 +=== 2.9.1 Battery Type === 604 604 605 -923.1 - SF7BW125 to SF12BW125 606 606 607 - 923.3-SF7BW125to SF12BW125588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 608 608 609 609 610 - (%style="color:#037691"%)**Downlink:**591 +The battery is designed to last for several years depends on the actually use environment and update interval. 611 611 612 -Uplink channels 1-7(RX1) 613 613 614 - 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 mightbechangedtoSF9BW125)594 +The battery related documents as below: 615 615 596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 616 616 617 - 618 -=== 2.7.7 IN865-867 (IN865) === 619 - 620 -(% style="color:#037691" %)** Uplink:** 621 - 622 -865.0625 - SF7BW125 to SF12BW125 623 - 624 -865.4025 - SF7BW125 to SF12BW125 625 - 626 -865.9850 - SF7BW125 to SF12BW125 627 - 628 - 629 -(% style="color:#037691" %) **Downlink:** 630 - 631 -Uplink channels 1-3 (RX1) 632 - 633 -866.550 - SF10BW125 (RX2) 634 - 635 - 636 - 637 - 638 -== 2.8 LED Indicator == 639 - 640 -The LSE01 has an internal LED which is to show the status of different state. 641 - 642 -* Blink once when device power on. 643 -* Solid ON for 5 seconds once device successful Join the network. 644 -* Blink once when device transmit a packet. 645 - 646 -== 2.9 Installation in Soil == 647 - 648 -**Measurement the soil surface** 649 - 650 - 651 -[[image:1654506634463-199.png]] 652 - 653 653 ((( 654 -((( 655 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 601 +[[image:image-20220708140453-6.png]] 656 656 ))) 657 -))) 658 658 659 659 660 -[[image:1654506665940-119.png]] 661 661 662 -((( 663 -Dig a hole with diameter > 20CM. 664 -))) 606 +=== 2.9.2 Power consumption Analyze === 665 665 666 666 ((( 667 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 668 668 ))) 669 669 670 670 671 -== 2.10 Firmware Change Log == 672 - 673 673 ((( 674 - **Firmware downloadlink:**614 +Instruction to use as below: 675 675 ))) 676 676 677 677 ((( 678 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 679 679 ))) 680 680 681 -((( 682 - 683 -))) 684 684 685 685 ((( 686 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 687 687 ))) 688 688 689 -((( 690 - 626 +* ((( 627 +Product Model 691 691 ))) 692 - 693 -((( 694 -**V1.0.** 629 +* ((( 630 +Uplink Interval 695 695 ))) 632 +* ((( 633 +Working Mode 634 +))) 696 696 697 697 ((( 698 - Release637 +And the Life expectation in difference case will be shown on the right. 699 699 ))) 700 700 640 +[[image:image-20220708141352-7.jpeg]] 701 701 702 -== 2.11 Battery Analysis == 703 703 704 -=== 2.11.1 Battery Type === 705 705 706 -((( 707 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 708 -))) 644 +=== 2.9.3 Battery Note === 709 709 710 710 ((( 711 -The battery is designed to last for more than5 yearsfor theLSN50.647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 712 712 ))) 713 713 714 -((( 715 -((( 716 -The battery-related documents are as below: 717 -))) 718 -))) 719 719 720 -* ((( 721 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 722 -))) 723 -* ((( 724 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 725 -))) 726 -* ((( 727 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 728 -))) 729 729 730 - [[image:image-20220606171726-9.png]]652 +=== 2.9.4 Replace the battery === 731 731 732 - 733 - 734 -=== 2.11.2 Battery Note === 735 - 736 736 ((( 737 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 738 738 ))) 739 739 740 740 741 741 742 -= ==2.11.3Replacethebattery===660 += 3. Access NB-IoT Module = 743 743 744 744 ((( 745 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.663 +Users can directly access the AT command set of the NB-IoT module. 746 746 ))) 747 747 748 748 ((( 749 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 750 750 ))) 751 751 752 -((( 753 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 754 -))) 670 +[[image:1657261278785-153.png]] 755 755 756 756 757 757 758 -= 3.Using the AT Commands =674 += 4. Using the AT Commands = 759 759 760 -== 3.1 Access AT Commands ==676 +== 4.1 Access AT Commands == 761 761 678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 762 762 763 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 764 764 765 - [[image:1654501986557-872.png||height="391"width="800"]]681 +AT+<CMD>? : Help on <CMD> 766 766 683 +AT+<CMD> : Run <CMD> 767 767 768 - Orifyouhavebelowboard,usebelowconnection:685 +AT+<CMD>=<value> : Set the value 769 769 687 +AT+<CMD>=? : Get the value 770 770 771 -[[image:1654502005655-729.png||height="503" width="801"]] 772 772 773 - 774 - 775 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 776 - 777 - 778 - [[image:1654502050864-459.png||height="564" width="806"]] 779 - 780 - 781 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 782 - 783 - 784 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 785 - 786 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 787 - 788 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 789 - 790 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 791 - 792 - 793 793 (% style="color:#037691" %)**General Commands**(%%) 794 794 795 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 796 796 797 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 798 798 799 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 802 802 700 +AT+CFG : Print all configurations 803 803 804 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 821 821 822 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 823 823 824 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 829 829 830 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 833 833 834 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 835 835 836 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 837 837 733 +AT+CLIENT : Get or Set MQTT client 838 838 839 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 848 848 849 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 850 850 851 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 858 858 859 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 860 860 861 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 862 862 863 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 866 - 867 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 868 - 869 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 870 - 871 - 872 -(% style="color:#037691" %)**Information** 873 - 874 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 875 - 876 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 877 - 878 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 879 - 880 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 881 - 882 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 883 - 884 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 885 - 886 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 887 - 888 - 889 -= 4. FAQ = 890 - 891 -== 4.1 How to change the LoRa Frequency Bands/Region? == 892 - 893 893 ((( 894 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 895 -When downloading the images, choose the required image file for download. 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 896 896 ))) 897 897 898 898 ((( 899 - 762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 900 900 ))) 901 901 902 902 ((( 903 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 904 904 ))) 905 905 906 -((( 907 - 908 -))) 909 909 910 -((( 911 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 912 -))) 913 913 914 -((( 915 - 916 -))) 771 += 6. Trouble Shooting = 917 917 918 -((( 919 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 920 -))) 773 +== 6.1 Connection problem when uploading firmware == 921 921 922 -[[image:image-20220606154726-3.png]] 923 923 924 - 925 -When you use the TTN network, the US915 frequency bands use are: 926 - 927 -* 903.9 - SF7BW125 to SF10BW125 928 -* 904.1 - SF7BW125 to SF10BW125 929 -* 904.3 - SF7BW125 to SF10BW125 930 -* 904.5 - SF7BW125 to SF10BW125 931 -* 904.7 - SF7BW125 to SF10BW125 932 -* 904.9 - SF7BW125 to SF10BW125 933 -* 905.1 - SF7BW125 to SF10BW125 934 -* 905.3 - SF7BW125 to SF10BW125 935 -* 904.6 - SF8BW500 936 - 776 +(% class="wikigeneratedid" %) 937 937 ((( 938 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 939 939 ))) 940 940 941 -(% class="box infomessage" %) 942 -((( 943 -**AT+CHE=2** 944 -))) 945 945 946 -(% class="box infomessage" %) 947 -((( 948 -**ATZ** 949 -))) 950 950 951 -((( 952 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 953 -))) 783 +== 6.2 AT Command input doesn't work == 954 954 955 955 ((( 956 - 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 957 957 ))) 958 958 959 -((( 960 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 961 -))) 962 962 963 -[[image:image-20220606154825-4.png]] 964 964 791 += 7. Order Info = 965 965 966 966 967 - = 5. TroubleShooting=794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 968 968 969 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 970 970 971 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 972 - 973 - 974 -== 5.2 AT Command input doesn’t work == 975 - 976 -((( 977 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 978 -))) 979 - 980 - 981 -== 5.3 Device rejoin in at the second uplink packet == 982 - 983 -(% style="color:#4f81bd" %)**Issue describe as below:** 984 - 985 -[[image:1654500909990-784.png]] 986 - 987 - 988 -(% style="color:#4f81bd" %)**Cause for this issue:** 989 - 990 -((( 991 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 992 -))) 993 - 994 - 995 -(% style="color:#4f81bd" %)**Solution: ** 996 - 997 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 998 - 999 -[[image:1654500929571-736.png||height="458" width="832"]] 1000 - 1001 - 1002 -= 6. Order Info = 1003 - 1004 - 1005 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1006 - 1007 - 1008 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1009 - 1010 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1011 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1012 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1013 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1014 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1015 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1016 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1017 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1018 - 1019 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1020 - 1021 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1022 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1023 - 1024 1024 (% class="wikigeneratedid" %) 1025 1025 ((( 1026 1026 1027 1027 ))) 1028 1028 1029 -= 7. Packing Info =802 += 8. Packing Info = 1030 1030 1031 1031 ((( 1032 1032 1033 1033 1034 1034 (% style="color:#037691" %)**Package Includes**: 1035 -))) 1036 1036 1037 -* ((( 1038 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 809 + 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 1039 1039 ))) 1040 1040 1041 1041 ((( ... ... @@ -1042,27 +1042,20 @@ 1042 1042 1043 1043 1044 1044 (% style="color:#037691" %)**Dimension and weight**: 1045 -))) 1046 1046 1047 -* ((( 1048 -Device Size: cm 819 + 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 1049 1049 ))) 1050 -* ((( 1051 -Device Weight: g 1052 -))) 1053 -* ((( 1054 -Package Size / pcs : cm 1055 -))) 1056 -* ((( 1057 -Weight / pcs : g 1058 1058 824 +((( 825 + 1059 1059 827 + 1060 1060 1061 1061 ))) 1062 1062 1063 -= 8. Support =831 += 9. Support = 1064 1064 1065 1065 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1066 1066 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1067 - 1068 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content